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A new analytical solution is developed for describing groundwater level fluctuations in a coupled leaky
confined aquifer system which consists of an unconfined aquifer, confined aquifer, and an aquitard in
between. The aquifer system has a tidal boundary at the seashore, a no flow boundary at remote inland
side, and a confined aquifer extending under the sea and terminated with an outlet-capping. This new
solution has shown to be a generalisation of most existing analytical solutions for a tidal aquifer system
which includes single confined and leaky confined aquifers. In addition, the solution is used to explore the
influences of the dimensionless leakance of the outlet-capping, the dimensionless hydraulic diffusivities,
and the leakages of the inland and offshore aquitards on the head responses in the leaky confined aquifer.

1. Introduction

In most of the coastal areas, groundwater and
seawater are hydraulically connected. The tidal
dynamics in coastal aquifers is an interesting topic
for hydrologists and plays an important role in
numerous environmental issues in coastal areas.
Jacob (1950) introduced a simple coastal aquifer
system that considered a vertical beach, straight
coastline and one-dimensional flow in a coastal con-
fined aquifer. Since then, the dynamic interaction
between groundwater and seawater has attracted
much attention. The coastal subsurface formation
is usually complex; the Jacob’s solution was in fact
too simple to be applied to many real-world prob-
lems. Therefore, the analytical solutions for compli-
cated tidal aquifer configurations were developed.
Those include a three-layered coastal aquifer sys-
tem (Jiao and Tang 1999; Li and Jiao 2001a; Jeng
et al 2002; Li et al 2007; Chuang et al 2010), a
confined aquifer extending under the sea (Van der

Kamp 1972; Li and Jiao 2001b; Chuang and Yeh
2007, 2008; Li et al 2008) and a coastal confined
aquifer with an outlet-capping (Guo et al 2007;
Xia et al 2007; Geng et al 2009). Previous stud-
ies showed that dynamic effect of the unconfined
aquifer on the head fluctuations in the confined
aquifer plays an active role in solving coastal leaky
confined aquifer problems.

This paper develops a new analytical solution for
describing groundwater level fluctuation in a het-
erogeneous leaky confined aquifer extending finite
distance under the sea and terminated at an outlet-
capping. Most of the existing analytical solutions
of the tidal aquifer systems are shown as spe-
cial cases of the present solution. These solutions
include one-dimensional flow in a coastal confined
aquifer (Jacob 1950; Ferris 1951; Van der Kamp
1972; Geng et al 2009) and a variety of coastal
leaky confined aquifer systems (e.g., Jiao and Tang
1999; Li and Jiao 2001b; Chuang and Yeh 2007,
2008; Li et al 2007; Xia et al 2007; Jeng et al 2002).
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In addition, the present solution can be considered
as an extension of Xia et al’s (2007) solution with
differences in two following aspects:

(1) the offshore and inland parts of the aquifer have
different hydraulic properties, and

(2) the water table in the unconfined aquifer fluc-
tuates with tide.

The influence of those two situations on the
behaviour of the groundwater level fluctuation in
the inland part of the confined aquifer is inves-
tigated. The joint dynamic effects of water table
fluctuation, the leakage through its submarine
outlet-capping, and the leakages of the inland and
offshore aquitards on the head fluctuations in the
inland part of the leaky confined aquifer are also
examined.

2. Problem formulation

Consider a coastal aquifer system with an uncon-
fined aquifer, a confined aquifer, and an aquitard
between them as displayed in figure 1. The origin
of the x-axis is located at the intersection of the
mean sea surface and the beach face. The x-axis is
horizontal, positive landward and perpendicular to
the coastal line. Tidal fluctuations in both uncon-
fined and confined aquifers are considered. These
two aquifers interact with each other through leak-
age. The unconfined aquifer terminates at the coast
while the aquitard and confined aquifer extend over
a finite distance (l) under the sea with an outlet-
capping (Xia et al 2007). The bottom of the con-
fined aquifer is impermeable and the leakages of the

offshore and inland aquitards are different. Con-
sider that the hydraulic parameters of the uncon-
fined aquifer as well as the offshore and inland
confined aquifers are all different. In addition, the
thickness of the unconfined aquifer is very large
when compared to the amplitude of the tidal fluc-
tuation. The flow in the confined aquifer is essen-
tially horizontal and there is a vertical leakage
through the aquitard. The initial hydraulic head
in the whole system is uniform and equals hMSL,
which is the distance from the groundwater level
to any arbitrary location. Assume that elastic stor-
age of the aquitard is negligible and the leakage
is linearly proportional to the difference in head
between the unconfined aquifer and its underlain
confined one.

2.1 Groundwater flow equations

Under above assumptions, the governing equations
of the head fluctuations for the inland uncon-
fined and confined aquifers (x > 0) are respectively
(Chuang and Yeh 2008)

S1

∂h1

∂t
= T1

∂2h1

∂x2
+ Li (h2 − h1) (1a)

S2

∂h2

∂t
= T2

∂2h2

∂x2
+ Li (h1 − h2) (1b)

and for the offshore aquifer (x < 0) is

S3

∂h2

∂t
= T3

∂2h2

∂x2
+ S3Te

dhs

dt
+ Lo (hs − h2) (1c)
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Figure 1. Schematic diagram of a tidal leaky aquifer system.
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where h1 and h2 are the hydraulic heads in the
unconfined and confined aquifers, respectively; hs

is the water level of the sea tide; Te, the tidal effi-
ciency, reflects the fluctuation of groundwater level
caused by compression of both the aquifer skeleton
and groundwater due to the tidal loading above
the offshore aquitard (Li and Jiao 2001b); S1 is the
specific yield of the unconfined aquifer. S2 and S3

are the storativities of the inland and offshore con-
fined aquifers, respectively. T1, T2 and T3 are the
transmissivities of the unconfined, inland and off-
shore confined aquifers, respectively. The leakage
is defined as the ratio of the hydraulic conductiv-
ity of the aquitard to the thickness of the aquitard
and Lo and Li are the leakages of the offshore and
inland aquitards, respectively. The hydraulic con-
ductivity and/or thickness of the inland aquitard
may differ from those of the offshore aquitard due
to different depositional sediment faces.

2.2 Boundary and continuity conditions

The tidal boundary at x = 0 may be written as:

h1 (0, t) = hs (t) = hMSL + A0 cos (ω · t) (2a)

where h1(0, t) is the hydraulic head at x = 0, A0

is the amplitude of the tidal change, and ω is the
tidal frequency. Also ω = 2π/t0 where t0 is the tidal
period. The leakage rate at the outlet-capping is
expressed as:

−K3

∂h2 (x, t)
∂x

=
K ′ (hs − h2)

m
when x = −l,

(2b)

where l is the distance extended under the sea, K3

is the hydraulic conductivity of the offshore con-
fined aquifer, and K ′ and m are the permeability
and thickness of the outlet-capping, respectively.
The continuity conditions of the hydraulic head
and flux at x = 0, respectively require

lim
x↑0

h2 (x, t) = lim
x↓0

h2 (x, t) , (2c)

T3 lim
x↑0

∂h2 (x, t)
∂x

= T2 lim
x↓0

∂h2 (x, t)
∂x

. (2d)

The boundary conditions for equations (1a) and
(1b) on the inland side may respectively be
expressed as:

lim
x→∞

∂h1 (x, t)
∂x

= 0 (2e)

lim
x→∞

∂h2 (x, t)
∂x

= 0 (2f)

which states that the slopes of the hydraulic head
approach zero at the infinite boundary.

3. Present solution and special cases

Some normalized parameters used in Xia et al
(2007) are also adopted hereinafter for the con-
venience of comparison. The tidal wave propaga-
tion parameter is defined as a1 =

√
ωS1/2T1 for

the unconfined aquifer, a2 =
√

ωS2/2T2 for the
inland confined aquifer, and a3 =

√
ωS3/2T3 for

the offshore confined aquifer. The dimensionless
leakage is ui = Li/ωS2 for the inland aquitard
and uo = Lo/ωS3 for the offshore aquitard. The
dimensionless leakance of outlet-capping is uc =
K ′/(a3mK3). In addition, the dimensionless stora-
tivity for inland aquifer is introduced as Si =
S1/S2 and that for offshore aquifer as So = S3/S2,
the dimensionless transmissivity for inland aquifer
is defined as Ti = T1/T2 and that for offshore
aquifer as To = T3/T2, and the dimensionless
hydraulic diffusivity for inland aquifer is denoted
as Di = Ti/Si and that for offshore aquifer as
Do = To/So. The solutions of h1(x, t) and h2(x, t)
for the inland unconfined and confined aquifers
(x > 0) are, respectively, expressed as:

h1 (x, t) = hMSL + Re
[
A0

(
α1e

−λ1x

+ α2e
−λ2x

)
e−iωt

]
, (3a)

h2 (x, t) = hMSL + Re
[
A0

(
α1β1e

−λ1x

+ α2β2e
−λ2x

)
e−iωt

]
. (3b)

The solution for offshore aquifer (x < 0) is:

h2 (x, t) = hMSL + Re
[
A0

(
α3e

λ3x

+ α4e
−λ3x + β3

)
e−iωt

]
(3c)

where Re denotes the real part of the complex
expression and the variables α1, α2, α3, α4, β1, β2,
β3, λ1, λ2 and λ3 are defined by equations (A6a–o),
respectively, in Appendix A. Derivations of the
other solutions considered as special cases of the
present solution are given in Appendix B and
the discussions of special cases are as follows:

3.1 Ignoring water table fluctuations in
upper unconfined aquifer

If To → 1 and Di → 0, the water table of the uncon-
fined aquifer can then be considered as main-
tained constant. Accordingly, Xia et al’s (2007)
solution with neglecting the water table fluctua-
tion is indeed a special case of the present solu-
tion. Xia et al (2007) mentioned that their solution
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can reduce to the head fluctuation solution of Li
et al (2007) if the semi-permeable layer is replaced
by an impermeable one. Therefore, the solution of
Li et al (2007) is also a special case of the present
solution. In addition, the solution of Geng et al
(2009) is a special case of the present solution when
the leakage of aquitard is zero.

3.2 Ignoring outlet-capping effect in
offshore aquifer

When m → 0, the thickness of the outlet-capping
is very thin and negligible. The effect of outlet-
capping is negligible and the extended roof is under
the free flow condition. Under this circumstance,
the present solution is equal to the solution pre-
sented in Chuang and Yeh (2008). It is interesting
to note that the solution of Li and Jiao (2001b) is
a special case of the one presented in Chuang and
Yeh (2008). Therefore, the solutions for the coastal
confined aquifer with a roof extending over a cer-
tain distance under the tidal water, such as Li and
Jiao (2001b) and Chuang and Yeh (2008), are all
special cases of the present solution.

3.3 Extending roof length of offshore
aquifer to infinity

If the roof length of the offshore aquifer extends
to infinity, i.e., l→∞, the new solution (equations
3a–c), will reduce to the solution for head responses
in a coupled coastal confined aquifer system con-
sisting of a semi-permeable layer and a confined
aquifer extending over an infinite distance under
the sea. Then the present solution is equal to the
one of Chuang and Yeh (2007). The solution for the
leaky confined aquifer (i.e., equations 3b and 3c)
should reduce to the solution presented in Van der
Kamp (1972) when both leakages of the offshore
and inland aquitards are equal to zero. There-
fore, the solutions presented in Van der Kamp
(1972) and Chuang and Yeh (2007) for confined
aquifers extending over an infinite distance under
the sea are also special cases of the newly developed
solution.

3.4 Ignoring both outlet-capping and roof length

When the conditions l → 0 and m → 0 are held, the
roof does not extend under the sea and the effect of
outlet-capping on the head fluctuation in the con-
fined aquifer is negligible. These two conditions are
also applied to Jeng et al (2002). Equations (3a)
and (3b) are exactly the same as the ones of Jeng
et al (2002, equations 12 and 13) except that the
variables of β1 and β2 are in terms of dimension-
less parameters. Jeng et al (2002) demonstrated

that their solution reduces to that of Jiao and Tang
(1999) when the water table is uniform. Jiao and
Tang (1999) mentioned that their solution is the
same as that given by Ferris (1951) if there is no
leakage from the above unconfined aquifer. In addi-
tion, Li and Jiao (2001b) showed that the solution
of confined aquifer is equal to the one developed
by Jacob (1950) when both the leakage term and
roof length are zero. Obviously, those solutions of
Jacob (1950), Ferris (1951), Jiao and Tang (1999),
and Jeng et al (2002) for the tidal confined aquifer
with zero offshore length can also be considered as
our special cases.

4. Results and discussion for
present solution

Equations (3a–c) are the solutions for the ground-
water heads in the inland unconfined aquifer,
inland confined aquifer, and offshore part of the
confined aquifer, respectively. Since most field
studies on coastal aquifer systems focus on the
inland part of aquifer and the observation of
groundwater heads in the offshore aquifer is
usually unavailable. Thus, only the groundwater
heads in inland part of the aquifers are addressed
herein (Li and Jiao 2001b). Some lumped parame-
ters are introduced for convenience of discussion.
The amplitude coefficient (Ce) is defined as Ce =
Re [α1β1 + α2β2] to represent the maximum ampli-
tude of groundwater fluctuation. In addition,
the constant phase shift (ϕ) of the inland con-
fined aquifer is defined as ϕ = Re [α1β1 + α2β2] /
Im [α1β1 + α2β2], where Im represents the imagi-
nary part of the complex expression, to represent
the phase angle when the groundwater fluctuation
has the maximum amplitude. Reasonable ranges
of aquifer parameter values reported in the liter-
ature (e.g., Li et al 2001b; Jeng et al 2002) are
listed in table 1 for the case study. The formation
materials of the offshore confined aquifer and its
outlet-capping are considered to be fine sand and
silt, respectively, in this study. The thickness of
the outlet-capping is assumed to be 10 m. Thus,
the hydraulic conductivity of fine sand formation
ranges from 2 × 10−2 to 20 m/day and that of
silt formation ranges from 8 × 10−5 to 2 m/day
(Domenico and Schwartz 1997). In addition, the
values of the tidal wave propagation parameter
a2 and a3 are in the range of 10−1 ∼ 10−3 m−1

(Li and Jiao 2001b). The leakance of outlet-
capping, uc = K ′/(a3mK3), may therefore fall in
the range from 4 × 10−6 to 104. Accordingly, the
consideration for the value of the logarithm of the
leakance of outlet-capping, lg uc, varied from −3 to
3 seems to be reasonable for coastal aquifers. The
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Table 1. Input data for the case study (Li et al 2001b; Jeng et al 2002).

Parameter Value

Amplitude of tide A0 0.65 m

Mean sea level hMSL 0 m

Out-capping thickness m 0 or varying m

Specific yield S1 0.1∼10−3

Storativity of inland leaky confined aquifer S2 10−3∼10−5

Storativity of offshore leaky confined aquifer S3 10−3∼10−5

Tidal frequency ω 2π rad/day

Tidal propagation parameter of aquifer a1∼3 10−1∼10−3/m

Transmissivity of unconfined aquifer T1 2000 m2/day or varying

Transmissivity of inland leaky confined aquifer T2 2000 m2/day or varying

Transmissivity of offshore leaky confined aquifer T3 2000 m2/day or varying

Dimensionless inland leakage ui = Li/ωS2 0.1 or 10

Dimensionless offshore leakage uo = Lo/ωS3 0.1 or 10

Dimensionless out-capping leakage uc = K′/(a3mK) 0 or varying

Dimensionless tidal propagation parameter a3l 0 or varying (l = roof length)

Dimensionless inland storativity Si = S1/S2 1 or 104

Dimensionless offshore storativity So = S3/S2 10−2∼102

Dimensionless inland transmissivity Ti = T1/T2 1 or varying

Dimensionless offshore transmissivity, To = T3/T2 1 or varying

Dimensionless inland hydraulic diffusivity Di = Ti/Si 10−4 or 1 or varying

Dimensionless offshore hydraulic diffusivity Do = To/So 10−2 or 1 or varying

effects of dimensionless out-capping, aquitard leak-
ages and hydraulic diffusivities on the groundwater
heads in the inland confined aquifer are addressed
in the following sections.

4.1 The effect of dimensionless inland
leakage on head fluctuation

Figure 2 shows the curves of the amplitude coef-
ficient Ce and phase shift ϕ versus the logarithm
of dimensionless outlet-capping leakage lg uc when
the dimensionless inland leakage ui varies from 0.1
to 10 with parameters a3l = 0.1, Te = 0.5, Do = 1
and uo = 1. The figure indicates that both Ce

and ϕ are close to constant when lg uc < −3 or
>3 and the behaviours of Ce and ϕ are therefore
not discussed in these two regions. The solid lines
denote the present solution with Di = 0.1 while
the dashed lines stand for the solution with Di = 0
implying that the water table fluctuation in the
unconfined aquifer is negligible. The solid lines in
the figure display that Ce increases with uc for all
ui in the range −1 < lg uc < 2. In addition, the
solid lines also indicate that the influence of ui is
large for the groundwater heads in the inland con-
fined aquifer and the value of Ce increases with
ui when uc is relatively small (say lg uc < 0.5).
On the contrary, the influence of ui is relatively
small for the groundwater head and Ce decreases
with increasing ui when uc is large (lg uc > 0.5).
The dashed lines of figure 2(a) display that the Ce

decreases with increasing ui for all uc. The influ-
ence of water table fluctuation on the groundwa-
ter head in the inland confined aquifer increases
significantly with ui for all uc and decreases with
increasing uc for all ui as compared the solid and
dashed lines shown in figure 2(a). Both solid and
dashed lines in figure 2(b) show that the influence
of ui on ϕ decreases significantly with increasing uc.
Moreover, the solid lines display that ϕ decreases
with increasing uc when ui ≥ 1. However, ϕ ini-
tially increases with uc, reaches a peak value at
lg uc = −0.5, and then decreases as uc increases for
the case of ui = 0.1. The dashed lines in figure 2(b)
show that the ϕ has a peak value near lg uc = 0.5
and decreases when away from the peak value when
ui = 0.1 or 1, but the ϕ increases with increas-
ing uc when ui = 10. This phenomenon is caused
by the combined effects of the outlet-capping and
aquitard leakages. The dashed lines also display
that ϕ increases with decreasing ui for all uc. In
addition, the value of ϕ depends on the water table
fluctuation in the unconfined aquifer when uc is
relatively small and the effect of the water table
fluctuation is relatively small when uc is large as
demonstrated in figure 2(b).

4.2 The effect of dimensionless offshore
leakage on head fluctuation

Figure 3 displays the curves of the Ce and ϕ versus
lg uc denoted by the solid lines for Di = 0.1 and the
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Figure 2. The curves for (a) amplitude coefficient (Ce) and
(b) the phase shift (ϕ) versus logarithm of dimensionless
outlet-capping leakage (lg uc) when the dimensionless inland
leakage (ui) varies from 0.1 to 10 with parameters a3l = 0.1,
Te = 0.5, Di = 0 or 0.1, Do = 1 and uo = 1.

dashed line for Di = 0 when the uo varies from 0.1
to 10 with parameters a3l = 0.1, Te = 0.5, Do = 1
and ui = 1. Both figures 3(a) and 3(b) indicate
that the influence of uo on the Ce and ϕ decreases
gradually with increasing uc. The dynamic effect of
water table fluctuation on the head response in the
confined aquifer increases with decreasing uc for all
uo. Figure 3(a) shows that the Ce increases with
uc for all uo. In addition, the influence of uc on Ce

1

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

0.8

0.6

0.4

0.2

0

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Logarithm of dimensionless outlet-capping leakage, lguc

Logarithm of dimensionless outlet-capping leakage, lguc

A
m

pl
it

ud
e 

co
ef

fi
ci

en
t,

 C
e

T
he

 p
ha

se
 s

hi
ft

, ϕϕ
 (

ra
di

an
)

Di = 0
uo = 0.1
uo = 1

uo = 10

Di = 0.1
uo = 0.1
uo = 1

uo = 10

Di = 0.1
uo = 0.1
uo = 1

uo = 10

Di = 0
uo = 0.1
uo = 1

uo = 10

(a)

(b)

Figure 3. The curves for (a) amplitude coefficient (Ce) and
(b) the phase shift (ϕ) versus logarithm of dimensionless
outlet-capping leakage (lg uc) when the dimensionless off-
shore leakage (uo) varies from 0.1 to 10 with parameters
a3l = 0.1, Te = 0.5, Di = 0 or 0.1, Do = 1 and ui = 1.

is large and this influence decreases as uo increases
when −1 < lg uc < 1. These phenomena reflect the
joint effects of uc and uo on the groundwater heads
in inland part of the aquifer are very significant.
The influence of uo is large when uc is small; on
the other hand, the influence of uo is small when
uc is large. The solid lines in figure 3(b) exhibit
that the ϕ decreases with increasing uc. The influ-
ence of uc on ϕ decreases with increasing uo when
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−2 < lg uc < 1. The dashed lines display that the ϕ
has a peak value near lg uc = 0 and decreases when
away from the peak value indicating that the effect
of uc on ϕ is large when uo = 0.1 or 1, but the ϕ
decreases slightly with increasing uc when uo = 10.
On the other hand, the effect of uc on ϕ is almost
negligible when lg uc > 1. Obviously, the effect of
uo on ϕ is small when uc is large as demonstrated
in the figure.

4.3 The simultaneous effect of dimensionless
leakages on head fluctuation

If the dimensionless inland leakage (ui) and off-
shore leakage (uo) are set equal, then the dimen-
sionless leakage u is u = ui = uo. The curves
of Ce and ϕ versus the logarithm of the dimen-
sionless out-capping leakage, lg uc, in the range
between −3 and 3 are demonstrated in figure 4 for
ui = uo = u = 1 and 10, a3l = 0.1, Te = 0.5,
Di = 0.1, and Do = 1. In figure 4, the solid
lines denote the present solution while the dashed
lines represent the solution of Xia et al (2007) in
which the water table fluctuation is not consid-
ered. Figure 4(a) shows that Ce increases with uc

for all u. However, the Ce predicted by the present
solution is obviously greater than that of Xia
et al’s (2007) solution for all uc and their difference
increases with u and decreases with increasing uc.
In other words, the Ce will be underestimated if the
water table fluctuation in the unconfined aquifer
is neglected. Figure 4(b) displays a similar result
that ϕ in the present solution is obviously greater
than that of Xia et al’s (2007) solution for all uc.
The ϕ decreases with increasing uc in the present
solution and the influence of uc on ϕ increases as
u decreases. The effects of uc on ϕ predicted by
the present solution and Xia et al’s (2007) solution
are very different. In figure 4(b), the dashed lines
display that the ϕ increases slightly with uc when
lg uc < 0.5 and decreases slightly with increasing
uc when lg uc > 0.5 for u = 10. On the other
hand, the ϕ increases with uc when lg uc < 0 and
decreases with increasing uc when lg uc > 0 for
u = 1. Figure 4 indicates that the influence of the
water table fluctuation in the unconfined aquifer on
the Ce and ϕ when lg uc = −3 is obviously larger
than that when lg uc = 3. Note that the outlet-
capping might be considered as no-flow boundary
when lg uc = −3 while the capping is considered as
free-flow boundary when lg uc = 3. The predicted
results from Xia et al’s (2007) solution are signifi-
cantly different from those of the present solution.
The use of Xia et al’s (2007) solution should there-
fore be cautious if the water table fluctuation is
significant.
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Figure 4. The curves for (a) amplitude coefficient (Ce) and
(b) the phase shift (ϕ) versus logarithm of dimensionless
outlet-capping leakage (lg uc) when the dimensionless leak-
age (u = ui = uo) is equal to 1 and 10 with parameters
a3l = 0.1, Te = 0.5, Di = 0.1, and Do = 1.

4.4 The effects of dimensionless hydraulic
diffusivities on head fluctuation

Figure 5 shows that the curves of Ce and ϕ versus
lg uc when Di varies from 0 to 1 with parameters
a3l = 0.1, Do = 1, Te = 0.5, ui = 1 and uo = 1.
Figure 5(a) displays that the Ce increases dramat-
ically with uc when −1 < lg uc < 1 for all Di. In
addition, a larger Di gives a larger Ce. In other
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Figure 5. The curves for (a) amplitude coefficient (Ce) and
(b) the phase shift (ϕ) versus logarithm of dimension-
less outlet-capping leakage (lg uc) when the dimensionless
hydraulic diffusivity (Di) varies from 0 to 1 with parameters
a3l = 0.1, Do = 1, Te = 0.5, ui = 1 and uo = 1.

words, the effect of Di is large when uc is relatively
small. By contrast, the influence of Di is small
when uc is relatively large. The figure also shows
that the discrepancy caused by neglecting the
water table fluctuation in the unconfined aquifer
increases with Di and decreases with increasing
uc. Figure 5(b) shows that the ϕ decreases as uc

increases for Di > 0.01 and the decrease of ϕ is
very rapid for lg uc in the range from −1 to 1. The
figure also shows that the ϕ has a peak value near
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Figure 6. The curves for (a) amplitude coefficient (Ce) and
(b) the phase shift (ϕ) versus logarithm of dimension-
less outlet-capping leakage (lg uc) when the dimension-
less hydraulic diffusivity (Do) varies from 0.25 to 4 with
parameters a3l = 0.1, Di = 0.1, Te = 0.5, ui = 1 and uo = 1.

lg uc = 0 when Di = 0 and the effect of Di on ϕ
in the range of lg uc < 0 is larger than that in the
range of lg uc > 0.

Figure 6 displays the curves for Ce and ϕ versus
logarithm of dimensionless outlet-capping leakage
when Do varies from 0.25 to 4 with parameters
a3l = 0.1, Di = 0.1, Te = 0.5, ui = 1 and uo = 1.
Figure 6(a) shows that the Ce increases with uc

for all Do and the influence of uc on Ce increases
with Do. The figure also shows that the effect of
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Do increases with uc for Ce. Figure 6(b) displays
that the ϕ decreases with increasing uc for all Do

and the influence of uc on ϕ increases with Do. In
addition, the figure also displays the effect of Do

on ϕ increases with uc.

5. Conclusion

A new analytical solution has been developed for
a coastal aquifer system consisting of an uncon-
fined aquifer, an aquitard, and a leaky confined
aquifer. The unconfined aquifer ends at the coast
while the aquitard and confined aquifer extend
over a finite distance under the sea and termi-
nate with an outlet-capping. The solution has been
demonstrated to be a generalization of most exist-
ing analytical solutions for various types of coastal
aquifer systems. In addition this solution can be
used to explore the influences of the outlet-capping

leakage, the hydraulic diffusivities, and the leak-
ages of the inland and offshore aquitards on the
head response in the leaky confined aquifer. It
is found that the interaction between the outlet-
capping leakage and the dynamic effect of water
table fluctuation on the head response in the leaky
confined aquifer is very significant for the aquifer
with an outlet-capping in a coupled coastal aquifer
system.
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Appendix A.
Derivation of solutions to equations (1a–c) subject to equations (2a–f)

Let H1(x, t) and H2(x, t) be complex functions of
the real variables x and t that satisfy the gov-
erning equations (1a–c) and the conditions (2a–f).
Assume that the solutions to equations (1a–c) sub-
ject to equations (2a–f) are h1(x, t) and h2(x, t) and
expressed, respectively, as:

h1 (x, t) = hMSL + Re [H1 (x, t)] (A1a)

h2 (x, t) = hMSL + Re [H2 (x, t)] (A1b)

where Re denotes the real part of the complex
expression. Consider that

H1 (x, t) = A0X1 (x) e−iωt (A2a)

H2 (x, t) = A0X2 (x) e−iωt (A2b)

where X1(x) and X2(x) are unknown functions of
x and i =

√
−1. Substituting equations (A2a) and

(A2b) into following nine equations (1a–c) and (2a–
f), which H1(x, t) and H2(x, t) satisfy, and divid-
ing the results by A0e

−iωt yield the results for the
inland aquifers (x > 0) as:

X ′′
1 (x) + 2a2

1

(
i − ui

Si

)
X1 (x)

+
2a2

1ui

Si

X2 (x) = 0 (A3a)

X ′′
2 (x) + 2a2

2 (i − ui) X2 (x)

+2a2
2uiX1 (x) = 0 (A3b)

and the result for the offshore aquifer (x < 0) as:

X ′′
2 (x)+2a2

3 (i−uo) X2 (x) = 2a2
3 (Tei−uo). (A3c)

The tidal boundaries, equations (4a) and (4b)
may be respectively written as:

X1 (0) = 1, (A4a)

X ′
2 (−l) − a3ucX2 (−l) + a3uc = 0. (A4b)

In addition, the continuity conditions of equations
(4c) and (4d) may be respectively expressed as:

lim
x↑0

X2 (x) = lim
x↓0

X2 (x) , (A4c)

To lim
x↑0

X ′
2 (x) = lim

x↓0
X ′

2 (x) . (A4d)

The boundary conditions, equations (4e–f) may
also be respectively written as:

X ′
1 (+∞) = 0, (A4e)

X ′
2 (+∞) = 0. (A4f)

Thus, the general solutions to equations (A3a–c)
for inland aquifers (x > 0) are:

X1(x) = α1e
−λ1x + α2e

−λ2 x (A5a)

X2 (x) = α1β1e
−λ1x + α2β2e

−λ2 x (A5b)
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and for offshore aquifer (x < 0) is:

X2 (x) = α3e
λ3x + α4e

−λ3 x + β3 (A5c)

where variables α1, α2, α3, β1, β2, β3, λ1, λ2, and
λ3 are defined, respectively as:

α1 =
D1

D
(A6a)

α2 =
D2

D
(A6b)

α3 =
D3

D
(A6c)

α4 =
D4

D
(A6d)

D = (λ3 − a3uc) e−λ3l

× (Toβ1λ3 − To β2 λ3 − β1 λ1 + β2 λ2)

+ (λ3 + a3uc) eλ3l

× (−Toβ1λ3+Toβ2λ3−β1λ1+β2 λ2) (A6e)

D1 = (λ3 − a3uc) e−λ3l

× (−Toβ2λ3 + Toβ3λ3 + β2λ2)

+ (λ3 + a3uc) eλ3l

× (Toβ2 λ3 − To β3 λ3 + β2λ2)

− 2λ3a3ucTo (1 − β3) (A6f)

D2 = (λ3 − a3uc) e−λ3l

× (Toβ1λ3 − To β3 λ3 − β1λ1)

+ (λ3 + a3uc) eλ3l

× (−Toβ1λ3 + Toβ3λ3 − β1 λ1)

+ 2λ3a3ucTo (1 − β3) (A6g)

D3 = (λ3 + a3uc) eλ3l

× (−β1β2λ1 + β1β3λ1 + β1β2λ2 − β2β3λ2)

− a3uc (1−β3)

× (To β1 λ3−Toβ2 λ3−β1 λ1 +β2 λ2) (A6h)

D4 = (λ3 − a3uc) e−λ3l

× (−β1β2λ1 + β1β3λ1 + β1β2λ2 − β2β3λ2)

− a3uc (1 − β3)

× (Toβ1λ3 − Toβ2λ3 + β1λ1 − β2λ2) (A6i)

β1 = 1 − SiB1

2a2
1ui

− Sii

ui

(A6j)

β2 = 1 − SiB2

2a2
1ui

− Sii

ui

(A6k)

β3 =
Tei − uo

i − uo

(A6l)

λ1 =
√

B1 (A6m)

λ2 =
√

B2 (A6n)

λ3 = 2a3

√
uo − i

2
(A6o)

with variables B1 and B2 respectively defined as:

B1 = −c1 −
√

c2
1 − c2 (A6p)

B2 = −c1 +
√

c2
1 − c2 (A6q)

and variables c1 and c2 respectively defined as:

c1 = −
(
a2

1/Si + a2
2

)
ui +

(
a2

1 + a2
2

)
i, (A6r)

c2 = −4a2
1a

2
2 (1 + uii/Si + uii) . (A6s)

Appendix B.
Derivation of other solutions considered as special cases

B1. Ignoring water table fluctuations
in upper unconfined aquifer

If To → 1, Di → 0 and u = ui = uo, the variables
α3 and α4 become α3a and α4a, respectively. Based
on equations (A6a–s), one can obtain

λ1 = λ2 = λ3 a2 (2u − 2i)0.5

= a (p − qi) (B1a)

β3 =
u − iTe

u − i
= λ − iμ (B1b)

X2 (x) = −
(
α3ae

λ3x + α4ae
−λ3x + β3

)
(B1c)

for offshore aquifer (−l < x < 0) and

X2 (x) = − (α1β1 + α2β2) e−λ1x

= −γe−λ1x (B1d)
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for inland aquifer (x > 0) with the variables γ, α3a

and α4a defined, respectively as:

α4a =
uc (1 − β3)

(uc + (p − iq))
e−λ3l

+
β3 (uc−(p−iq))
2 (uc+(p−iq))

e−2λ3l =C1 (B1e)

α3a = −β3

2
= C2 (B1f)

γ =
uc (1 − β3)

(uc + (p − iq))
e−λ3l

+
β3 (uc − (p − iq))
2 (uc + (p − iq))

e−2λ3l

+
β3

2
= C1 − C2 = C3. (B1g)

Note that the variables a, p, q, λ, μ, C1, C2 and C3

are defined the same as those in Xia et al (2007).
Equations (B1c) and (B1d) are identical to the
corresponding terms in the head solutions of Xia
et al (2007, equations A9 and A10). Note that the
complex expression used in their paper is Re(eiωt)
while that used in this study is Re(e−iωt).

B2. Ignoring outlet-capping effect
in offshore aquifer

When m → 0 and To → 1, the variables α1, α2, α3,
and α4 become α1b, α2b, α3b, and α4b, respectively.
Based on equations (A6a–s), one can obtain

where variables Γ1 and Γ2 are respectively defined
as:

Γ1 = e−λ3l (β1 λ1−β2 λ2 −β1 λ3+β2 λ3)

−Γ2e
λ3l (B2e)

and

Γ2 = β1 λ1 − β2 λ2 + β1 λ3 − β2 λ3. (B2f)

Therefore, equations (3a) and (3b) can be respec-
tively written as:

h1 (x, t) = hMSL + Re
[
A0

(
α1be

−λ1x

+ α2be
−λ2x

)
e−iωt

]
(B2g)

h2 (x, t) = hMSL + Re
[
A0

(
α1bβ1e

−λ1x

+ α2bβ2e
−λ2x

)
e−iωt

]
(B2h)

and equation (3c) becomes

h2 (x, t) = hMSL + Re
[
A0

(
α3be

λ3x

+ α4be
−λ3x + β3

)
e−iωt

]
. (B2i)

Equations (B2g–i) are exactly the same as the
solutions presented in Chuang and Yeh (2008,
equations 10a–c).

α1b =
e−λ3l (−β2λ2 + β2λ3 − β3λ3) + eλ3l (β2λ2 + β2 λ3 − β3 λ3) − 2λ3 (1 − β3)

Γ1

(B2a)

α2b =
e−λ3l (β1λ1 − β1λ3 + β3λ3) + eλ3l (−β1λ1 − β1λ3 + β3λ3) + 2λ3 (1 − β3)

Γ1

(B2b)

α3b =
eλ3l (−β1β2λ1 + β1β3λ1 + β1β2λ2 − β2β3λ2) − (1 − β3) (−β1 λ1 + β2 λ2 + β1 λ3 − β2 λ3)

Γ1

(B2c)

α4b =
e−λ3l (β1 β2 λ1 − β1 β3 λ1 − β1 β2 λ2 + β2 β3 λ2) − (1 − β3) Γ2

Γ1

(B2d)
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B3. Extending roof length of offshore
aquifer to infinity

If To → 1 and the roof length of the offshore aquifer
extends to infinity (i.e., l → ∞) the variables α1,
α2, α3, and α4 of equations (A6a–d) reduce to α1c,
α2c, α3c, and α4c, respectively, and

α1c =
−β2 λ2 − β2 λ3 + β3 λ3

Γ2

(B3a)

α2c =
β1 λ1 + β1 λ3 − β3 λ3

Γ2

(B3b)

α3c =
β1β2λ1−β1β3λ1−β1β2λ2+β2β3λ2

Γ2

(B3c)

and

α4c = 0. (B3d)

Equations (B3a–c), expressed as the dimension-
less parameters, are in fact the same as the corre-
sponding terms defined in Chuang and Yeh (2007,
equations 13–15).

B4. Ignoring both outlet-capping
and roof length

If l → 0 and m → 0, the effect of outlet-capping
is negligible and the roof does not extend under
the sea. These two conditions are also used in
Jeng et al (2002). Accordingly, the variables α1

and α2 become α1d and α2d, respectively. Based on
equations (B2a) and (B2b), one can obtain

α1b =
β2 −1
β2 −β1

= −T1λ
2
2 + iS1ω

T1 (λ2
1 − λ2

2)
= α1d (B4a)

α2b =
1 − β1

β2 −β1

=
T1λ

2
1 + iS1ω

T1 (λ2
1 − λ2

2)
= α2d (B4b)

β1 = 1 − SB1

2a2
1ui

− Si

ui

= 1 − T1λ
2
1

Li

− iS1ω

Li

(B4c)

β2 = 1 − SB2

2a2
1ui

− Si

ui

= 1 − T1λ
2
2

Li

− iS1ω

Li

. (B4d)

Equations (B4a) and (B4b) can be found in Jeng
et al (2002, equation 14). In addition, equa-
tions (3a) and (3b) are exactly the same as the ones

of Jeng et al (2002, equations 12 and 13) except
that the variables of β1 and β2 are in terms of
dimensionless parameters.
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