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We simulate magneto-excitons confined in asymmetri-
cally wobbled three-dimensional InAs/GaAs nano-rings. 
The wobbling asymmetry reproduces realistic experimen-
tal geometry of the rings and generates an asymmetry in 
the side valleys of the three dimensional confinement po-

tential. Using our mapping method and the exact diago-
nization approach we calculated the excitonic diamag-
netic shift and found that even a small wobbling asym-
metry can drastically change the diamagnetic shift coeffi-
cient. 
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1 Introduction The single InAs/GaAs nano-ring's 
(see for instance [1,2] and references therein) magneto-
exitonic emission demonstrates an interesting discrepancy 
with the conventional theory. Recently it was found that 
the diamagnetic shift of a single exciton's peak is consid-
erably smaller than that expected from traditional theory 
[3]. It was also found that a perfect in geometry wobbled 
symmetric nano-ring is particularly hard to achieve [2]. In 
this work we theoretically demonstrate the impact of the 
wobbling asymmetry of nano-rings on the diamagnetic 
shift of the single exciton's peak. To make a link to realis-
tic three-dimensional shapes of the rings we use our map-
ping method [4], which makes it possible to project the 
ring's actual geometry onto the position dependent effec-
tive masses, energy gap, band offsets of electrons and 
holes confined in the ring. Using the exact diagonalization 

method we simulate magneto-excitons and the diamagnetic 
shift and demonstrate that even a small  wobbling asymme-
try strongly effects the diamagnetic shift. 

 
2 Simulation method We assume that the 

InAs/GaAs nano-ring was grown on a substrate surface (x-y 
plane) and the external magnetic field is applied in z-
direction. In our simulation we map the wobbled ring ge-
ometry [4] for the case when the ring's height h(x,y) is 
asymmetrical along x-axis (see Fig. 1(a)). We fit the height 
as the following [2,4]:  

 
where the difference between parameters ain and aout repre-
sents the wobbling asymmetry along x-direction, and b 
controls the range of the wobbling asymmetry.  

On the base of (1) we can (as it was described in [4]) 
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introduce a three-dimensional electronic confinement po-
tential:  
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where ΔEe = Vmax - Vmin is the electronic band offset of the 
system, Vmax is the maximum value of the potential, Vmin is 
the minimum value of the potential (inside the ring), and  a 
controls the range on the potential boundaries of the ring.  

From Ve(x,y,z) we define the mapping function M(x,y,z) 
as the following [4]: 
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The mapping function projects the ring geometry onto the 
position dependent parameters: electron's (hole's) effective 
mass - m*

e(h) (x,y,z), energy gap - Eg(x,y,z), hole’s confine-
ment potential Vh(x,y,z), and permittivity ε(x,y,z): 
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(4) 
where the subscripts (in) and (out) indicate the bulk mate-
rial parameters for the inside (InAs) and outside (GaAs) re-
gions. 

Using the parameters mapped above we perform simu-
lation of the ground state excitonic energy of the ring. To 
obtain wave functions and energies of non-interacting elec-
trons and holes (see [4] and reference therein), we solve 
the following Schrödinger equations 
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where Πe(h)
r = -ih∇r + (-) eA(r) is the momentum operator, 

∇r represents the spatial gradient, r = {x, y, z}, A(r) is the 
vector potential of the magnetic field B = curl A, and e is 
the absolute value of the free electron charge. Having solu-
tions for the non-interacting electrons and holes we then 
simulate the exciton ground state energy and exciton 
ground state wave function through the exact diagonaliza-
tion method (see [5-7]). Our calculation was running under 
COMSOL multiphysics package (www.comsol.com). 
 

3 Calculation results The material and geometry 
parameters for our simulation were taken from [2,3,7,8] 

and adjusted to the realistic semiconductor material pa-
rameters for InAs/GaAs with complex strained composition 
in [8]. For instance for InCGa1-CAs/GaAs nano-ring we as-
sumed that the In content inside the ring is C = 0.895. For 
the electrons in the conduction band we used m*

e(in) = 0.046 
m0, m*

e(out) = 0.067 m0, Vmin = 0.349 eV, Vmax = 0.774 eV, 
ΔE = 0.425 eV (m0 is the free electron mass). For the holes 
we admitted  m*

h(in) = 0.119 m0, m*
h(out) = 0.5 m0. The band 

gap parameters were taken Eg(in) = 0.913 eV (InCGa1-CAs) 
and Eg(out) = 1.519 (GaAs). We also used: εin = 14.9 and εout 
= 12.9. To quantify the wobbling asymmetry we introduce 
the following asymmetry parameter  
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hh

h
          

(6) 

where h+ is the maximal value of the rim height for posi-
tive x and h- represents the opposite one. The mapping 
function of the rings was defined with: h0 = 2 nm, hM = 3 
nm, h∞ = 0.2 nm, γ0 = 3 nm, γ∞ = 5 nm, ξ = 0.2, R = 6 nm, a 
= 0.4nm, and b = 5nm. To achieve desired geometry within 
this mapping we choose correspondingly (see Fig 1(b): ain 
= 0, and aout = 0 (δh = 0%, h+ = h- = 3.6 nm, no asymmetry); 
ain = 0.123 and aout = 0.054 (δh ≈ 5.5%, h+ ≈ 3.8 nm, h- = 
3.6 nm); and ain = 0.247 and aout = 0.120 (δh ≈ 11% (h+ ≈ 
4.0 nm, h- = 3.6 nm). Using these three different geome-
tries we map for each of them the electronic confinement 
potential accordingly. The potential profiles for different 
asymmetry parameters are shown in Fig. 2.  
 

 

Figure 1 (a) Geometry of the asymmetrically wobbled 
InAs/GaAs nano-ring for δh ≈ 5.5%. (b) Projection of the ring 
height onto the x-z plane for: δh= 0% (solid curve); δh≈ 5.5% (dot-
ted  curve); δh≈ 11% (dashed curve). 
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Figure 2  The electronic confinement potential projected onto x-
z plane for (a) δh = 0% and (b) δh ≈ 11%. 
 

We define the diamagnetic shift of the energy of the 
exciton confined in the ring as the following [4] 

      ,)0()( 2BdEBEE XXXX ⋅≈−=Δ         (7) 

where EX(B) is the magnetic field dependent exciton’s 
ground state energy and dX is the diamagnetic shift coeffi-
cient. The simulation results (averaged by the Zeeman 
splitting) are shown in Fig. 3. Those read: dX ≈ 10 μeV/T2 
for δh = 0% and 9 μeV/T2 for δh ≈ 5.5%, and 8 μeV/T2 for 
δh ≈ 11% The last one is close to the experimental data: 6.8 
μeV/T2 [3]. 

 
Figure 3 Diamagnetic shift of the ground state energy of the 
exciton confined in the ring for different wobbling asymmenries 
( 0

XEΔ  presents the optical transition energy diamagnetic shift for 
non-interacting electrons and holes). 

We found that the excitonic wave function is equally distrib-
uted in both side of the ring along x-direction when δh = 0%. At 
the same time if δh exceeds 10% the wave function is already lo-
calized in the potential valley at the positive x-side. This is a clear 
reason for the suppression of the diamagnetic shift since the dia-
magnetic shift coefficient is defined by the wave function distri-
butions. 

 
4 Conclusion We simulated the excitonic diamag-

netic shift of the asymmetrically wobbled InAs/GaAs nano-
rings. Using our mapping method and direct diagonaliza-
tion approach we managed to obtain an accurate explana-
tion for the experimental data on the reduction of the dia-
magnetic shift coefficient. We argue that the diamagnetic 
shift’s suppression reproduces actual asymmetry in the ring 
geometry. 
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