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Abstract—This paper presents a control algorithm for vibrat-
ing gyroscopes so that they can directly measure the rotation
angle without integrating the angular rate. In most gyroscope
systems, the rotation angles were obtained by integrating the
angular rate, thus suffer from the error accumulation problem.
Only a few papers reported that they could compensate the
imperfect dynamics in gyroscopes and obtain the rotation angle
directly. However, they either required a calibration phase prior
to the normal operation or their stability was not theoretically
proven. This paper proposes a one-step control algorithm so
that imperfection compensation and angle measurement can be
done simultaneously. In a demonstrating case, the mechanical
structure uncertainties caused 10%∼20% parameter variations
in a gyroscope system; the signal are contaminated by zero-mean
white noise with the PSD of 2.3×10−15(ms−1)2/Hz; the angular
rate to be measured is 4sin(2π × 40t) rad/sec. The proposed
algorithm can obtain the rotation angle with an accuracy less
than 0.5 degree.

I. INTRODUCTION

MEMS gyroscopes are typically designed to be angular rate
sensors, and ideally, the rotation angle can be obtained by
integrating the angular rates. In practice, the bias and noise
existed in the measured angular rates cause the calculated
angles to drift over time [1]. This error accumulation problem
can be apprehended by an example shown in Fig. 1. The plot
on the top shows a random signal with zero mean. Integrating
this signal over time produces a “random walk” signal shown
as one line in the middle plot. If this integration process is
carried out several times (in this case, 10 zero-mean random
signals which lead to 10 random walk signals), one can show
that the standard deviation of the random walk signal increases
with time as shown in the bottom plot.

In 1978, Friedland and Hutton [2] proposed equations for
the direct angle measurements for vibratory gyroscopes, which
could avoid the error accumulation problem. However, those
equations were applicable only to gyroscopes with “ideal”
dynamics, wherein the proof mass of a gyroscope can consis-
tently oscillate along two axes at the same resonant frequency.
In that case, the precession angle of the proof mass trajectory,
induced by the Coriolis force, equals to the rotation angle to
be measured [2] [3] (see Fig. 2). This precession angle can
be calculated by the instantaneous values of the proof mass
position and velocity.
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Fig. 1. Signal drifts due to integrating the zero-mean white noise. Ten random
signals are generated and integrated over time. The top plot shows one of the
ten signals; the middle plot shows the ten signals after integration; the bottom
plot shows the standard deviation of the integrated signal.

A MEMS vibratory gyroscope can hardly have the dynamics
discussed above because the MEMS fabrication process and
structure designs can easily cause mechanical structure im-
perfections. These imperfections account for the mismatched
resonant frequency in two axes, the existence of energy dissi-
pation terms, and uncertain values of the system parameters.

Using control techniques to compensate imperfect dynamics
for the direct angle measurement is a much more challenging
task than for the angular rate measurement. The reason is that
it needs to achieve both the “mode matching” and “consistent
vibration,” while not interfering the precession of the proof
mass. Very few papers have reported control algorithms to
achieve that [1], [3]-[6], and they all employed some kind
of energy controls to compensate the energy dissipation. A.
Shkel et al. proposed a non-adaptive control strategy wherein
the energy and angular momentum were feedback to control
the proof mass trajectory [3]. D. Piyabongkarn et al. proposed
different control algorithms for the angle and angular rate sens-
ing [6]. However, the system stability were not theoretically
proven. S. Park et al. proposed a control algorithm that consists
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of energy and mode tuning [1]. The stability is theoretically
proven. But, their approach required a calibration phase prior
to the normal operation of gyroscopes.

Fig. 2. Illustration of precession caused by Coriolis force. (i,j) is an inertial
frame, (x,y) is the rotation frame, and Φ is the precession angle (rotation
angle). (a) an initial state; (b) after 45 degree rotation.

This paper proposes a novel approach that achieves the
above “ideal” dynamics using parameter estimation tech-
niques. Furthermore, the parameter estimation is skillfully
arranged so that it can be done using various existing state
observer algorithms and thus benefit from their advantages.
The proposed method is an one-step operation. Thus, no
initialization phase is required. The design procedures of the
proposed method are discussed in details. Due to the limited
space in this paper, most of the mathematics proof are ignored.

II. SYSTEM MODELING

A linear vibratory gyroscope can be modeled as a spring-
mass-damper system. Assuming that motions of proof mass are
constrained in the x-y plane as shown in Fig. 2, the dynamics
of a gyroscope can be modeled as follows:

mẍ + dxxẋ + dxyẏ + kxxx + kxyy = ux + 2mΩzẏ

mÿ + dxyẋ + dyyẏ + kxyx + kyyy = uy − 2mΩzẋ (1)

where m is the mass of the proof mass; dxx, dyy, kxx, kyy are
damping coefficients and spring constants along two principal
axes; Ωz is the angular rate to be measured along z-axis;
dxy and kxy are the cross-axis damping coefficient and spring
constant; ux and uy are the control input along x and y axis,
respectively. The following three assumptions are made in
some gyroscope control systems [7] and in this paper: (1)
cross-axis terms can be neglected (dxy, kxy ≈ 0); (2) damping
coefficients of both axes are the same (dxx = dyy = d);
(3) The mass m is a known value. With above assumptions,
the dynamic equation of a gyroscope can be simplified to the
following:

ẍ + dẋ + kxxx = ux + 2Ωzẏ

ÿ + dẏ + kyyy = uy − 2Ωzẋ (2)

where d← d/m, kxx ← kxx/m, kyy ← kyy/m, ux ← ux/m,
uy ← uy/m.

Due to mechanical imperfections (both from fabrication
process and structure designs), the system parameters (spring

constants and damping coefficients) of a fabricated device may
deviate from their designated values. Therefore, their values
are assumed to be unknown in the proposed control system
designs.

III. FEEDBACK CONTROLS OF GYROSCOPE SYSTEMS

The proposed control method is essentially a task of state
feedback using estimated system parameters and estimated
system dynamics. In order to do so, the dynamic equations
of gyroscopes are reformulated into (3) so that unknown
system parameters and system dynamics can be estimated
simultaneously. Furthermore, the estimation algorithms can be
chosen from various existing state observer algorithms.

Ẋ = f(X) + BU

Z = CX + N (3)

where N is the measurement noise of the gyroscope system;
X , f(X), B, U and C are shown at top of next page. Please be
noted that, in the proposed method, only the measurement of
the proof mass velocity is needed to implement the feedback
controller (as shown in the C matrix). Also, the unknown
system parameters and angular rate to be measured are all
assumed to be constant. If these unknown values are time-
varying, their effect can be treated as modeling error and
minimized by some robust observer/controller algorithms.

The success of state estimations depends on the rank of the
observability matrix. The observability matrix of a nonlinear
system [8] can be obtained by the following:

Wo ≡
∂

∂X

[

Z Ż Z̈ · · ·
]

(4)

Using (4), the observability matrix of a gyroscope system (3)
can be obtained as:

Wo =





















0 1 0 0
0 0 0 1
−kxx 0 − kxy 0
−kxy 0 − kyy 0









[0]
4×4

[0]
4×4

[Wkd]4×4













(5)

where

Wkd =









2ẏ − x 0 − ẋ
−2ẋ 0 − y − ẏ
2ÿ − ẋ 0 − ẍ
−2ẍ 0 − ẏ − ÿ









(6)

As long as kxx · kyy 6= k2
xy, the observability matrix in (5)

is full rank. Therefore, with a proper choice of observer algo-
rithm, one can obtain the values of those unknown parameters,
angular rates, and system dynamics in real time.

A. State observer design

With system dynamic equations shown at (3), a state ob-
server can be constructed as follows:

˙̂
X = f(X̂) + BU + LC(X − X̂)

Ẑ = CX̂ (7)
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with X = [ x ẋ y ẏ Ωz kxx kyy d ]
T , B =

[

0 1 0 0
0 0 0 1

[

0
]

2×4

]T

,

f(X)=























ẋ
−kxxx− dẋ + 2Ωzẏ

ẏ
−kyyy − dẏ − 2Ωzẋ

0
...
0























8×1

, U=
[

ux

uy

]

, N=
[

nx

ny

]

, C =
[

0 1 0 0
0 0 0 1

[

0
]

2×4

]

.

where X̂ is the estimation of the state vector X ; L is the
matrix of the observer gain with a dimension of 8× 2. The L
matrix can be divided into L1 and L2 matrices for the ease of
equation derivations. Then, L1 is for the estimation of system
dynamics, while L2 is for the system parameters and angular
rates. To ensure the correct estimation of all states shown in
(3), the L1 and L2 matrices can be chosen as follows:

LT =
[

LT
1 LT

2

]

(8)

LT
1

=

[

0 l21 0 0
0 0 0 l42

]

2×4

LT
2

=

[

2 ˙̂y −x̂ 0 − ˙̂x

−2 ˙̂x 0 −ŷ − ˙̂y

]

2×4

where l21 and l42 can be any positive scalar.
As discussed above, this is not the only way to obtain the

observer gain. The observer gain can be obtained by other
existing observer algorithms such as extended Kalman filter
(EKF) for an additional benefit of noise reduction [9].

B. Feedback controller design

To achieve the “ideal” dynamics discussed previously, the
control input is designed to be the following:

U =

[

d̂ ˙̂x + k̂xxx̂− kAx̂

d̂ ˙̂y + k̂yyŷ − kAŷ

]

(9)

where kA is the designated resonant frequency.
The above feedback control system can be proven to be

stable by the Lyapunov 1st stability theorem. The theoretical
proof is omitted here. Once the estimated state values con-
verge to their correct values, the gyroscope dynamics can be
regulated to the following dynamics:

ẍ + kAx = +2Ωzẏ

ÿ + kAy = −2Ωzẋ (10)

The above equations describe the “ideal” dynamics of a
vibratory gyroscope system.

C. Angle calculation

According to [2], a gyroscope system that having the
dynamics shown in (10), its rotation angles can be directly
calculated by the following equations:

tan 2φ =
2(kAxy + ẋẏ)

kA(x2 − y2) + (ẋ2 − ẏ2)
(11)

In our approach, the gyroscope dynamics (x, ẋ, y and ẏ) in
(11) are replaced by the estimated state values (x̂, ˙̂x, ŷ, and
˙̂y) to avoid the additional measurements of the proof mass
position.

IV. SIMULATION RESULTS

In a simulation case, the resonant frequencies of x-axis
and y-axis of a fabricated gyroscope are 6.7% and 14.8%
deviated from their designated values (3.2 kHz); the mea-
surements of the proof mass velocity along each axis are
both contaminated by zero-mean white noise with the same
PSDs of 2.3×10−15(ms−1)2/Hz. All the system parameters,
normalized by the mass of the proof mass, are listed in Table
I.

TABLE I
SYSTEM PARAMETERS AND THEIR VALUES USED IN SIMULATIONS.

Parameters Values (normalized)
Ωz 4sin(2π × 40t) rad/sec
kxx (2π × 3000)2s−2

kyy (2π × 3674)2s−2

d 200 s−2

kA (2π × 3200)2s−2

Fig. 3 shows the trajectory of proof mass without control.
The vibration of the proof diminishes because the energy
dissipates through damping terms, and its trajectory is chaotic
due to the frequency mismatch.

Fig. 4 to Fig. 7 show the system behaviors under control.
In this case, the angular rate is a sinusoidal signal with
its amplitude of 4 rad/sec and frequency of 40 Hz. The
values of observer gain l21 and l4,2 are both 5. The initial
guess of the state values are 10% to 20% deviated from their
correct ones. In Fig. 4, it is clearly shown that the proof
mass trajectory is regulated to a designated pattern wherein
both the requirements of mode matching and precession are
met. Fig. 5 shows the estimation of eight states, including
four states from system dynamics and four states from system
parameters. The estimated values converge to their correct
values less than 5 ms. However, a large chattering present
in the estimated state values due to the measurement noise.
Taking the estimation of angular rate as an example, the
amplitude of the angular rate to be measured is 4 rad/sec and
its estimated values oscillates between -150 to 150 rad/sec
( Fig. 6). For comparison, the rotation angle is calculated in
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Fig. 3. Trajectory of the proof mass without controls.

two ways: integrating the estimated angular rates; using the
equations shown in (11). As shown in Fig. 7, the proposed
method shows much better accuracy (within 0.5 degree) than
the integration one.
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Fig. 4. Trajectory of the proof mass under controls. Angular rates are time-
varying as 4sin(2π × 40t) rad/sec.

V. DISCUSSION

According to the simulation results (Fig. 7), obtaining the
rotation angles by the equation (11) does show a better
accuracy than by the integration method when the measured
signals are contaminated by noise. However, the equation
is applicable only when the employed gyroscope have the
dynamics described in (10). This dynamics (signal variations)
may be inadequate for parameter identifications and thus
set the limitation on the approaches that employ parameter
identifications.

In this paper, the cross-axis damping coefficients and spring
constant are both neglected, and the damping coefficient along
two axes are assumed to be the same. These assumptions may
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Fig. 6. Estimation of the angular rates.

be impractical in most cases. Our research indicates that, in
theory, all the system parameters in (3) (7 unknowns) can
be correctly estimated by the proposed method. However,
the observability matrix is close to singularity due to the
value of the angular rate is relative small compared to other
system parameters. The numerical error fails the entire state
estimations.

Fig. 4 shows the amplitude of the proof mass vibration is
less than 1 µm, a bit less than its designated maximum value.
This can be attributed to the energy dissipation during the
transient response of the parameter identification. A smaller
vibration amplitude would lead to a smaller vibration speed,
in turns, it decrease the sensing accuracy of gyroscopes.
Therefore, the transient response time should be kept as small
as possible in the proposed method. However, it is rather
difficult to do so by selecting the proper observer gain. On
the other hand, the diminished vibration amplitude can be
compensated by the controller designed. Our research shows
that this can be done if the measurements of the gyroscope
system include both the position and velocity of the proof
mass.
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Fig. 7. The rotation angles are calculated in two ways: integrating the angular
rate over time; the direct angle measurements.

VI. CONCLUSION

This paper presents a control algorithm that uses velocity
feedback only. With this control method, the proof mass of a
gyroscope can oscillate along two axes at the same resonant
frequency while preserving its precession motions, even when
the mechanical structure uncertainties are present. Under this
regulated dynamics, the rotation angles are calculated using
estimated state values. Simulation results indicate that the
rotation angle obtained by this method is more accurate than
by the method of integrating the angular rates. However, the
oscillation amplitude can decrease a bit which could decrease
the sensing accuracy of angular rates.

In a demonstrating case, the mechanical structure uncer-
tainties caused 10%∼20% parameter variations; the measured
velocity signals are contaminated by zero-mean white noise
with a PSD of 2.3×10−15(ms−1)2/Hz; the angular rate to be
measured is 4sin(2π×40t) rad/sec. The proposed algorithm
can obtain the rotation angle with an accuracy less than 0.5
degree.
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