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Programmable S witched-Capacitor Neural 
Network for MVDR Beamforming 

Wen-Hao Yang and Po-Rong Chang, Member, IEEE 

Abstruct- In this paper, a real-time adaptive antenna ar- 
ray based on a neural network approach is presented. Since 
an array operating in a nonstationary environment requires a 
programmable synaptic weight matrix for the neural network, 
the switched-capacitor (SC) circuits with the capability of pro- 
grammability and reconfigurability is conducted to implement 
the neural-based adaptive array. Moreover, the SC techniques 
can directly implement the neural network with less chip area 
and provide the ratio of SC-equivalent resistors with accuracy of 
0.1 percent. Programming of the switched-capacitor values could 
be made by allocating each synaptic weight to a set of parallel 
capacitors with values in a digitally programmable capacitor 
array (PCA). A relatively wide range of values (5 to 10 binary 
bits resolution) can be realized for each synaptic weight. A 
simulation tool called SWITCAP is used to verify the validity 
and performance of the proposed implementation. Experimental 
results show that the computation time of solving a linear array 
of 5 elements is about 0.1 ns for 1 ns time constant and is 
independent of signal power levels. 

I. INTRODUCTION 
HE purpose of adaptive arrays is to suppress unwanted T jamming interferences and to produce the optimal beam- 

former response which contains minimal contributions due to 
noise. The most commonly employed technique for deriving 
the adaptive weights uses a closed-loop gradient descent 
algorithm where the weight updates are derived from estimates 
of the correlation between the signal in each channel and 
the summed output of the array [l], [2]. The fundamental 
limitation for this technique is one of poor convergence for 
a broad dynamic range signal environment. Several differ- 
ent approaches for choosing optimum beamformer weights 
are summarized in [3]. In many applications, none of those 
approaches is satisfactory. The desired signal may be of 
unknown strength and may always be present, resulting in 
signal cancellation with the multiple sidelobe canceller and 
preventing estimation of signal and noise covariance matrices 
in the maximum SNR processor. These limitations can be 
overcome through the application of linear constraints to the 
weights. The basic concept of linearly constrained minimum 
variance (LCMV) beamforming is to constrain the response 
of the beamformer such that the desired signals are passed 
with specified gain and phase. The weights are chosen to 
minimize output power subject to the response constraint. 
When the beamformer has unity response in the look direction, 
the LCMV problem would become the minimum variance 
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distortionless response (MVDR) beamformer problem which 
is a very general approach employed to control beamformer 
output. 

The complex weights of an MVDR-based beamformer 
should be updated in real time in order to respond to the 
rapid time-varying environment. Meanwhile, the calculation of 
weights is computationally intensive and can hardly meet the 
real-time requirement. Systolic implementations of optimum 
beamformers have been studied to improve the computational 
speed by a number of investigators [4], [5]. As an alternative 
to the digital approach, an analog approach based on Hopfield- 
type neural networks could operate at much higher speed and 
requires less hardware than digital implementation. 

Recently, Tank and Hopfield [6] have shown how a set 
of neural networks with symmetric connections between neu- 
rons presents a dynamics that leads to the optimization of 
a quadratic functional. Most recently, Chua and Lin [7] and 
Kennedy and Chua [SI, [9] extended the design of Hopfield 
network and introduced a canonical nonlinear programming 
circuit which is able to handle more general optimization prob- 
lems. They showed that a canonical neural network assigned 
to solve the optimization problem would reach a solution in a 
time determined by RC time constant, not by algorithmic time 
complexity. Therefore, the convergence speed of reaching the 
optimal solution is dramatically improved. Chang, Yang, and 
Chan [lo] showed that an MVDR-based neural analog circuit 
is able to quickly attain its optimal performance, and works sat- 
isfactorily under the stringent environment of strong jammers. 
The primary concern of the neural circuit using R C  design is 
that an array operating in a nonstationary environment requires 
a programmable synaptic weight matrix for the neural network. 
The RC-active design is not the best suited for monolithic 
implementation, especially taking into account that accurate 
and wide dynamic range resistors and large R C  values are 
required. In this paper, we try to overcome this drawback by 
focusing on the design of implementing the MVDR beamform- 
ing neural network using switched-capacitor techniques. The 
inherent programmability and reconfigurability of switched- 
capacitor circuits together with the maturity of this technique 
[12] in the field of analog VLSI would be conducted to 
improve the conditional design. We use the dynamically and 
digitally programmable capacitor array (PCA’s) [ 111, [ 131 to 
realize the time-varying synaptic weight matrix on a real-time 
basis. Moreover, a relatively wide range of values (5 to 10 
binary bits resolution) can be realized for each synaptic weight. 

In this paper, we first introduce the real-valued quadratic op- 
timization problem derived from MVDR beamforming prob- 
lem. Moreover, a discrete-time neural circuit dynamic equation 
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for the quadratic optimization is established. In Section IV, we 
propose a switched-capacitor realization for implementing the 
system dynamics. In addition, the programmable capacitor ar- 
ray (PCA) is introduced to match the time-varying covariance 
matrix of the adaptive antenna array. Experimental results are 
shown in Section V, and conclusions are given in the last 
section. 

11. PROBLEM FORMLJLATTON 
For a linear array composed of L isotropic antenna elements 

which receive narrow-band signals from sources of variation 
frequency f o  located far from the array, ~ ( t )  is defined as a 
complex output of the Zth element at the sampling time t ,  and 
can be expressed as 

(1) Q(t)  = m(t)e32nfo(t+7.1(er~)) + nl(t) + X I I ( t )  

where 

I 

is the time delay of the Zth element relative to a reference point 
chosen at origin. T L  is the position vector of the Zth element. 
s (6 ,  4) is a unit vector in the direction ( 6 ,  4) of the source, 
and c is the propagation speed of the plane wave in free space. 

The source amplitude m(t) is characterized statistically by 

E[m(t )]  = 0 (3) 
E[m(t)m*(t)] = Ps  (4) 

where E[.] is the expectation operator, p s  is the power of the 
source, and * denotes the complex conjugate. x:n(t) is the 
component of the directional interferences received by the Zth 
element and possesses the same statistics as the source. In 
addition, nl(t) is a white random noise with properties 

(5)  

E[nl(t)nz(t)] C T ; ~ L ~ ,  I ,  k = 1, 2, .. . , L. (6) 

E[nl(t)] = 0 ,  1 = 1, 2 , .  . . , L 

Let the signal waveforms derived from the L elements of 
a beamformer be represented by an L-dimensional complex 
vector 

(7) 
def x = [XI, 5 2 , "  . ,%LIT 

and the weights of element outputs be represented by L- 
dimensional complex vector w, 

(8) 
def w = [ W l ,  w2,. . . , W L ] T  

where T denotes the transpose of the vector. Then the output 
of the beamformer can be written as 

L 

y ( t )  = W l " 5 l ( t )  = wHz(t)  (9) 
l=1 

where H denotes the complex conjugate transpose of a vector. 
Since each component of ~ ( t )  is modeled as a zero mean 

stationary process, the mean output power of the beamformer 
is given by 

P ( W )  = E[Y(t)Y*(t)l 
= wHRw (10) 

where R is the array correlation matrix. 

In order to achieve the optimal utilization of the mean 
output power of the beamformer, the weights are chosen 
based on the statistics of the data received at the array such 
that the output contains minimal influence due to noise as 
well as interference signals arriving from other directions. 
Different criteria exist for choosing optimum beamformer 
weights, which are summarized in [3]. A general approach 
called minimum variance distortionless response (MVDR) 
beamfoming is to constrain the response of the beamformer 
so that the desired signals are passed with unit gain and the 
weights are chosen to minimize the output power subject to 
the required constraints. The MVDR beamforming problem is 
usually formulated as 

Min $(w) = wHRw (11) 
W 

Subject to wHs0 = 1 (12) 

where SO is the steering vector associated with the look 
direction and is given by 

(13) 

where d is the element spacing, A0 the wavelength of the plane 
wave in free space, and 60 the look direction angle (the angle 
between the axis of the linear array and the direction of the 
desired signal source). 

The method of Lagrange multipliers can be used to solve 
(1 1) and (12) and resulting in 

Note that, in practice, the presence of uncorrelated noise 
ensures that R is invertible. 

The MVDR beamforming problem defined in both (1 1) and 
(12) is indeed a complex-value constrained quadratic program- 
ming problem, which cannot be solved by neural network 
directly. In order to meet the requirement of neural-based 
optimizer, one should convert it into a real-value constrained 
quadratic programming formulation. Since R is a positive- 
definite Hermitian matrix, it has been shown [lo] that the 
above complex-valued MVDR beamforming problem can be 
transformed to be a real canonical quadratic nonlinear pro- 
gramming problem with linear equality constraints as follows. 

1 
U 2 Min $ ( U )  = -vxGv (15) 

Subject to f(u) = Bv - e = 0 (16) 

where is a 2L-dimensional real weight vector, G is a 
(2L) x (2L) symmetric, positive-definite matrix, and f (v)  is 
the constraint column vector. B and e are 2 x (2L) matrix and 
(2 x 1) column vector. They are defined as follows: 

- -  

'U= I:] 



YANG AND CHANG PROGRAMMABLE SWITCHED-CAPACITOR NEURAL NETWORK FOR MVDR BEAMFORMING 19 

and 

2Rr -2l& 
G = [ 2 ,  2RJ 

e =  [;I 
where wr, a, sor and wi, Ri,  SO^ are the real parts and 
imaginary parts of w, R, and SO, respectively. 

111. A HOPFIELD NEURAL NETWORK APPROACH 
TO THE MVDR BEAMFORMING PRoBLEM 

To solve the constrained nonlinear programming problem 
defined in (15) and (16), we convert it to an equivalent 
unconstrained problem. The way to do this is to define a 
pseudo-cost function E(v)  as follows: 

(21) 

where 4(v) is the original cost function, P(u) is referred to as 
the penalty function, and cx and p are called the acceleration 
factor and the penalty multiplier, respectively. 

A valid penalty function must monotonically increase as the 
constraints fj(v)’s deviate from the feasible region, which is 
the subspace of the multidimensional space defined by con- 
straints. In general, the absolute value or the square operator 
fulfills this requisite. In this paper, the square operator is 
employed and the penalty function is defined by 

E(w) = 4 ( V )  + PP(’U) 

It is interesting to note that the pseudo-cost function E(w) 
can be identified as energy function of the circuit with the 
system of equations [lo] 

(23) 
dv 
dt 

c- = -VE(w), c > 0 

or 

where i, = f J ( w ) .  
The equilibrium point of the gradient system coincides with 

either a local extreme (minimum or maximum) or inflection 
point of E(w).  However, since C > 0, the time evolution 
of v will result in E(v)  decreased monotonically. Therefore, 
the circuit would seek a local minimum of the pseudo-cost 
function E(w). Since the Hessian matrix of E(w) is positive 
definite throughout the feasible region, it is shown in [14] 
that any local minimum of E(v)  is a global minimum over 
this feasible region. As a result, the circuit solution tends to 
a global minimum of the original cost function +(w) when 
dE/dt = 0. 

The MVDR-based neural network would include two partic- 
ular modules. The first module is called the variable amplifier, 
which can perform the integral of a sum of input currents 
( -ad$/dvk)  and (-Pi,dfj/dVk),  and then produces the 

(b) 

Fig. 1. 
fier, (b) constraint amplifier. 

Basic blocks of neural circuit using RC-design: (a) variable ampli- 

desired output variable V k .  Fig. l(a) shows the circuit imple- 
mentation of the variable amplifier consisting of an integrator 
and a unity gain inverting amplifier. The inverting amplifier 
can provide an output of the variable -Vk  which is required 
for the circuit implementation of negative weights. The second 
module is called the constraint amplifier, which is used to 
perform the constraint satisfaction function f j  (.). The circuit 
realization is shown in Fig. l(b). Without loss of generality, 
the penalty multiplier ,u may be included in g,(-). Thus, the 
circuit yields the input-output relation: 0 = -PI, where p 
represents the magnitude of the resistance, and 0 and I are 
an output voltage and an input current, respectively. If the 
input current I is equal to -f j(v),  then 0 = -p(- f j (w))  = 

Looking upon the circuit system dynamics of (24), the 
controlled current source d $ / d V k  and conductance dfj  /dvk 
are given by 

P f m  = S j ( f , ( V ) )  = ij. 

where gki and b j k  are the ( k ,  i )  and ( j ,  k )  entries of G and 
B, respectively. 

Equation (25) shows that the input current d+/dvl, is a 
linear sum of the vi’s weighted by conductances sk i ’s .  In the 
case of linear constraints, the weights df,(u)/dvk are con- 
stants, and so may be implemented directly as conductances. 
Combining (24)-(26), one would obtain the state equations to 
the circuit implementation as 

i .  - (27) 
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i- 

Fig. 2. 
problem using RC-design. 

Schematic diagram of neural circuit for MVDR-based beamfoming 

and 

2L 2 

- - - c g ; 2 v z  - Ci,b,k. (28) 

Note that the acceleration factor a is included in gk2 's ,  and 
then giz is defined as (agk2) .  

According to (27) and (28), a circuit realization is shown in 
Fig. 2. It should be noted that the elements of the e, G', and 
B matrices are realized directly as resistive connections, and 
that. their associated matrix entries correspond to conductance 
values. 

2=1  ,=1 

Iv .  SWITCHED-CAPACITOR REALIZATION FOR 
NEURAL-BASED MVDR BEAMFORMING 

In the realization of the Tank and Hopfield neural network 
[6], they use the conventional RC-active design techniques. 
The main drawbacks arise for accurate resistors and large 
RC values which are required for RC-active design. This 
implies that RC-active design is not the best suited for 
monolithic implementation. In this paper, we try to overcome 
this drawback by focusing on the design of implementing the 
MVDR-based neural network using switched-capacitor tech- 
niques. The inherent programmability and reconfigurability of 
switched-capacitor circuits together with the maturity of this 
technique [12], [13] in the field of analog VLSI would be 
conducted to improve the performance of conventional design. 
The switched-capacitor implementation (as shown in Fig. 3) 
is obtained by replacing the basic switched-capacitor modules 

into the RC-based neural Gircuit architecture in Fig. 2. The 
details about the schematic realization of each basic module 
will be discussed in the following. 

A. A Mapping Between Resistor and 
Switched-Capacitor Neural Network 

In order to implement the MVDR-based neural network 
using switched-capacitor circuits, the circuit equations of (28) 
should be discretized by the forward-Euler formula, and are 
given by 

I 2 

' u Z ( R .  + 1) = vz(n> - Cd,.,(.) + /LCb,Zf,(~) > 
,=1 

i = 1, 2 , . . .  ,2L (29) 

[:Il 
where u,(n) = ~ * ( t ) l t = ~ ~ ,  and 

2L 

fj(n) = f,@)It=nT = Cb,2v2(n)  - e, (30) 

and T denotes the period of the clocks which control the 
switches. 

According to (29) and (30), Fig. 3 shows the schematic 
realization of switched-capacitor implementation for MVDR- 
based nonlinear programming problem. The SC circuit is 
on basis of theRC-active circuit architecture shown in 
Fig. 2 whose resistive elements are instead of capacitors and 
switches. Moreover, the details of the proposed SC circuit 
would be discussed in Subsection B. 

Basicdly, the general SC circuit is composed of capac- 
itors, op amps, and switches. The switches are controlled 
by two nonoverlapping clock phases S1 and S2. As shown 
in Fig. 3, there are three basic modules involved in the SC 
implementation. They are integrator, inverter, and summer. 
The schematic realization of each basic module' would be 
discussed as follows. 

1) Switched-Capacitor Integrator: The parasitic-insensi- 
tive SC integrator (variable amplifier) with multiple inputs is 
shown in Fig. 4(a). For the sake of describing the function of 
the circuit briefly, we consider a single-input SC integrator 
first. During the nth clock phase S1, the input capacitor C1 
is charged to the input voltage v l ( n ) ,  while the integrator 
capacitor Cf is held at vg(n - 1). When C1 is grounded 
during the clock phase S2, the charge Clvl(n) from C1 will 
be eansfened to the capacitor Cf. The ideal output voltage 
vo(n) during clock phase S2 is 

2 = 1  

(31) 

The voltage across the auxiliary hold capacitor Ch com- 
pensates the offset voltage and dc gain error of the op amp. 
The recursive realization of (3 1) results in the first-order 
approximation to the integrator 

C1 
Cf 

vo(n) = vo(n - 1) + --.I(.). 
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I V  

Fig. 3. A switched-capacitor neural circuit implementation for MVDR-based beamforming problem. 

Similarly, the output voltage of multiple-input integrator 
shown in Fig. 4(a) during clock phase S2 is characterized by 

voltage 

c, 
(33) Cf 

vo(n) = --v,(n). ca 
a = 1  Cf 

vo(n) = vo(n - 1) + C-.i(n). 

81 

(34) 

2 )  Switched-Capacitor Znverter and Summer: Since the 
negative weights are required in the beamforming problem, 
an SC inverter is used to achieve the negative terminal of the 
neuron’s output voltage instead of the negative weights. From 
a precision SC inverter shown in Fig. 4(b), during the nth 
clock phase S1, the input capacitor Ci is charged to v,(n), 
and then the output voltage becomes a scaled value of input 

At the mean time, the hold capacitor Ch is charged to vo(n), 
while the output voltage of the inverter is kept at constant value 
during the full nth clock period. During the clock phase S2, 
the charges at both C, and C f  are discharged to suppress the 
offset voltage of the op amp. This also reduces the possibility 
of the accumulated error due to the residued charges at Ca 
and C f .  
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\ 

2i-1 CO 

- - 

(C) ( 4  
Fig. 4. 
a parasitic-insensitive summer; (d) digitally programmable capacitor array @CA) and simplified notation. 

The required clock signals and basic switched-capacitor blocks: (a) a parasitic-insensitive integrator (neuron); (b) a parasitic-insensitive inverter; (c) 

The schematics of a multiple-input SC inverting summer is 
shown in Fig. 4(c). The inverting summer produces an output 
voltage uug(n) at the nth clock period by 

(35) 

3)  Programmable Capacitor Array: Since the synaptic 
weight matrix for the MVDR-based neural network should 
be programmable when the array operates in a nonstationary 
environment, this subsection presents digitally programmable 
capacitor arrays (PCA's) which can be programmed on 

a real-time basis. The PCA's can be realized using a 
number of binary weighted capacitors. Fig. 4(d) shows 
several capacitors (CI , Cz , . . . , C N ) ,  each connected by 
a series switch (SI, S2, . . . , SN) to a common node. The 
digital control word ( b l  , b2,  . . . , b N )  determines whether an 
individual capacitor is connected with or disconnected from 
the circuit. If the bit b, has the logical value 1, then the switch 
S, on the capacitor C, is connected between nodes x and 
y. Usually, the capacitances are weighted by powers of two 
(i.e., C1 = CO, Cz = ~ C O , . . .  ,C, = aN-'Cug). It should be 
noted that the capacitor never floats, and the total capacitance 
loading node y is constant. The value of the capacitance 
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between x and y in the N-bit PCA is given by 

N N 
Ct = CbiCi  = CoC2i-1bi (36) 

where CO is the capacitance basis of PCA, and the practical 
value of N can be up to ten. 

i=l a = 1  

B. Determination of the Capacitance Values 
in SC Neural Networks 

In this subsection, it is desired to design the MVDR-based 
neural circuit on the basis of the above-mentioned SC modules. 
The proposed SC neural network for MVDR beamforming is 
shown in Fig. 3.  Next, we would like to validate our circuit 
which can exactly implement MVDR-based neural network. 
During the nth clock phase S1, the inverted outputs of the 
variable amplifiers (neurons), vi(n)'s, are sent to the inputs of 
the constraint summers with associated weights. Thus, the j th 
summer's output is given by 

where the capacitances C,, and c b 3 a  are connected to the 
constant voltage source 1 V and the output terminal of the 
ith variable amplifier, respectively. Note that C f  is a constant 
capacitance of constraint amplifier. 

Comparing (30) and (37), it can be shown that both equa- 
tions become identical when b,, = (cbjz/cf) and e3 = 
(Ce,/Cf).  During the clock phase S2, the charges at both 
capacitors, CfJa's  and C2j's, are transferred to the capacitor 
Cf  of the ith neuron or variable integrator amplifier. Since 
C,, and C f J a  are connected to the output terminal of the ith 
variable amplifier and the output of the j th constraint amplifier, 
respectively, the current flowing into the ith variable amplifier 
is obtained by 

The ideal output of the ith variable amplifier is the inte- 
gral of the input current during clock phase S2. During the 
nth clock phase S1, the transferred charge and incremental 
output voltage can be obtained according to the law of the 
conservation of charges and are given by 

rp 

(39) 

Thus, the output voltage at (n + 1)th clock phase becomes 

Vi(. + 1) = Vi(.) + - I.(n)- Cf [ a  :] 

Comparing (29) and (41), it is found that the proposed SC 
circuit can implement the MVDR-based neural network when 
the following conditions are satisfied, i.e.: 

Notice that the negative values of both capacitance ratios 
represent the connection to the negative output terminal of 
the variable amplifier. From (25) and (26), it can be shown 
that gij and bji  are dependent on the elements of the array 
correlation matrix and the steering vector, respectively. How- 
ever, these parameters are not fixed when the array operates 
in a nonstationary environment. It requires the programming 
of their corresponding capacitance ratio values according to 
(42). Programming of the switched-capacitor ratio values could 
be made by allocating appropriate values to a set of parallel 
capacitors with values in PCA. 

V. ILLUSTRATED EXAMPLES 

To verify the effectiveness of MVDR-based switched- 
capacitor neural circuit implementation, a linear array of 
five elements with half-wavelength spacing is considered in 
the following example. The variance of white noise present in 
each element is assumed to be equal to 0.1. In addition, there 
are two interference sources which fall in the mainlobe and 
the peak of the first sidelobe of the conventional uniform array 
pattern, respectively. The first interference makes an angle 55' 
(191 = 55') with the line of the array and has the power which 
is taken to be 20 dB above the white noise power. The second 
interference makes an angle of 110" ( 0 2  = 110") and has the 
power which is 10 dB more than the white noise power. The 
look direction of the signal is assumed to be orthogonal to the 
array. In our example, two signal power levels, 1 dB and 10 
dB, are employed in the simulation. 

The simulation of the MVDR-based switched-capacitor neu- 
ral circuit is performed using the SWITCAP, which is a 
general simulation program for analyzing a switched-capacitor 
network [15]. The dynamics of the neural circuit is described 
by (29) and (30). The switching clock period is s. 
The capacitance C related to each variable amplifier of the 
RC circuit and the capacitance Cf  of the switched-capacitor 
integrator are taken to be of the same value 1 pF. In addition, 
the penalty multiplier p in each constraint amplifier and the 
acceleration factor Q: are taken to be 2 and 0.002, respectively. 
Fig. 5 shows the transient response of two output SNRs  
corresponding to their signal power levels 1 and 10 dB, 
respectively. It is noted that the converge time of each curve in 
Fig. 5 is almost independent of p ,  and equals 0.1 ns. Reference 
[lo] showed that the converge time is characterized by the 
system time constant of the circuit. The comparisons of power 
patterns of a conventional uniform array and the resulting 
neural-based adaptive array are given in Fig. 6. It is observed 
that two sharp nulls presented in the pattern correspond 
to the directions of the interference sources, i.e., 55" and 
110'. Furthermore, it should be mentioned that the values of 
capacitors Caj's and C f J a 7  s are dependent on the signal power 
level p ,  and its look direction, respectively. For example, 
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array. 

The output SNR versus the response time for a five-element linear 
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Fig. 6. 
array and neural-based array. 

Comparison of power patterns achieved by the conventional uniform 

C15 (or C ~ I )  corresponding to their associated signal power 
levels 1 and 10 dB are 0.00265 and 0.00625, respectiveIy. 
Fortunately, the adjustment of appropriate settings for the 
capacitors can be achieved by PCA’s. 

VI. CONCLUSIONS 
This paper presents the implementation of a digitally pro- 

grammable analog neural adaptive array using SC integrated 
circuit techniques. The important advantage of SC circuits is 
that they can be digitally controlled on the synaptic weights 
to execute the programmable function by PCA’s. The PCA’s 
could obtain their capacitance values from binary numbers 
stored in the memory. A linear array of five elements with 
two interference sources is constructed accordingly to verify 
the performance of the proposed circuit. Simulation results 
using a tool called SWITCAP show that the MVDR-based 
neural circuit can solve this five-element array in 0.1 ns when 
the dominant time constant is 1 ns. 
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