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Let Y ⊆ {−1,1}Z∞×n be the mosaic solution space of an n-layer
cellular neural network. We decouple Y into n subspaces, say
Y (1), Y (2), . . . , Y (n) , and give a necessary and sufficient condition
for the existence of factor maps between them. In such a case,
Y (i) is a sofic shift for 1 � i � n. This investigation is equivalent
to study the existence of factor maps between two sofic shifts.
Moreover, we investigate whether Y (i) and Y ( j) are topological
conjugate, strongly shift equivalent, shift equivalent, or finitely
equivalent via the well-developed theory in symbolic dynamical
systems. This clarifies, in a multi-layer cellular neural network,
each layer’s structure. As an extension, we can decouple Y into
arbitrary k-subspaces, where 2 � k � n, and demonstrates each
subspace’s structure.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Multi-layer cellular neural networks (MCNNs) are large aggregates of analogue circuits presenting
themselves as arrays of identical cells which are locally coupled. MCNNs have been widely applied in
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studying the signal propagation between neurons, and in image processing, pattern recognition and
information technology [1–11]. A One-dimensional MCNN is realized in the following form.

dx(�)
i

dt
= −x(�)

i +
∑
|k|�d

a(�)

k y(�)

i+k +
∑
|k|�d

b(�)

k u(�)

i+k + z(�), (1)

for some d ∈ N, 1 � � � n ∈ N, i ∈ Z, where

u(�)
i = y(�−1)

i for 2 � � � n, u(1)
i = ui, xi(0) = x0

i , (2)

and

y = f (x) = 1

2

(|x + 1| − |x − 1|) (3)

is the output function. For 1 � � � n, A(�) = (a(�)

−d, . . . ,a(�)

d ) is called the feedback template, B(�) =
(b(�)

−d, . . . ,b(�)

d ) is called the controlling template, and z(�) is the threshold. The quantity x(�)
i denotes

the state of a cell Ci in the �th layer. The stationary solutions x̄ = (x̄(�)
i ) of (1) are essential for under-

standing the system, and their outputs ȳ(�)
i = f (x̄(�)

i ) are called output patterns. Among the stationary
solutions, the mosaic solutions are crucial for studying the complexity of (1)[12–18]. A mosaic solu-
tion (x̄(�)

i ) satisfies |x̄(�)
i | > 1 for all i, � and the output of a mosaic solution is called a mosaic output

pattern. Mosaic solutions are asymptotically stable for one-layer CNNs without input [15,19]. Despite
a lack of rigorous proof, some criteria and numerical experiments have been proposed to assert the
stability of mosaic solutions for MCNNs [20–22]. Aside from mosaic solutions, MCNNs also exhibit
periodic patterns and limit cycles, readers are referred to [23–26] and references therein. In a MCNN
system, the “status” of each cell is taken as an input for a cell in the next layer except for those cells
in the last layer. The results that can be recorded are the output of the cells in the last layer. Since
the phenomena that can be observed are only the output patterns of the nth layer, the nth layer of
(1) is called the output layer, while the other n − 1 layers are called hidden layers.

Since mosaic solutions are stable, it is essential to characterize the structure of mosaic solutions
of (1). Juang and Lin [14] and Ban et al. [27] investigated mosaic solutions systematically, and char-
acterized the complexity of mosaic patterns via topological entropy. Shih [19] elucidated how the
boundary condition influence the spatial complexity of the global patterns. In the present study, a pat-
tern stands for a stationary solution for (1). Since the feedback and controlling templates are spatially
invariant, the global pattern formation is thus completely determined by the so-called admissible
local patterns. Hence, investigation of admissible local patterns is essential for studying the complex-
ity of global patterns. The difficulty stems from the fact that the set of admissible local patterns is
constrained by the differential equation (1). Suppose

B ≡ B
(

A(1), . . . , A(n), B(1), . . . , B(n), z(1), . . . , z(n)
)

=
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...
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⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⊆ {−1,1}Z(2d+1)×n

is a basic set of admissible local patterns. The predicament is that there exists a subset of
{−1,1}Z(2d+1)×n that cannot be realized via MCNNs. Such a constraint arises from the so-called linear



J.-C. Ban et al. / J. Differential Equations 252 (2012) 4563–4597 4565
separation property. Hsu et al. [28] demonstrated that, for one-layer CNNs without input, the param-
eter space can be divided into a finite number of partitions such that any two sets of parameters in
the same partition admit the same basic set of admissible local patterns. This property remains true
for MCNNs [29,27]. Proposition 3.1 gives a brief introduction to the procedure for determining the
partitions of the parameter space of simplified two-layer CNNs.

Suppose Y is the solution space of a MCNN. For � = 1,2, . . . ,n, let

Y (�) = {· · · y(�)
−1 y(�)

0 y(�)
1 · · ·}

be the space which consists of patterns in the �th layer of Y. Then Y (n) is called the output space
and Y (�) is called the (�th) hidden space for � = 1,2, . . . ,n − 1. There is a canonical projection
φ(�) : Y → Y (�) for each �. It is natural to ask whether there exists a relation between Y (i) and Y ( j)

for 1 � i �= j � n. Take n = 2 for instance; the existence of map connecting Y (1) and Y (2) that com-
mutes with φ(1) and φ(2) means the decoupling of the solution space Y. More precisely, if there exists
π12 : Y (1) → Y (2) such that π12 ◦φ(1) = φ(2) . Then π12 enables the investigation of structures between
the output space and hidden space.

Ban et al. [27] demonstrated that the output space Y (n) is a one-dimensional sofic shift. An
analogous argument asserts that each hidden space is also a sofic shift. To study the existence of
πi j : Y (i) → Y ( j) for some i, j is equivalent to illustrate the existence between two sofic shifts. This
elucidation gives a systematic strategy for determining whether there exists a map between Y (i) and
Y ( j) via well-developed theory in symbolic dynamical systems. Readers are referred to [30,31] for
more details.

To elucidate the relation between Y (i) and Y ( j) in a MCNN, we start with a simplified two-layer
CNN as (12). Suppose B is a basic set of admissible local patterns induced by a particular partition
of the parameter space. Ban and Lin [32] propose a methodology for the study of the complexity
of global patterns via assigning each local pattern its order and defining a so-called ordering matrix.
After defining an ordering matrix X, B derives a transition matrix T and has a graph representation
G . Applying appropriate labeling L(1),L(2) on G there associates labeled graph G(1) and G(2) such
that G(i) is a labeled graph representation of Y (i) for i = 1,2. If the topological entropies of Y (1) and
Y (2) are different, then either G(1) or G(2) has a graph diamond. Proposition 3.34 illustrates a sufficient
condition for the existence of a graph diamond.

Once Y (1) and Y (2) admit the same topological entropy, Y (1) and Y (2) are finitely equivalent and
there is a triangular structure between them (cf. Fig. 1 for example). For the case that G(1) and G(2)

are both right-resolving, that is, any two different edges with the same initial state carrying different
labels, Y (1) is topological conjugate to Y (2) if and only if S(1) P = P S(2) for some permutation matrix P
(Theorem 3.11), where S(i) is the symbolic transition matrix of G(i) for i = 1,2. Moreover, as one can
see in Fig. 1, the solution space Y is at the top of the triangle. In this case Y is called a common
extension of Y (1) and Y (2) .

If G(i) is not right-resolving for some i, there exists GY (i) = (GY (i) ,LY (i) ) which is right-resolving
and is a labeled graph representation of Y (i) . In this case Y is no longer a common extension of
Y (1) and Y (2) . Since h(Y (1)) = h(Y (2)), there exists an integral matrix F such that T GY (1)

F = F TGY (2)
.

Using F we can construct a common extension W of Y (1) and Y (2) (Theorem 3.12, cf. Figs. 3 and 4).
Before studying the map between Y (1) and Y (2) , we focus on the relation between W (1) ≡ XGY (1)

and

W (2) ≡ XGY (2)
, that is, the shift spaces generated from the underlying graph GY (1) and GY (2) .

The transition matrices T GY (1)
and TGY (2)

are significant for studying the existence of factor map

between W (1) and W (2) . Williams’ Classification Theorem [33,34] indicates that W (1) is conjugate
to W (2) if and only if their transition matrices T W (1) , T W (2) are strongly shift equivalent. Suppose
T W (1) , T W (2) are strongly shift equivalent and π : W (1) → W (2) is the conjugacy map. It still does not
guarantee that there is a map connecting Y (1) and Y (2) . To determine a map between Y (1) and Y (2)

which still preserves the structure of a tree diagram, it is sufficient to find a map from Y (i) to W (i) for
some i. Proposition 2.8 and Theorem 3.19 propose that this is equivalent to verifying the synchronizing
words on G(i) . If words on G(1) are synchronized, then there exists a factor map π̄ : Y (1) → Y (2) . If
words on G(1) and G(2) are synchronized respectively, then Y (1) is conjugate to Y (2) .
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A weaker equivalent class is that T W (1) and T W (2) are shift equivalent. That is, there exists N ∈ N

such that T N
W (1) and T N

W (2) are strongly shift equivalent. The difference between strong shift equiva-

lence and shift equivalence is that shift equivalence of W (1) and W (2) does not imply the conjugacy
of W (1) and W (2) [35,36]. Moreover, strong shift equivalence is much harder to verify than shift
equivalence since W (1) and W (2) are shift equivalent if and only if they admit isomorphic dimension
groups (Theorem 3.27). In general, if there exists a factor-like matrix F such that T GY (1)

F = F TGY (2)
,

then there exists a factor map between W (1) and W (2) .
The investigation of two-layer CNNs can be extended to decoupling a MCNN into k subspaces.

This leads to how we decouple the solution space Y. Suppose Y is the solution space of a three-layer
CNN. If we decouple Y into two spaces, for example, Y (2) is the output space and Y (1) is the hidden
space consisting of the global patterns of the first two layers. This reduces to the case that n = 2
but with a change of labels. Suppose Y induces a output space Y (3) and two hidden spaces Y (1) and
Y (2) . If h(Y (i)) �= h(Y ( j)) for some i �= j, then G(�) has a graph diamond for some �, where G(�) is a
labeled graph representation of Y (�) , � = 1,2,3. Suppose Y (�) admits the same topological entropy
for � = 1,2,3. The above discussion infers that Y (2) and Y (3) form a triangle diagram, and Y (1) and
Y (2) also form a triangle diagram. Assume W (1)

1 is a common extension of Y (1), Y (2) , and W (1)
2 is a

common extension of Y (2), Y (3) . Using fiber product we get a common extension W of Y (1) and Y (3)

(Theorem 4.3). More precisely, such extension W is a common extension of Y (�) for � = 1,2,3. See
Figs. 8, 9, and 10. The triangular structure illustrates the relation between each of three layers and
helps for examining whether there exist factor maps connecting some layers.

The investigation of the existence of a map between Y (�), Y (�+1) is similar to the discussion above
for � = 1,2. To determine whether there is a factor map connecting Y (1) and Y (3) , the existence of
factor maps, for instance, from Y (1) to Y (2) and from Y (2) to Y (3) obviously indicates a factor map
from Y (1) to Y (3) . If there is no factor map between Y (�) and Y (�+1) for some 1 � � � 2, we have the
following cases:

(i) The equivalent relation between W (1), W (2) , and W (3) , where W (�) is a shift of finite type such
that Y (�) is a factor of W (�) .

(ii) The equivalent relation between W (1)
1 and W (1)

2 .

(iii) The existence of factor maps between W (1)
1 , W (1)

2 and W (�), W (�+1) for � = 1,2.

For any of the above cases, it leaves the verification of synchronizing words of Y (�) for � = 1,2,3.
In our previous work [27], we focused on the complexity of the output space of a MCNN and

the recurrent formula of the transition matrix. Aside from showing that the output space is sofic,
we also observed that the topological entropy diagram is asymmetric. A further study [37] indicates
that the symmetry of the diagram comes from the conjugacy of two systems while the asymmetry is
caused by the existence of diamonds. This elucidation, based on the results in [27], examines the finer
structure in MCNNs and provides some sufficient conditions to decouple the mosaic solution spaces
of MCNNs.

Since, for example, in a 2-layer CNN every mosaic solution space Y (�) is a sofic shift for � = 1,2,
this investigation considers whether there exists a factor map between two sofic shifts. As an appli-
cation, the existence of a factor map can be used for the examination of the rate of loss during data
transmission. Meanwhile, from the viewpoint of thermodynamics, suppose μ is an equilibrium mea-
sure on Y (1) , a factor map π : Y (1) → Y (2) helps for the understanding of properties of the equilibrium
measures on Y (2) .

The above discussion can be extended to general multi-layer neural networks with only slight
modification. The rest of this study is organized as follows. A brief introduction of symbolic dynamical
systems and MCNNs is given in Section 2. Section 3 analyzes simplified two-layer cellular neural
networks. Section 4 studies simplified n-layer cellular neural networks for n � 3 and Section 5 extends
the results to general multi-layer cellular neural networks. Some discussion and conclusions are given
in Section 6.
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2. Preliminary

For reader’s convenience, we recall some definitions and known results for symbolic dynamical
systems and MCNNs that are needed in the present elucidation. We refer the reader to [27,14,31] and
the references therein for more details.

2.1. Symbolic dynamical systems

Let A = {0,1, . . . ,n − 1} be a finite alphabet with cardinality |A| = n. The full A-shift AZ is the
collection of all bi-infinite sequences of symbols from A. More precisely,

AZ = {
α = (αi)i∈Z: αi ∈ A for all i ∈ Z

}
.

The shift map σ on the full shift AZ is defined by

σ(α)i = αi+1 for i ∈ Z.

A shift space X is a subset of AZ such that σ(X) ⊆ X .

Definition 2.1. For each m ∈N, let

Am = {w0 w1 · · · wk−1: wi ∈ A, 1 � k � m}

and let A0 denote the empty set. If X is a shift space and there exist L � 0 and F ⊆AL such that

X = {
(αi)i∈Z: αiαi+1 · · ·αi+k−1 /∈ F for k � N, i ∈ Z

}
then we say that X is a shift of finite type (SFT).

A SFT can be constructed via a finite, directed graph by considering the collection of all bi-infinite
walks on the graph. We recall some definitions first.

Definition 2.2. A (directed) graph G = (V,E) consists of a finite set V = V(G) of vertices (or states)
together with a finite set E = E(G) of edges. Each edge e ∈ E starts at an initial state i(e) and termi-
nates at a terminal state t(e). Sometimes we also denote an edge e by e = (i(e), t(e)) to emphasize
the initial and terminal states of e.

Let G and H be graphs. A homomorphism (∂Φ,Φ) : G → H consists of a pair of maps ∂Φ : V(G) →
V(H) and Φ : E(G) → E(H) such that i(Φ(e)) = ∂Φ(i(e)) and t(Φ(e)) = ∂Φ(t(e)) for all e ∈ E(G).
A homomorphism is an isomorphism if both ∂Φ and Φ are one-to-one and onto.

Without loss of generality, we assume that, for any two vertices in a graph, there is at most one
corresponding (directed) edge. Let G = (V,E) be a graph. The transition matrix T G of G , indexed by V ,
is an incidence matrix defined by T G(I, J ) = 1 if and only if (I, J ) ∈ E . On the other hand, suppose T
is an n×n incidence matrix, then the graph of T is the graph G = G T with vertex set V = {1,2, . . . ,n},
and with T (I, J ) edge from vertex I to vertex J . It follows immediately from the definitions that

T = T G T and G ∼= G TG .

Each graph G with corresponding transition matrix T gives rise to a SFT.
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Definition 2.3. Let G = (V,E) be a graph with transition matrix T . The edge shift XG or XT is the
shift space over the alphabet A= E specified by

XG = XT = {
ξ = (ξ j) j∈Z ∈ EZ: ξ j, ξ j+1 ∈ E such that i(ξ j+1) = t(ξ j) for j ∈ Z

}
. (4)

Theorem 2.4. (See [31, Proposition 2.2.6].) Suppose G is a graph. Then XG is a shift of finite type.

Sometimes certain edges of G can never appear in XG , and such edges are inessential for the edge
shift. A vertex I ∈ V is called stranded if either no edges start at I or no edges terminate at I . We say
that a graph is essential if no vertex of the graph is stranded. The following proposition demonstrates
that we can focus the discussion on those essential graphs.

Proposition 2.5. (See [31, Proposition 2.2.10].) If G is a graph, then there is a unique subgraph H of G such
that H is essential and XH = XG .

A graph G is irreducible if for every ordered pair of vertices I and J there is a path in G starting
at I and terminating at J , herein a path π = v1 v2 . . . vm on a graph G we mean a finite sequence
of vertices from G such that (vi, vi+1) ∈ E for i = 1,2, . . . ,m − 1. It can be verified that an essential
graph is irreducible if and only if its edge shift is irreducible.

Suppose we label the edges in a graph with symbols from an alphabet S . Every bi-infinite walk
on the graph yields a point in the full shift SZ by reading the labels of its edges, and the set of all
such points is called a sofic shift.

Definition 2.6. Suppose G = (V,E) is a directed graph, and S is a finite alphabet. A labeled graph G
is a pair (G,L) with graph G and the labeling L : E → S assigns to each edge e of G a label L(e) ∈ S .
The underlying graph of G is G .

Let G = (G,LG) and H = (H,LH ) be labeled graphs. A labeled-graph homomorphism from G to H
is a graph homomorphism (∂Φ,Φ) : G → H such that LH (Φ(e)) = LG(e) for all e ∈ E(G). A labeled-
graph homomorphism is actually a labeled-graph isomorphism if (∂Φ,Φ) is an isomorphism.

Definition 2.7. Suppose G = (G,L) is a labeled graph. The shift space XG is called a sofic shift. More-
over, we say that G is right-resolving if L((v, w)) �=L((v, w ′)) for v ∈ V and (v, w), (v, w ′) ∈ E .

It is seen that a SFT is also a sofic shift. Indeed, sofic shifts is an extension of SFTs.

Theorem 2.8. (See [31, Proposition 3.1.6 & Theorem 3.2.1].) A shift space is sofic if and only if it is a factor of a
SFT. Furthermore, a sofic shift is a SFT if and only if it has a presentation (G,L) such that L∞ is a conjugacy.

A quantity that describes the complexity of a system is topological entropy. Suppose X is a shift
space. Denote Γk(X) the cardinality of the collection of words of length k. The topological entropy of
X is then defined by

h(X) = lim
k→∞

Γk(X)

k
.

Let X be a SFT with transition matrix T . Perron–Frobenius Theorem indicates that h(X) = logρ(T ),
where ρ(T ) is the spectral radius of T . Nevertheless, if X is a sofic shift which is not right-resolving,
then logρ(T ) might no longer be the topological entropy of X . Instead, we need to find X a right-
resolving presentation via the so-called subset construction method.
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Subset construction method
Let X be a sofic shift over the alphabet A having a presentation G = (G,L). If G is not right-

resolving, then a new labeled graph H = (H,LH ) is constructed as follows.
The vertices I of H are the nonempty subsets of the vertex set V(G) of G . If I ∈ V(H) and a ∈ A,

let J denote the set of terminal vertices of edges in G starting at some vertices in I and labeled a,
i.e., J is the set of vertices reachable from I using the edges labeled a.

(1) If J = ∅, do nothing.
(2) If J �= ∅, J ∈ V(H) and draw an edge in H from I to J labeled a.

Carrying this out for each I ∈ V(H) and each a ∈ A produces the labeled graph H. Then, each vertex
I in H has at most one edge with a given label starting at I . This implies that H is right-resolving.

Theorem 2.9. (See [31, Theorem 3.3.2].) Let G = (G,L) be a labeled graph which is not right-resolving, and
let H = (H,LH ) be a right-resolving labeled graph constructed under the subset construction method. Then
XG = XH .

It is verified that h(X) = h(XH) = logρ(TH).

2.2. Multi-layer cellular neural networks

The fundamental part of a MCNN is one-layer cellular neural networks with inputs:

dxi

dt
= −xi +

∑
|k|�d

ak yi+k +
∑
|�|�d

b�ui+� + z,

where A = [−ad, . . . ,a, . . . ,ad], B = [−bd, . . . ,b, . . . ,bd] are the feedback and controlling templates,
respectively, and z is the threshold. The quantity xi represents the state of the cell at i for i ∈ Z. The
output ȳ = ( ȳi) = ( f (x̄i)) of a stationary solution (x̄i) is called a output pattern. A mosaic solution
x̄ satisfies |x̄i | > 1 and its corresponding pattern ȳ is called a mosaic output pattern. Consider the
mosaic solution x̄, the necessary and sufficient conditions for state “+” at cell Ci , i.e., ȳi = 1, is

a − 1 + z > −
( ∑

0<|k|�d

ak ȳi+k +
∑
|�|�d

b�ui+�

)
, (5)

where a = a0. Similarly, the necessary and sufficient conditions for state “−” at cell Ci , i.e., ȳi = −1,
is

a − 1 − z >
∑

0<|k|�d

ak ȳi+k +
∑
|�|�d

b�ui+�. (6)

For simplicity, denoting ȳi by yi and rewriting the output patterns y−d · · · y · · · yd coupled with
input u−d · · · u · · · ud as

y−d · · · y−1 y0 y1 · · · yd
u−d · · · u−1u0u1 · · · ud

≡ y−d · · · yd � u−d · · · ud ∈ {−,+}Z(2d+1)×2 . (7)

Let

V n = {
v ∈Rn: v = (v1, v2, . . . , vn) and |vi| = 1,1 � i � n

}
,
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where n = 4d + 1, (5) and (6) can be rewritten in a compact form by introducing the following
notation.

Denote α = (a−d, . . . ,a−1,a1, . . . ,ad), β = (b−d, . . . ,b, . . . ,bd). Then, α can be used to represent
A′ , the surrounding template of A without center, and β can be used to represent the template B .
The basic set of admissible local patterns with “+” state in the center is defined as

B(+, A, B, z) = {
v � w ∈ V n: a − 1 + z > −(α · v + β · w)

}
, (8)

where · is the inner product in Euclidean space. Similarly, the basic set of admissible local patterns
with “−” state in the center is defined as

B(−, A, B, z) = {
v ′ � w ′ ∈ V n: a − 1 − z > α · v + β · w

}
. (9)

Furthermore, the admissible local patterns induced by (A, B, z) can be denoted by

B(A, B, z) = (
B(+, A, B, z),B(−, A, B, z)

)
. (10)

The following theorem infers that the parameter space can be partitioned into finite equivalent
subregions.

Theorem 2.10. (See [27, Theorem 2.1].) Let

Pn+2 = {
(A, B, z)

∣∣ A, B ∈ M1×(2d+1)(R), z ∈R
}
,

where Mr×s(R) means a r × s real matrix. There exists a positive integer K (n) and the unique collection of
open subsets {Pk}K

k=1 of Pn+2 satisfying

(i) Pn+2 = ⋃K
k=1 Pk.

(ii) Pk ∩ P� = ∅ for all k �= �.

(iii) B(A, B, z) = B( Ã, B̃, z̃) if and only if (A, B, z), ( Ã, B̃, z̃) ∈ Pk for some k.

Here P is the closure of P in Pn+2 .

Suppose B is a basic set of admissible local patterns induced from a CNN. The output space YU =
YU (B) is defined by

YU =
{

(· · · y−1 y0 y1 · · ·) ∈ {+,−}Z: there exists (· · · u−1u0u1 · · ·) ∈ {+,−}Z
such that (yi−d · · · yi · · · yi+d � ui−d · · · ui · · · ui+d) ∈ B for i ∈ Z

}
.

Theorem 2.11. (See [27, Theorem 2.13].) YU is a sofic shift.

In [27], the authors demonstrate that Theorems 2.10 and 2.11 still hold for MCNNs.

3. Two-layer cellular neural networks

This section comprises the fundamental part of this elucidation. A two-layer cellular neural net-
work is realized as
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx(1)
i

dt
= −x(1)

i +
∑
|k|�d

a(1)

k y(1)

i+k +
∑
|k|�d

b(1)

k u(1)

i+k + z(1),

dx(2)
i

dt
= −x(2)

i +
∑
|k|�d

a(2)

k y(2)

i+k +
∑
|k|�d

b(2)

k u(2)

i+k + z(2),

(11)

where d ∈ N and u(2)
i = y(1)

i for i ∈ Z. Suppose a partition of the parameter space is determined, that
is, the templates

A(�) = (
a(�)

−d, . . . ,a(�)

d

)
, B(�) = (

b(�)

−d, . . . ,b(�)

d

)
, z(�), � = 1,2

are given. A stationary solution x =
(

x(2)

x(1)

)
=

(
x(2)

i

x(1)
i

)
i∈Z

is called mosaic if |x(�)
i | > 1 for n = 1,2 and

i ∈ Z. The output y =
(

y(2)

y(1)

)
=

(
y(2)

i

y(1)
i

)
i∈Z

of a mosaic solution x is called a mosaic pattern. To clarify

the discussion, we consider a simplified two-layer cellular neural network.

3.1. Simplified two-layer cellular neural networks

Let d = 1, B(1) = (0,0,0), and a(1)
−1 = a(2)

−1 = 0. If the other parameters are all nonzero, (11) is re-
duced as a simplified two-layer cellular neural network,⎧⎪⎪⎨⎪⎪⎩

dx(1)
i

dt
= −x(1)

i + a(1) y(1)
i + a(1)

r y(1)
i+1 + z(1),

dx(2)
i

dt
= −x(2)

i + a(2) y(2)
i + a(2)

r y(2)
i+1 + b(2)u(2)

i + b(2)
r u(2)

i+1 + z(2).

(12)

Suppose y =
(

···y(2)
−1 y(2)

0 y(2)
1 ···

···y(1)
−1 y(1)

0 y(1)
1 ···

)
is a mosaic pattern. For i ∈ Z, y(1)

i = 1 if and only if x(1)
i > 1. This derives

a(1) + z(1) − 1 > −a(1)
r y(1)

i+1. (13)

Similarly, y(1)
i = −1 if and only if x(1)

i < −1. This implies y(1)
i = −1 if and only if

a(1) − z(1) − 1 > a(1)
r y(1)

i+1. (14)

The same argument asserts

a(2) + z(2) − 1 > −a(2)
r y(2)

i+1 − (
b(2)u(2)

i + b(2)
r u(2)

i+1

)
, (15)

and

a(2) − z(2) − 1 > a(2)
r y(2)

i+1 + (
b(2)u(2)

i + b(2)
r u(2)

i+1

)
(16)

are the necessary and sufficient condition for y(2)
i = −1 and y(2)

i = 1, respectively. Note that the quan-

tity u(2)
i in (15) and (16) satisfies |u(2)

i | = 1 for each i. Define ξ1 : {−1,1} → R and ξ2 : {−1,1}Z3×1 →
R by

ξ1(w) = a(1)
r w, ξ2(w1, w2, w3) = a(2)

r w1 + b(2)w2 + b(2)
r w3.
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Set

B(1) =
{

y(1) y(1)
r : y(1), y(1)

r ∈ {−1,1} satisfy (13), (14)
}
,

B(2) =
{

y(2) y(2)
r

u(2)u(2)
r

: y(2), y(2)
r , u(2), u(2)

r ∈ {−1,1} satisfy ( 15), (16)

}
.

That is,

y(1) y(1)
r ∈ B(1) ⇔

{
a(1) + z(1) − 1 > −ξ1(y(1)

r ), if y(1) = 1;

a(1) − z(1) − 1 > ξ1(y(1)
r ), if y(1) = −1.

y(2) y(2)
r

u(2)u(2)
r

∈ B(2) ⇔
{

a(2) + z(2) − 1 > −ξ2(y(2)
r , u(2), u(2)

r ), if y(2) = 1;

a(2) − z(2) − 1 > ξ2(y(2)
r , u(2), u(2)

r ), if y(2) = −1.

Since two-layer cellular neural networks are locally coupled systems, B(1) and B(2) represents the
basic sets of admissible local patterns of the first and second layer of (12), respectively. The set of
admissible local patterns B of (12) is then

B =
{

yyr

uur
:

yyr

uur
∈ B(2) and uur ∈ B(1)

}
.

Since we only consider mosaic patterns, y(1), y(2), y(1)
r , y(2)

r , u(2), u(2)
r ∈ {−1,1}. This indicates

a(1) + z(1) − 1 = −ξ1(y(1)
r ) and a(1) + z(1) − 1 = ξ1(y(1)

r ) partition a(1) − z(1) plane into 9 regions,
and a(2) + z(2) − 1 > −ξ2(y(2)

r , u(2), u(2)
r ) and a(2) + z(2) − 1 > ξ2(y(2)

r , u(2), u(2)
r ) partition a(2) − z(2)

plane into 81 regions. The “order” of lines a(1) + z(1) − 1 = (−1)�ξ1(y(1)
r ), � = 0,1, come from the sign

of a(1)
r . Thus the parameter space {(a(1),a(1)

r , z(1))} is partitioned into 2 × 9 = 18 regions. Similarly,
the order of a(2) + z(2) − 1 > (−1)�ξ2(y(2)

r , u(2), u(2)
r ) can be uniquely determined according to the

following procedures.

(i) The signs of a(2)
r ,b(2),b(2)

r .
(ii) The magnitude of a(2)

r ,b(2),b(2)
r .

(iii) The competition between the parameter with the largest magnitude and the others. In other
words, suppose m1 > m2 > m3 represent |a(2)

r |, |b(2)|, |b(2)
r |. We need to determine whether m1 >

m2 + m3 or m1 < m2 + m3.

This partitions the parameter space {(a(2),a(2)
r ,b(2),b(2)

r , z(2))} into 8×6×2×81 = 7776 regions. Each
region associates a basic set of admissible local patterns.

The above discussion indicates the following proposition.

Proposition 3.1. Let P8 = {(a(1),a(1)
r ,a(2),a(2)

r ,b(2),b(2)
r , z(1), z(2))} be the parameter space of (12). There

exist 139 968 regions in P such that any two set of templates that locate in the same region infer the same
basic set of admissible local patterns. Conversely, suppose B ⊆ {−1,1}Z2×2 comes from a simplified two-layer
cellular neural networks. Then there exists a partition that admits B as its basic set of admissible local patterns.

Example 3.2. Suppose a(1)
r < 0 and a(2)

r ,b(2),b(2)
r are all positive. Moreover, choose a(2)

r ,b(2),b(2)
r such

that

a(2)
r > b(2) > b(2)

r and a(2)
r > b(2) + b(2)

r .
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For instance, a(1)
r = −1, a(2)

r = 6, b(2) = 3, and b(2)
r = 2. Then the position of each line is settled.

Numbered the partitions of a(1) − z(1) and a(2) − z(2) planes by a pair [m�,n�], where m�,n� illustrate
how many inequalities

a(�) + z(�) − 1 > −ξ�(·) and a(�) − z(�) − 1 > ξ�(·)

are satisfied, respectively. Thus 0 � m1,n1 � 2 and 0 � m2,n2 � 8. Pick [m1,n1] = [1,2] and [m2,n2] =
[6,4], for instance, a(1) = 2, z(1) = −0.3,a(2) = 4, and z(1) = 2.5. It is easy to chuck that the basic set
of admissible local patterns is

B =
{

−−
−−

−−
−+

−−
+−

+−
+−

++
−−

++
−+

++
+−

}
.

3.1.1. Ordering matrix, transition matrix and graph
The previous section demonstrates that each partition of the parameter space associates with a

collection of local patterns that allow for generalization of global patterns. Hence the basic set of
admissible local patterns plays an essential role for investigating two-layer cellular neural networks.
This section studies the structure of admissible local patterns through defining the ordering for each
pattern. Substitute mosaic patterns −1 and 1 as symbols − and +, respectively. Define the ordering
matrix of {−,+}Z2×2 by

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
−

−
+

+
−

+
+

−
−

−−
−−

−−
−+

−+
−−

−+
−+

−
+

−−
+−

−−
++

−+
+−

−+
++

+
−

+−
−−

+−
−+

++
−−

++
−+

+
+

+−
+−

+−
++

++
+−

++
++

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (xpq)1�p,q�4.

We emphasize that each entry in X is a 2 × 2 pattern since B consists of 2 × 2 local patterns. Once
the size of local patterns varies, there exists a corresponding ordering matrix which represents the
basic set of admissible local patterns.

Suppose that B is given. The transition matrix T ≡ T (B) ∈M4(R) is a 4 × 4 matrix defined by

T (p,q) =
{

1, if xpq ∈ B;

0, otherwise.

Let V = {0,1,2,3}, where

0 ≡ −
− , 1 ≡ −

+ , 2 ≡ +
− , 3 ≡ +

+ .

There exists an edge e ∈ E if and only if T (i(e) + 1, t(e) + 1) = 1. This infers G T = (V,E) is a graph
representation of T .

Let Y ⊆ {−,+}Z∞×2 be the solution space of (12). That is,

Y =
{(

yi
ui

)
:

yi yi+1
uiui+1

∈ B for i ∈ Z

}
.

i∈Z
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It comes immediately from Theorem 2.4 that Y is a shift of finite type.

For ease of notation, denote
y1 y2
u1u2

by y1 y2 � u1u2 and

y � u ≡ y
u

= · · · y−2 y−1 y0 y1 y2 · · ·
· · · u−2u−1u0u1u2 · · · , where y = (yi)i∈Z, u = (ui)i∈Z.

Then we can write Y as

Y = {y � u: yi yi+1 � uiui+1 ∈ B for i ∈ Z}.
Define φ(1), φ(2) : Y → {−,+}Z by

φ(1)(y � u) = u and φ(2)(y � u) = y. (17)

Set Y (�) = φ(�)(Y) for � = 1,2. Y (1) is called the hidden space, and Y (2) is called the output space.
Obviously the dynamical behavior of the output space Y (2) is influenced by the hidden space Y (1) .
For instance, a phenomenon which cannot be seen in one-layer cellular neural networks is that Y (1)

would break the symmetry of the entropy diagram of Y (2) [37,27]. This motivates the study of the
relation between Y (1) and Y (2) .

Since Y (1) and Y (2) are derived from the same system Y, it is natural to ask the following ques-
tions:

Question 1. Is there a relation between Y (1) and Y (2)? For instance, can we define a factor map π
from Y (1) to Y (2) such that φ(2) = π ◦ φ(1)?

Question 2. Suppose that π : Y (1) → Y (2) exists.

(i) Under what conditions does π preserve topological entropy?
(ii) Does π help for demonstrating the structure of Y (1) and Y (2)?

The structure of Y (1) and Y (2) are essential for these questions. We introduce the labeled graph
first.

3.1.2. Labeled graph and symbolic transition matrix
Assume that G T = (V,E) is the graph representation of (12). Let A= {α0,α1,α2,α3}, where

α0 = −−, α1 = −+, α2 = + − and α3 = + + .

Define L(1),L(2) : E →A by

L(1)(e) = α2τ (i(e))+τ (t(e)), where τ (c) := c mod 2, (18)

L(2)(e) = α2[i(e)/2]+[t(e)/2], where [·] is the Gauss function. (19)

These two labeling L(1) and L(2) define two labeled graphs G(1) = (G T ,L(1)) and G(2) = (G T ,L(2)),
respectively. Ban et al. [27] demonstrated that the output space is a sofic shift with graph represen-
tation G(2) . With a small modification we also get that Y (1) is a sofic shift with graph representa-
tion G(1) .

Theorem 3.3. Suppose Y ⊂ {−,+}Z∞×2 is the solution space of a two-layer cellular neural network. Then Y (�)

is a sofic shift and Y (�) = XG(�) for � = 1,2.
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It is worth emphasizing that G(1) and G(2) share the same underlying graph, but have different
labeling. Moreover, it is seen that (L(�))∞ is conjugate to φ(�) , where (L(�))∞ : XGT → XG(�) is defined
by (L(�))∞(ξ) j =L(�)((ξ j, ξ j+1)) for j ∈ Z. Since G(1),G(2) are two different labeled graphs that share
the same underlying graph, their transition matrices T (1), T (2) make no difference. This motivates the
introduction of a symbolic transition matrix. The symbolic transition matrix S(�) of G(�) is defined by

S(�)(p,q) =
{

α j, if T (�)(p,q) = 1 and L(�)((p,q)) = α j for some j;

∅, otherwise.
(20)

Herein ∅ means there exists no local pattern in B related to its corresponding entry in the ordering
matrix.

A labeled graph is called right-resolving if edges start from the same vertex carrying different
labels. It follows from this definition that the symbolic transition matrix S of a right-resolving labeled
graph must satisfy S(p,q) �= S(p,q′) for all p,q,q′ if S(p,q) �= ∅. Conversely, suppose S(p,q) �= ∅.
S(p,q) �= S(p,q′) for all q′ demonstrates that no two edges starting from the same initial state carry
the same label. This derives the following lemma.

Lemma 3.4. Suppose G is a labeled graph and S is its symbolic transition matrix. Then G is right-resolving if
and only if, for each p,q, S(p,q) �= S(p,q′) for all q′ provided S(p,q) �= ∅.

Example 3.5. Continue with Example 3.2. The symbolic transition matrices for Y (1) and Y (2) are

S(1) =
⎛⎜⎝

α0 α1 ∅ ∅

α2 ∅ ∅ ∅

∅ ∅ α0 α1
α2 ∅ α2 ∅

⎞⎟⎠ and S(2) =
⎛⎜⎝

α0 α0 ∅ ∅

α0 ∅ ∅ ∅

∅ ∅ α3 α3
α2 ∅ α3 ∅

⎞⎟⎠ ,

respectively. S(1) and S(2) infer that G(1) and G(2) make no difference except the labeling. Moreover,
neither G(1) nor G(2) is right-resolving.

3.2. Ordering matrix and labeled graph for general two-layer cellular neural networks

For a general two-layer cellular neural network, suppose the admissible local pattern of (11) is of
the form

y−d · · · y−1 y0 y1 · · · yd
u−d · · · u−1u0u1 · · · ud

≡ y−d · · · yd � u−d · · · ud ∈ {−,+}Z(2d+1)×2 .

Note that the entry is allowed to be left empty if its corresponding parameter is zero. For example, if
a(2)

−d = 0, then the local pattern is of the form

y−d+1 · · · y−1 y0 y1 · · · yd
u−du−d+1 · · · u−1u0u1 · · · ud

≡ y−d+1 · · · yd � u−d · · · ud

and vice versa.
For simplicity, we assume that none of the entries in the basic pattern are empty. Define

χ : {−,+} → {0,1} by χ(−) = 0 and χ(+) = 1. Dividing the basic pattern into two components such
that each component is of the form y−d · · · yd−1 � u−d · · · ud−1. Let � : y−d · · · yd−1 � u−d · · · ud−1 → Z

be defined by
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Fig. 1. Since L(1) and L(2) are both right-resolving, φ(1) and φ(2) are finite-to-one factors and Y is a common extension space
of Y (1) and Y (2) .

�(y−d · · · yd−1 � u−d · · · ud−1) = χ(y−d) + 2χ(y−d+1) + · · · + 22d−1χ(yd−1)

+ 22dχ(u−d) + · · · + 24dχ(ud).

The ordering matrix is then a 24d+1 × 24d+1 matrix which is indexed by �(y−d · · · yd−1 � u−d · · · ud−1).
Suppose a basic set of admissible local patterns of (11) is determined. In a similar way as before,

we can define two labeled graphs sharing the same underlying graph with different labeling. Some
examples are considered later.

3.3. Classification of hidden and output spaces

This section investigates whether there is a relation between Y (1) and Y (2) . It turns out that
topological entropy provides some evidence for the existence of the map π : Y (1) → Y (2) (or
π ′ : Y (2) → Y (1)). For the rest of this section, we assume that h(Y (1)) = h(Y (2)) unless otherwise
stated, where h(X) indicates the topological entropy of X . To clarify the discussion, we first consider
the case where both G(1) and G(2) are right-resolving labeled graphs. If either G(1) or G(2) is not
right-resolving, we need to construct a right-resolving labeled graph that still presents the same sofic
shift.

3.3.1. Two right-resolving labeled graphs
Suppose G(1) and G(2) are both right-resolving. First we consider a relation between two shift

spaces called finite equivalence.
Let X and Y be two shift spaces. A map φ : X → Y is called a factor map if φ is onto. A factor map

φ : X → Y is finite-to-one if there exists M ∈N such that |φ−1(y)| � M for y ∈ Y . Two shift spaces X
and Y are finitely equivalent, denoted by X ∼F Y , if there exists a shift of finite type W together with
finite-to-one factor maps φX : W → X and φY : W → Y . We say that W is a common extension of X
and Y , and the triple (W , φX , φY ) is a finite equivalence between X and Y .

Proposition 3.6. If G(1) and G(2) are both right-resolving, then Y (1) and Y (2) are finitely equivalent.

Proof. An analogous argument as in the proof of Theorem 3.3 implies Y = XGT , hence Y is a shift of
finite type. G(1) and G(2) are both right-resolving indicates that φ(1) : Y → Y (1) and φ(2) : Y → Y (2) are
both finite-to-one factor maps. Hence Y is a common extension of Y (1) and Y (2) . See Fig. 1. �

It is well known that finite equivalence is an equivalent relation. The following proposition shows
that conjugacy between two spaces demonstrates finite shift equivalence.

Proposition 3.7. If X and Y are conjugate, then X is finitely shift equivalent to Y .

Proof. Suppose that W is a shift of finite type with a finite-to-one factor map φ : W → Y . Let
ψ : X → Y be a conjugacy. Define φ′ : W → Y by φ′ = ψ ◦ φ. It comes immediately that φ′ is also
a finite-to-one factor from W to Y and derive the desired result. �
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Fig. 2. The underlying graph G T of Example 3.8.

Example 3.8. Consider two-layer cellular neural network (11) with d = 1,a(1)
−1 = 0, B(1) = (0,0,0) and

b(2)
−1 = 0. Then the ordering matrix is defined as

X3×2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−−
−

−−
+

−+
−

−+
+

+−
−

+−
+

++
−

++
+

−−
−

−−−
−−

−−−
−+

−−+
−−

−−+
−+ ∅ ∅ ∅ ∅

−−
+

−−−
+−

−−−
++

−−+
+−

−−+
++ ∅ ∅ ∅ ∅

−+
− ∅ ∅ ∅ ∅

−+−
−−

−+−
−+

−++
−−

−++
−+

−+
+ ∅ ∅ ∅ ∅

−+−
+−

−+−
++

−++
+−

−++
++

+−
−

+−−
−−

+−−
−+

+−+
−−

+−+
−+ ∅ ∅ ∅ ∅

+−
+

+−−
+−

+−−
++

+−+
+−

+−+
++ ∅ ∅ ∅ ∅

++
− ∅ ∅ ∅ ∅

++−
−−

++−
−+

+++
−−

+++
−+

++
+ ∅ ∅ ∅ ∅

++−
+−

++−
++

+++
+−

+++
++

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Set X3×2 = (xpq)1�p,q�8. For each nonempty pattern xpq = ypq � upq , we define L(1) and L(2) as

L(1)(ypq � upq) = upq, L(2)(ypq � upq) = ypq.

Let the parameters be

A(1) = (4,1), A(2) = (−1,−3,−2.5),

B(2) = (−2,−2.6),
(
z(1), z(2).

) = (2,0).

The basic set of admissible local patterns B then consists of the following patterns:

−−+
++

+−+
−+

+−+
++

−+−
−−

−+−
+−

++−
−− .

Fig. 2 illustrates the graph representation of Y. A straightforward examination indicates that
(Y, φ(1), φ(2)) is a finite equivalence between Y (1) and Y (2) .
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Definition 3.9. A graph G is irreducible if for any two vertices v1, v2 of G there is a path starts from
v1 and terminates at v2. A labeled graph G = (G,L) is irreducible if its underlying graph is irre-
ducible. Moreover, a sofic shift Y is irreducible if Y has an irreducible labeled graph representation.

Definition 3.10. A graph G is essential if for every vertex v there are edges e1, e2 such that i(e1) = v
and t(e2) = v .

Proposition 3.7 motivates the determination of the conjugacy between Y (1) and Y (2) . A necessary
and sufficient condition thus follows for the case where Y (1) and Y (2) are irreducible sofic shifts.

Theorem 3.11. Suppose Y (1), Y (2) are irreducible sofic shifts. If G T is an essential graph, then Y (1) ∼= Y (2) if
and only if P S(1) = S(2) P , where

P =
⎛⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎠ .

Proof. Without loss of generality, we may assume that the vertex set of G T is V = {0,1,2,3}. Suppose
P S(1) = S(2) P . Define (∂Ψ,Ψ ) : G(1) → G(2) by

∂Ψ (v) =
{

3 − v, v = 1,2;
v, otherwise,

Ψ (e) = e′, where i
(
e′) = ∂Ψ

(
i(e)

)
, t

(
e′) = ∂Ψ

(
t(e)

)
(21)

for all v ∈ V, e ∈ E . Then ∂Ψ is one-to-one and onto. P S(1) = S(2) P asserts P T (1) = T (2) P and

T (1)(p,q) = T (2)
(
1 + ∂Ψ (p − 1),1 + ∂Ψ (q − 1)

)
, 1 � p,q � 4. (22)

That is, an edge e ∈ E infers another edge e′ with i(e′) = ∂Ψ (i(e)) and t(e′) = ∂Ψ (t(e)). Hence Ψ is
well defined, one-to-one and onto. This shows that (∂Ψ,Ψ ) is a graph isomorphism. Moreover, it can
be verified that [

∂Ψ (v)/2
] = τ (v), for v = 0,1,2,3.

For each e ∈ E ,

L(2)
(
Ψ (e)

) = α2[∂Ψ (i(e))/2]+[∂Ψ (t(e))/2] = α2τ (i(e))+τ (t(e)) = L(1)(e).

This demonstrates (∂Ψ,Ψ ) : G(1) → G(2) is a labeled-graph isomorphism. In other words, Y (1) ∼= Y (2) .
Conversely, suppose that Y (1) ∼= Y (2) . Since Y (1), Y (2) are irreducible and T (1) and T (2) are 0 − 1

matrices, there exists a conjugacy matrix D such that D S(1) = S(2)D and D is also a 0–1 matrix. Sim-
ilar as above, D defines a graph isomorphism (∂Ψ,Ψ ) : G(1) → G(2) . If ∂Ψ (0) �= 0, it comes immedi-
ately from D S(1) = S(2)D that ∂Ψ (0) = 1 and ∂Ψ (2) = 0. Assume that ∂Ψ (1) = 2 and ∂Ψ (3) = 3. It is
easily seen that L(2)(Ψ (2, i)) �=L(1)(2, i) for all 0 � i � 3, which gets a contradiction to D S(1) = S(2)D .
Another contradiction occurs for the case that ∂Ψ (1) = 3, ∂Ψ (3) = 2. This forces ∂Ψ (0) = 0. Repeating
the same procedures derive ∂Ψ (1) = 2, ∂Ψ (2) = 1, and ∂Ψ (3) = 3. In other words, D = P .

This completes the proof. �
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Fig. 3. For the case that G(1) is right-resolving while G(2) is not, we construct W (2) ≡ XGY (2)
such that ϕ(2) : W (2) → Y (2) is

finite-to-one, where GY (2) is a right-resolving labeled graph representation of Y (2) . After constructing W such that there exist
two finite-to-one factors ϕY : W → Y,ϕW (2) : W → W (2) , we get a common extension of Y (1) and Y (2) .

3.3.2. The case that some labeled graphs are not right-resolving
When L(1) and L(2) are both right-resolving, the common extension for Y (1) and Y (2) is the orig-

inal space Y. However, Y is no longer Y (1), Y (2) ’s common extension if either G(1) or G(2) is not
right-resolving. For this reason, we need to construct a real common extension W .

Theorem 3.12. Suppose either G(1) or G(2) is not right-resolving. If h(Y (1)) = h(Y (2)), then there exists finite
equivalence (W , φW (1) , φW (2) ) between Y (1) and Y (2) . Moreover, there exists an integral matrix F such that
F TG(1) = TG(2) F .

Proof. The proof is similar as the proof in [31]. We sketch the process for reader’s convenience. For
the simplicity, we assume that the underlying graph G T is essential. Since φX is right-resolving and
φY is not, the labeling LX on the original graph representation G T of W is right-resolving and LY on
G T is not. Using subset construction method we get a new graph, say GY , and a new labeling, we still
denote by LY for the simplification of notation, which is right-resolving. Moreover, the right-resolving
labeled graph GY = (GY ,LY ) still represents Y . Notice that the vertex set V(G T ) of G T is a proper
subset of the vertex set V(GY ). Let AGY be the transition matrix of GY with the same order as T ,
that is, the first four rows of AGY represent the same vertices as T .

Constructing a graph M = (V(M),E(M)) as follows. Suppose v1, v2 ∈ V(GY ) and there is an edge
in GY starts at v1 and terminates at v2, that is, AGY (v1, v2) = 1. If v1 is a vertex of G T , then {v1, v2}
is a vertex of M . For {v1, v2}, {v3, v4} ∈ V(GY ), there is an edge starts from {v1, v2} and stops at
{v3, v4} if and only if v3 ∈ v2. Note that v2 ∈ V(GY ) is a subset of V(G T ). It is easily seen that the
graph M is well defined.

Define ΦGT : V(M) → V(G T ) by ΦGT ({v1, v2}) = v1. Observe that if {v1, v2} is followed by {v2, v3}
in M , then v1 is followed by v1 in G T . Hence ΦGT is the vertex map of a graph homomorphism from
M to G T and induces φW ≡ (ΦGT )∞ : W̃ ≡ XM → W . It comes immediately that φW is a right-
resolving factor map.

Similarly, let ΦGY : V(M) → V(GY ) by ΦGY ({v1, v2}) = v2. This indicates φW Y ≡ (ΦGY )∞ is a left-
resolving factor map from W̃ to W Y ≡ XGY . Since GY comes from applying subset construction to
G T , XGY =(GY ,LY ) = Y .

This completes the proof. �
Remark 3.13. We mention that Proposition 3.6 can be treated as a special case of Theorem 3.12. Let
W and W (2) in Fig. 3 be Y at the same time. Then ϕY,ϕW (2) and the dash line between Y and W (2)

are the identity map. Additionally, ϕ(2) = φ(2) . Fig. 3 is then simplified as Fig. 1.

It is natural to ask whether, in Fig. 4, the dashed line between W (1) and W (2) can be replaced
with a solid line? To answer this question, we introduce the so-called factor-like matrix.



4580 J.-C. Ban et al. / J. Differential Equations 252 (2012) 4563–4597
Fig. 4. If neither G(1) or G(2) is not right-resolving, we construct W (1) ≡ XGY (1)
and W (2) ≡ XGY (2)

such that ϕ(1) : W (1) →
Y (1) and ϕ(2) : W (2) → Y (2) are both finite-to-one, where GY (1) and GY (2) are right-resolving labeled graph representation of
(G,L(1)) and (G,L(2)), respectively.

Definition 3.14. Given two integral matrices A ∈ Rm×m, B ∈ Rn×n . Suppose F ∈ Rm×n is an integral
matrix satisfies F A = B F . F is called factor-like if there is at most one 1’s in each row of F .

Proposition 3.15. Under the same assumption of Theorem 3.12. If F is factor-like, then there exists π : W (1) →
W (2) which preserves topological entropy.

Proof. Define π : W (1) → W (2) by π(x) = y if F (xi, yi) = 1 for all i ∈ Z. Since F is factor-like,
π is well defined and injective. It follows immediately that π preserves topological entropy since
h(W (1)) = h(Y (1)) = h(Y (2)) = h(W (2)). �
Example 3.16. Consider (11) with d = 1. Suppose the parameters are set up as

(
a(2)
−1,a(2)

0 ,a(2)
1

) = (−4,−3,−2),
(
b(2)

−1,b(2)
0 ,b(2)

1 , z(2)
) = (0,1,6.5,2.8),

and

(
a(1)
−1,a(1)

0 ,a(1)
1 , z(1)

) = (0,1.7,0.3),
(
b(1)

−1,b(1)
0 ,b(1)

1 , z(1)
) = (0,0,0,0.2).

Then the basic set of admissible local patterns are the following:

+−−
−−

+−−
+−

+−+
−−

+−+
+−

−+−
−+

−+−
++

−++
−+

−++
++

++−
−+

++−
++

+++
++ .

The transition matrix of the underlying graph G T is

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

0 0 0 0 0 1 0 1
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Fig. 5. The graph representation of the common extension in Example 3.16.

It follows that the vertices of the essential subgraph G ′ is {− + �−,+ − �+,+ + �+} ≡ {x1, x2, x3}
with transition matrix

T ′ =
(0 1 1

1 0 0
0 1 1

)
.

The transition matrix of GY (1) , indexed by {− + �−, {+ − �+,+ + �+}} ≡ {y1, y2}, is

H =
(

0 1
1 1

)
.

Similar as above example, we construct M with V(M) = {x1 y2, x2 y1, x3 y2} and E(M) = {(x1 y2, x2 y1),

(x1 y2, x3 y2), (x2 y1, x1 y2), (x3 y2, x2 y1), (x3 y2, x3 y2)}. Then W = XM is a common extension space of
Y (1) and Y (2) (see Fig. 5). Moreover,

F =
(0 1

1 0
0 1

)

satisfies T ′ F = F H is factor-like. Hence there exists a factor map π : Y → W (1) .

Proposition 3.15 asserts whether or not the dashed line between W (1) and W (2) in Fig. 4 can be
replaced by a solid line. It is natural to ask when the bottom dashed line would also be solid. The
following theorem indicates an affirmative answer.

Theorem 3.17. Along with the same assumption of Theorem 3.12. Suppose F is factor-like and Y (1), Y (2) are
shifts of finite type, then there exists π̄ : Y (1) → Y (2) which preserves topological entropy.

Proof. Suppose Y (1), Y (2) are shifts of finite type. Theorem 2.8 derives φ(1) and φ(2) are both con-
jugacy. Since F is factor-like, Proposition 3.15 indicates that there exists π : W (1) → W (2) which
preserves topological entropy. Define π̄ : Y (1) → Y (2) by π̄ (x) = (φ(2) ◦ π ◦ (φ(1))−1)(x). The proof is
done. �
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Aside from verifying the conjugacy of a map, the synchronization of paths in a labeled graph
provided a necessary and sufficient determination of the conjugacy. Suppose X is a shift space, w is
a word in X if there exist N ∈N and x ∈ X such that w = x j x j+1 . . . x j+N−1 for some j ∈ Z.

Definition 3.18. Let G = (G,L) be a labeled graph and let w be a word of XG . We say that w is a
synchronizing word for G if all paths in G presenting w terminate at the same vertex.

Theorem 3.19. (See [31, Theorem 3.4.17].) Suppose that S is a sofic shift with right-resolving labeled graph G .
If there exists N ∈ N such that all words of S of length N are synchronizing for G , then S is an N-step shift of
finite type.

Conversely, suppose S is an irreducible sofic shift and its minimal right-resolving presentation G has n
vertices. If S is a shift of finite type, then it must be (n2 − n)-step.

The next theorem follows immediately from Theorem 3.19.

Theorem 3.20. Along with the same assumption of Theorem 3.12. If F is factor-like from T GY (1)
to TGY (2)

and

all words of Y (1) of length N are synchronizing for some N ∈N, then there exists a factor map π : Y (1) → Y (2)

which preserves entropy.

Example 3.21. In Example 3.16, the essential graph for Y is

where

1 ≡ + + �+, 2 ≡ − + �−, 3 ≡ +− � +.

Recall that L(1)(11) =L(1)(13) = ++ indicates G(1) is not right-resolving. The minimal right-resolving
presentation of Y (1) is

It is easy to see that Y (1) is a shift of finite type via Theorems 3.19 and 2.8 demonstrates ϕ(1) : W (1) →
Y (1) is a conjugacy. The conjugacy of φ(2) can be derived analogously. Let π̄ = φ(1) ◦ π ◦ (φ(2))−1, we
have a factor map π̄ : Y (2) → Y (1) .

Since, in Example 3.16, there exists a factor map π̄ from Y (2) to Y (1) , it is natural to ask whether
π̄ is invertible. That is, is π̄ actually a conjugacy? To answer this question, we introduce a definition
first.

Definition 3.22. Let A and B be nonnegative integral matrices. An elementary equivalence from A to
B is a pair (R, S) of rectangular nonnegative matrices satisfying A = R S and B = S R . In this case we
write (R, S) : A ∼∼∼ B .
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A strong shift equivalence from A to B is a sequence of � elementary equivalences

(R1, S1): A = A0 ∼∼∼ A1, (R2, S2): A1 ∼∼∼ A2, . . . , (R�, S�): A�−1 ∼∼∼ A� = B

for some �. In this case we say that A is strong shift equivalent to B and write A ∼FS S B .

We now lay the groundwork for Williams’ criterion.

Theorem 3.23 (Classification Theorem). Suppose A and B are nonnegative integral matrices. X A and XB are
conjugate if and only if A and B are strong shift equivalent.

Example 3.24. Continued from Example 3.16. Set

E =
(

1 0 0
0 1 1

)
.

Then (E, F ) : H ∼∼∼ T ′ . Classification Theorem indicates W (1) is conjugate to Y. Example 3.21 shows
that φ(2) and ϕ(1) are conjugacies. Therefore Y (1) is conjugate to Y (2) .

Williams’ Classification Theorem asserts the determination of conjugacy between, in our cases,
W (1) and W (2) . It is still hard to find a strong shift equivalence between T GY (1)

and TGY (2)
. What we

find instead is a weaker relation called shift equivalence.

Definition 3.25. Let A and B be nonnegative integral matrices. A shift equivalence from A to B is a
pair (R, S) of rectangular nonnegative integral matrices satisfying

AR = R B, S A = B S, A� = R S, B� = S R

for some � ∈N. In this case we say that A is shift equivalent to B and write A ∼FS B .

It follows directly that A ∼FS S B implies A ∼FS B . A necessary and sufficient condition for the shift
equivalence between A and B is the isomorphism between dimension triples of A and B . Suppose A
is an n × n nonnegative integral matrix. The eventual range RA of A is defined by

RA =
∞⋂

k=1

Qn Ak,

where Qn is the n-dimensional rational space.

Definition 3.26. Let A be an n × n nonnegative integral matrix. The dimension group of A is

ΔA = {
v ∈ RA: vAk ∈ Zn for some k � 0

}
.

The dimension group automorphism δA of A is the restriction of A to ΔA such that δA(v) = vA for
v ∈ ΔA . We call (ΔA, δA) the dimension pair of A. Moreover, we define the dimension semigroup of
A to be

Δ+
A = {

v ∈ RA: vAk ∈ (
Z+)n

for some k � 0
}
.

We call (ΔA,Δ+
A , δA) the dimension triple of A.
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Theorem 3.27. (See [31, Theorem 7.5.8].) Let A and B be nonnegative integral matrices. A ∼FS B if and only
if (ΔA,Δ+

A , δA) is group isomorphic to (ΔB ,Δ+
B , δB). That is, there exists a group isomorphism θ : ΔA → ΔB

satisfying θ ◦ δA = δB ◦ θ and θ(Δ+
A ) = Δ+

B .

Instead of demonstrating a strong shift equivalence between two matrices, it is much easier to
determine whether their dimension groups are isomorphic to one another. Since T ′ and H in Exam-
ple 3.16 are strong shift equivalent (cf. Example 3.24), they must admit isomorphic dimension groups.
The following example gives an examination.

Example 3.28. Continued from Example 3.16. Examine that the eigenvalues of T ′ are 1±√
5

2 ,0 and its

eventual range RT ′ = Q(1 1 1) ⊕ Q(0 1 1), and the eigenvalues of H are 1±√
5

2 and its eventual range
RH =Q2. The dimension groups of T ′ and H are

ΔT ′ = {t1u1 + t2u2: t1, t2 ∈ Z} and ΔH = {s1 v1 + s2 v2: s1, s2 ∈ Z},

where u1 = (1 1 1), u2 = (0 1 1), v1 = (0 1) and v2 = (1 0). Moreover,

Δ+
T ′ = {t1u1 + t2u2: t1 � 0, t1 + t2 � 0}

and

Δ+
H = {s1 v1 + s2 v2: s1 � 0, s1 + s2 � 0}.

Define θ : ΔT ′ → ΔH as θ(t1u1 + t2u2) = t1 v1 + t2 v2. It follows θ is an isomorphism and θ ◦ δT ′ =
δH ◦ θ , θ(Δ+

T ′ ) = Δ+
H . Theorem 3.27 asserts T ′ ∼FS H which is a necessary condition for T ′ ∼FS S H .

For any two nonnegative integral matrices A, B , it is easier to find their Jordan forms J (A), J (B)

than to demonstrate the group isomorphism between their dimension triples. Although J (A) = J (B)

is not equivalent to A ∼FS B , it still provides a necessary condition.

Definition 3.29. Let A be an n×n integral matrix. The invertible part A× of A is the linear transforma-
tion obtained by restricting A to its eventual range. That is, A× :RA →RA is defined by A×(v) = vA.

Theorem 3.30. (See [31, Theorem 7.4.10].) Suppose A and B are nonnegative integral matrices. If A ∼FS B,
then J×(A) = J×(B), where J×(M) is the Jordan form of M× .

Example 3.31. Consider (11) with d = 1. Suppose the parameters are set up as

(
a(2)
−1,a(2)

0 ,a(2)
1

) = (5.1,8.4,1),
(
b(2)

−1,b(2)
0 ,b(2)

1 , z(2)
) = (0,3,3.5,−1.4),

and

(
a(1)
−1,a(1)

0 ,a(1)
1 , z(1)

) = (0,1.7,0.3),
(
b(1)

−1,b(1)
0 ,b(1)

1 , z(1)
) = (0,0,0,0,2).

Then the basic set of admissible local patterns are the following:
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−−−
−−

−−−
−+

−−−
+−

−−−
++

−−+
−−

−−+
−+

+−−
−+

−−+
+−

−−+
++

+−−
−−

+−−
+−

+−+
−−

+−+
−+

+−+
+−

−+−
−+

−+−
++

−++
−+

−++
+−

−++
++

++−
−−

++−
−+

++−
+−

++−
++

+++
−−

+++
−+

+++
+−

+++
++ .

The transition matrix of the underlying graph G T is

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Obviously G(1) and G(2) are not right-resolving. For simplicity, we number the vertices of G T by

−−
− ≡ 1,

−−
+ ≡ 2,

−+
− ≡ 3,

−+
+ ≡ 4,

+−
− ≡ 5,

+−
+ ≡ 6,

++
− ≡ 7,

++
+ ≡ 8.

Applying subset construction to G(1) and G(2) , the transition matrix T GY (2)
, indexed by

{
1,3,6,8, 1,2 , 3,4 , 5,6 , 7,8

} ≡ {x1, x2, x3, x4, x5, x6, x7, x8},

is

T GY (2)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly, the transition matrix T GY (1)
, indexed by

{
1,3 , 1,3,5,7 , 2,4 , 2,4,6,8

} ≡ {y1, y2, y3, y4},

is

T GY (1)
=

⎛⎜⎝
1 0 0 1
0 1 0 1
0 1 1 0

⎞⎟⎠ .
0 1 0 1
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Since the Jordan form of T GY (1)
, TGY (2)

are

J (T GY (1)
) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and J (T GY (2)

) =
⎛⎜⎝

0 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠

respectively, we have

J×(T GY (1)
) = (2) �=

(2 0 0
0 1 0
0 0 1

)
= J×(T GY (2)

).

Theorem 3.30 asserts Y (1) and Y (2) are not shift equivalent, but rather finitely equivalent. Let

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then TGY (2)
F = F TGY (1)

and the graph M is constructed as in Fig. 6.

Remark 3.32. Suppose h(Y (1)) = h(Y (2)). Let W (i) be a shift of finite type with finite-to-one factor
map ϕ(i) : W (i) → Y (i) for i = 1,2. We classify W (1) and W (2) into three classes: W (1) ∼FS S W (2) ,
W (1) ∼FS W (2) , and W (1) ∼F W (2) . Moreover,

W (1) ∼FS S W (2) ⇒ W (1) ∼FS W (2) ⇒ W (1) ∼F W (2).

See Fig. 7.

3.4. Existence of diamonds

For a two-layer cellular neural network, we classify the hidden space and the output space into
three classes whenever h(Y (1)) = h(Y (2)). However, numerical results show that mostly h(Y (1)) �=
h(Y (2)) [37]. Suppose h(Y (1)) �= h(Y (2)), then either φ(1) or φ(2) has a diamond.

Definition 3.33. Let G = (G,L) be a labeled graph. A graph diamond for L is a pair of distinct paths
in G having the same L-label, the same initial state, and the same terminal state.

Set φ =L∞ : XG → XG . A diamond for φ is a pair of distinct points in XG differing in only finitely
many coordinates with the same image under φ.

It is easily seen that if G is essential, then φ has a diamond if and only if L has a graph diamond.
Moreover, the transition matrix gives a sufficient criterion for the existence of diamond.
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Fig. 6. The graph representation of the common extension of Y (1) and Y (2) in Example 3.31.

Fig. 7. The relation between three classification.

Proposition 3.34. If φ(k) has a diamond, k = 1,2, then there exists n ∈ N such that (T (k))n(p, p) > 2 for
some p.

Proof. Since G T is essential, φ(k) has a diamond indicates that there are two paths ω,τ in G T with
the same initial and terminate vertices such that L(k)(ω) = L(k)(τ ). The irreducibility of G T asserts
a path υ in G with i(υ) = t(ω) and t(υ) = i(ω). Moreover, ωυ,τυ are two loops in G implies
(T (k))|ωυ|(1 + i(ω),1 + i(ω)) � 2. This completes the proof. �
Example 3.35. Suppose A = {0,1}. Let X ⊂ AZ be the set of binary sequences so that between any
two 1’s there are even number of 0’s. A labeled graph representation G for X as follows:
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The transition matrix for X is

T =
(

1 1
1 0

)
.

It is seen that T 3(1,1) = 3. Nevertheless, G has no graph diamond since it is right-resolving.

If either φ(1) or φ(2) has a diamond, those methods we use to determine whether there is a rela-
tion between Y (1) and Y (2) fail. A separate investigation to investigate such cases is in the preparation
stages.

4. Decoupling the solution spaces of simplified multi-layer cellular neural networks

This section extends the results in the previous section to simplified n-layer cellular neural net-
works for n � 2. We consider the simplified n-layer cellular neural networks as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(1)
i

dt
= −x(1)

i + a(1) y(1)
i + a(1)

r y(1)
i+1 + z(1),

dx(2)
i

dt
= −x(2)

i + a(2) y(2)
i + a(2)

r y(2)
i+1 + b(2)u(2)

i + b(2)
r u(2)

i+1 + z(2),

...

dx(n)
i

dt
= −x(n)

i + a(n) y(n)
i + a(n)

r y(n)
i+1 + b(n)u(n)

i + b(n)
r u(n)

i+1 + z(n),

where u(k)
i = y(k−1)

i for i ∈ Z and 2 � k � n. In this case, the ordering matrix Xn is indexed by
{− � − � · · · � −,− � − � · · · � +, . . . ,+ � + � · · · � +}. Suppose B ⊆ {−,+}Z2×n is a basic set of ad-
missible local patterns determined by a partition of parameter space and Y ⊆ {−,+}Z∞×n presents
the solution space. The system then induces a output space Y (n) and n − 1 hidden spaces Y (i) for
i = 1,2, . . . ,n − 1.

Let A= {α0,α1,α2,α3}, where

α0 = −−, α1 = −+, α2 = +−, and α3 = + + .

For i = 1,2, . . . ,n, define the labeling L(i) : B →A by

L(i)(y(n) y(n)
r � y(n−1) y(n−1)

r � · · · � y(1) y(1)
r

) = y(i) y(i)
r ,

where

y(n) y(n)
r � y(n−1) y(n−1)

r � · · · � y(1) y(1)
r ≡

y(n) y(n)
r

y(n−1) y(n−1)
r

...

y(1) y(1)
r

.



J.-C. Ban et al. / J. Differential Equations 252 (2012) 4563–4597 4589
Fig. 8. For three-layer cellular neural networks, suppose that G(1),G(2) , and G(3) are right-resolving labeled graphs. A natural
common extension of Y (1), Y (2) , and Y (3) is the original space Y. Notice that herein 1Y means identity map.

Suppose T is the transition matrix induced by B and G T is the graph representation of T . Theorem 3.3
indicates Y (i) is a sofic shift with labeled graph representation G(i) = (G T ,L(i)) and Y (i) = XG(i) for
i = 1,2, . . . ,n.

Section 2 studies, for the case n = 2, whether there is a factor map between Y (1) and Y (2) . This
section considers the following question.

Question 3. Suppose that 1 � i < j � n, does a factor map exist between Y (i) and Y ( j)?

For the rest of this investigation, we assume that any two spaces that derived from solution space
Y admit the same topological entropy unless otherwise stated.

4.1. Simplified three-layer cellular neural networks

First we consider the case n = 3. Let V = {0,1, . . . ,7} be the vertex set of G T , where

0 = − � − � −, 1 = − � − � +, . . . , 6 = + � + � −, 7 = + � + � +.

The labeling L(1),L(2),L(3) : E →A can be expressed explicitly by

L(1)(e) = α2τ (i(e))+τ (t(e)), where τ (c) := c mod 2, (23)

L(2)(e) = α2τ ([i(e)/2])+τ ([t(e)/2]), where [·] is the Gauss function, (24)

L(3)(e) = α2[i(e)/4]+[t(e)/4]. (25)

Suppose G(i) is right-resolving for all i. The following proposition is derived via an analogous
method to that in the proof of Proposition 3.6.

Proposition 4.1. Suppose that G(i) is right-resolving for 1 � i � 3. Then Y (1), Y (2) , and Y (3) are finitely equiv-
alent, and Y is a common extension of Y (1), Y (2) , and Y (3) .

Proof. Since G(1),G(2) are right-resolving, the shift of finite type Y is a common extension of Y (1) and
Y (2) . Similarly, G(2),G(3) are right-resolving asserts Y is also a common extension of Y (2) and Y (3) .
Therefore, Y is a natural common extension of Y (1), Y (2) , and Y (3) . See Fig. 8. �
Proposition 4.2. Under the assumption of Proposition 4.1. Suppose S(1), S(2) and S(3) is the symbolic transi-
tion matrix of G(1),G(2) and G(3) , respectively. Let
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P3,2 = {
(P ⊗ I2)diag(C p)1�p�4: C p = I2, J2, for all p

}
,

P2,1 = {
K −1((P ⊗ I2)diag(C p)1�p�4

)
K : C p = I2, J2, for all p

}
,

P3,1 = {
L−1((P ⊗ I2)diag(C p)1�p�4

)
L: C p = I2, J2, for all p

}
,

where

P =
⎛⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎠ , I2 =
(

1 0
0 1

)
, J2 =

(
0 1
1 0

)
,

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and ⊗ is the Kronecker product. If G is an essential graph, then Y (i) ∼= Y ( j) if and only if S( j) P j,i = P j,i S(i) for
some P j,i ∈ P j,i , where 1 � i < j � 3.

Proof. We show that Y (2) ∼= Y (3) if and only if either P3,2 S(2) = S(3) P3,2 for some P3,2 ∈ P3,2. The
proof of Y (1) ∼= Y (2) and Y (1) ∼= Y (3) can be done analogously.

Observe that L(2)(v, v ′) = L(3)(v + 1, v ′ + 1) for v, v ′ ∈ {0,2,4,6} ⊂ V . Let Vk = {2k,2k + 1}, k =
0,1,2,3. Set G̃ = (Ṽ, Ẽ) with Ṽ = {V 0, V 1, V 2, V 3} and (V , V ′) ∈ Ẽ if there exist v ∈ V , v ′ ∈ V ′ such
that (v, v ′) ∈ E . In other words, G̃ is obtained from G by bundling vertices carrying the same labels
under L(2) and L(3) . Theorem 3.11 demonstrates XG̃(2)

∼= XG̃(3) if and only if P SG̃(2) = SG̃(3) P . It can
be seen that Y (2) ∼= Y (3) if and only if XG̃(2)

∼= XG̃(3) and there are conjugacies in Vk , k = 0,1,2,3.
Therefore, Y (2) ∼= Y (3) if and only if P3,2 S(2) = S(3) P3,2 for some P3,2 ∈ P3,2. �

The solution space Y is a natural extension of Y (i) provided G(i) is right-resolving for i = 1,2,3. If
G(i) is not right-resolving for some i, we construct a real common extension via analogous argument
as in the proof of Theorem 3.12.

Theorem 4.3. Suppose G(i) is not right-resolving for some i. There exists a common extension shift of finite
type W of Y (1), Y (2), Y (3) and φY (i) : W → Y (i) such that φY (i) is a finite-to-one factor for i = 1,2,3.

Proof. Suppose G(1) is not right-resolving and G(2),G(3) are right-resolving. Let (GY (1) ,L(1)) be
a minimal right-resolving labeled graph obtained by applying subset construction on (G T ,L(1)).
Note that we still denote the labeling of GY (1) by L(1) for simplicity. The proof of Theorem 3.12
demonstrates that there is a common extension space W of W (1) and Y, and finite-to-one factors
ϕ̃1 : W → W (1), ϕ̃2 : W → Y. (GY (1) ,L(1)) and (G T ,L(2)) are right-resolving imply φ(1) : W (1) → Y (1)

and φ(2) : Y → Y (2) are both finite-to-one. Hence φ(i) ◦ ϕ̃i : W̃ → Y (i) is also a finite-to-one factor for
i = 1,2. Similarly, we derive φ(3) ◦ ϕ̃2 : W̃ → Y (3) is a finite-to-one factor map. Therefore the shift of
finite type W is a common extension space of Y (1), Y (2) , and Y (3) . See Fig. 9.

The other cases can be done by applying the construction in the proof of Theorem 3.12 repeatedly.
See Fig. 10. �

The finite equivalence between Y (1), Y (2) and Y (3) induces a dendrogram as, for example, in Fig. 10.
It is natural to ask which dashed lines could be solid lines. As we elucidate in the last section, this
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Fig. 9. If L(1) is not right-resolving, applying subset construction on (G,L(1)) induces a right-resolving labeled graph
(GY (1) ,L(1)). There exists a common extension space W of W (1) and Y. Since G(2),G(3) are right-resolving, W is a common
extension space of Y (i) for i = 1,2,3.

Fig. 10. The common extension space of Y (i) for none of L(i) is right-resolving.

depends on whether there exists a factor-like matrix which commutes with the transition matrices of
these spaces. This derives the following proposition.

Proposition 4.4. Under the same assumption of Theorem 4.3. Suppose Fij is an integral matrix which satis-
fies TGY (i) Fij = Fij TGY ( j) for 1 � i �= j � 3. If F i j is factor-like for some i, j, then there exists a factor map

πi j : W (i) → W ( j) that preserves topological entropy.

Suppose there exists a factor map πi j from W (i) to W ( j) for some i �= j. The question then follows
of whether there exists a factor map π̄i j from Y (i) to Y ( j) . Similar to the discussion in the last section,
π̄i j exists if ϕ(i) : W (i) → Y (i) has an inverse. Theorem 2.8 demonstrates that a necessary and sufficient
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condition for the existence of (ϕ(i))−1 is that Y (i) is a shift of finite type. Theorem 3.19 asserts that
an equivalent condition is to verify synchronizing words. This indicates the following proposition.

Proposition 4.5. Under the same assumption of Theorem 4.3 and Proposition 4.4. Adding that there exist
Ni ∈ N such that all words of Y (i) of length Ni are synchronizing for GY (i) . Then there exists a factor map from
Y (i) to Y ( j) which preserves topological entropy.

The previous section classifies hidden and output spaces into three types: strong shift equivalence,
shift equivalence, and finite equivalence. The same classification can be applied here to classify W (1) ,
W (2) , and W (3) . This leads to the following theorem.

Theorem 4.6. Suppose Y (1) , Y (2) , and Y (3) are derived from a simplified three-layer cellular neural networks
with labeled graph representation G(1) , G(2) , and G(3) . Then

(1) If G(i) is right-resolving and Y (i) is a shift of finite type for i = 1,2,3, then there exist factor maps π̄i j :
Y (i) → Y ( j) for 1 � i, j � 3.

(2) If G(i) is not right-resolving for some i, let GY (i) be a right-resolving labeled graph representation of Y (i) .
Suppose Y (i) is a shift of finite type for i = 1,2,3.

(i) If TGY (i) ∼FS S TGY ( j) for some i, j, then Y (i) ∼= Y ( j) .

(ii) If TGY (i) ∼FS TGY ( j) for some i, j, then there exists a factor map between Y (i) and Y ( j) provided there
is a factor-like matrix F which commutes with T GY (i) and TGY ( j) .

(iii) Otherwise, Y (i) is strictly finitely equivalent to Y ( j) .

4.2. Simplified multi-layer cellular neural networks

In general, consider a simplified n-layer cellular neural network for n � 3. The solution space Y
derives n sofic shifts Y (1), Y (2), . . . , Y (n) with labeled graph representation G(1),G(2), . . . ,G(n) .

Proposition 4.7. Suppose that G(i) is right-resolving for 1 � i � n. Then φ(i) : Y → Y (i) is a finite-to-one factor
map for each i.

Suppose that the transition matrix T is indexed by

− � − � · · · � −, − � − � · · · � +, , . . . , + � + � · · · � +.

Let P2,1 = {P }, where P is as defined in Theorem 3.11. For 1 � i < j � n and (i, j) �= (n − 1,n),
denote by K j,i the permutation matrix that bundles those vertices carrying the same label under L(i)

and L( j) . Take n = 3 for instance. Then K2,1 = K and K3,1 = L are defined in Proposition 4.2.
The following proposition extends Proposition 4.2 to the general case through the application of

mathematical induction. For brevity, we omit the proof.

Proposition 4.8. Under the assumption of Proposition 4.7. Suppose S(i) is the symbolic transition matrix of
(G,L(i)) for i = 1,2, . . . ,n. Let

Pn,n−1 = {
(Pn−1,n−2 ⊗ I2) · (C p)1�p�2n−1 : Pn−1,n−2 ∈ Pn−1,n−2, C p ∈ {I2, J2} for all p

}
(26)

and

P j,i = {
K −1

j,i Pn,n−1 K j,i: Pn,n−1 ∈ Pn,n−1
}
, 1 � i < j � n, (i, j) �= (n − 1,n). (27)

Then Y (i) ∼= Y ( j) if and only if S( j) P j,i = P j,i S(i) for some P j,i ∈ P j,i , where 1 � i < j � n.
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Fig. 11. A common extension space of Y (1), Y (2), . . . , Y (n) can be obtained iteratively.

Suppose G(i) is not right-resolving for some i. After applying subset construction we still have the
following theorem.

Theorem 4.9. Suppose G(i) is not right-resolving for some i. There exists a common extension shift of finite
type W of Y (1), Y (2), . . . , Y (n) and φ̃Y (i) : W → Y (i) such that φ̃Y (i) is a finite-to-one factor for each i.

Proof. Let (GY (i) ,L(i)) be the minimal right-resolving graph of (G T ,L(i)) for i = 1,2, . . . ,n. Note that
GY (i) = G T for those i’s such that (G,L(i)) is itself a right-resolving graph. Following the steps in

the proof of Theorem 3.12 we construct a common extension space W (1)
i of Y (i) and Y (i+1) for i =

1,2, . . . ,n − 1. The proof of Theorem 4.3 derive a common extension space W (2)
i of W (1)

i and W (1)
i+1

for i = 1,2, . . . ,n − 2. Moreover, W (2)
i is a common extension space of Y (i), Y (i+1) and Y (i+2) for i =

1,2, . . . ,n−2. Repeating the same process we get a common extension space W of Y (1), Y (2), . . . , Y (k) .
See Fig. 11. �

To elucidate the existence of a map between Y (i) and Y ( j) and the relation between W (i) and
W ( j) for some i, j, we can follow the flow chart described in Theorem 4.6. This informs whether
Y (i) can connect with Y ( j) . The next section extends the study to general multi-layer cellular neural
networks.

5. Structures in multi-layer cellular neural networks

The propositions and theorems we obtain in previous sections still hold for general multi-layer
neural networks. In this section, we only state the results instead of giving their explicit proofs.
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5.1. Two-layer cellular neural networks

First we consider a two-layer cellular neural network whose basic set of admissible local patterns
are of size k × 2, k � 3. For simplicity, we assume that each parameter is nonzero.

Suppose that k = 3, we embed our problem in the case that k = 4. In other words, suppose B ⊆
{−,+}Z3×2 . Let

B =
{

y(2)
0 y(2)

1 y(2)
2 y(2)

3

y(1)
0 y(1)

1 y(1)
2 y(1)

3

:
y(2)

0 y(2)
1 y(2)

2

y(1)
0 y(1)

1 y(1)
2

,
y(2)

1 y(2)
2 y(2)

3

y(1)
1 y(1)

2 y(1)
3

∈ B
}

.

Set up the order for each pattern � : {−,+}Z2×2 → {1,2, . . . ,16} by

�(y1 y2 � u1u2) = 8χ(y1) + 4χ(y2) + 2χ(u1) + χ(u2) + 1,

where χ : {−,+} → {0,1} is given by χ(−) = 0 and χ(+) = 1. This defines an ordering matrix whose
elements consist of 4 × 2 patterns.

Let Y (1) and Y (2) be the output space and hidden space extracted from the solution space Y. Define
two labeling

L(1)(y0 y1 y2 y3 � u0u1u2u3) = u0u1u2u3,

L(2)(y0 y1 y2 y3 � u0u1u2u3) = y0 y1 y2 y3.

Then G(i) = (G T ,L(i)) is the labeled graph representation of Y (i) for i = 1,2.

Theorem 5.1. Suppose Y (1) is the hidden space and Y (2) is the output space. Then G(i) is the labeled graph
representation of Y (i) and Y (i) = XG(i) for i = 1,2.

Define η : {−,+}Z2×2 → {−,+}Z2×2 and P4 ∈R16×16 by

η(y1 y2 � u1u2) = u1u2 � y1 y2,

P4(i, j) =
{

1, χ(y1 y2 � u1u2) = i and χ ◦ η(y1 y2 � u1u2) = j;
0, otherwise.

Let S(1) and S(2) be the symbolic transition matrices of G(1) and G(2) , respectively. The following
theorems are derived via an analogous method to the proof of the theorems in Section 3.3, and thus
we omit the proof.

Theorem 5.2. If G(1) and G(2) are both right-resolving, then Y (1) and Y (2) are finitely equivalent. Moreover,
Y (1) ∼= Y (2) if and only if S(1) P4 = P4 S(2) .

Theorem 5.3. Suppose either G(1) or G(2) is not right-resolving. Let (GY (1) ,L(1)), (GY (2) ,L(2)) be the minimal
right-resolving graph representation of Y (1) and Y (2) , respectively.

(a) There exists finite equivalence (W , φ̃Y (1) , φ̃Y (2) ) between Y (1) and Y (2) .
(b) If there exist E, F such that T GY (1)

= E F , TGY (2)
= F E, where T GY (1)

, TGY (2)
is the transition matrices of

GY (1) and GY (2) , respectively. Then W (1) ≡ XGY (1)
is conjugate to W (2) ≡ XGY (2)

.

(c) TGY (1)
∼FS TGY (2)

if and only if (ΔT G
Y (1)

,Δ+
T G

Y (1)
, δT G

Y (1)
) is isomorphic to (ΔT G

Y (2)
,Δ+

T G
Y (2)

, δT G
Y (2)

).

(d) If h(Y (1)) = h(Y (2)), then there exists integral matrices E, F such that T GY (1)
E = ETGY (2)

and TGY (2)
F =

F TG (1)
.

Y
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(e) If E is factor-like, then there exists a factor map π12 : W (1) → W (2) , where and similarly, if F is factor-like,
there exists a factor map π21 : W (2) → W (1) .

(f) Suppose, for instance, there exists a factor map π12 : W (1) → W (2) . If Y (1) is a shift of finite type, then
there exists π̄12 : Y (1) → Y (2) .

Suppose k � 3. Without loss of generality, we assume that k = 2� for some � ∈ N. If k is odd, then
we extend the size of the basic pattern to k + 1 as above. Hence the basic set of admissible local
patterns consists of patterns of size 2� × 2. Set up the order for each pattern by

�(y1 y2 · · · y2� � u1u2 · · · u2�) = 1 +
2�∑

i=1

(
22�−iχ(ui) + 24�−iχ(yi)

)
.

Similar as above, let Y (1) and Y (2) be the output space and hidden space extracted from the solution
space Y. Define two labeling

L(1)(y0 y1 · · · yk−1 � u0u1 · · · uk−1) = u0u1 · · · uk−1,

L(2)(y0 y1 · · · yk−1 � u0u1 · · · uk−1) = y0 y1 · · · yk−1.

Then G(i) = (G T ,L(i)) is the labeled graph representation of Y (i) and Y (i) = XG(i) for i = 1,2. Define

η̄ : {−,+}Zk×2 → {−,+}Zk×2 and Pk ∈ R22k×22k
by

η̄(y0 y1 · · · yk−1 � u0u1 · · · uk−1) = u0u1 · · · uk−1 � y0 y1 · · · yk−1,

Pk(i, j) =
⎧⎨⎩

1, �(y0 y1 · · · yk−1 � u0u1 · · · uk−1) = i and

� ◦ η̄(y0 y1 · · · yk−1 � u0u1 · · · uk−1) = j;

0, otherwise.

Let S(1) and S(2) be the symbolic transition matrices of G(1) and G(2) , respectively. We then have the
following theorem.

Theorem 5.4. If G(1) and G(2) are both right-resolving, then Y (1) and Y (2) are finitely equivalent. Moreover,
Y (1) ∼= Y (2) if and only if S(1) Pk = Pk S(2) .

The classification of Y (1) and Y (2) is similar as that in Theorem 5.3. We omit therefore the de-
scription.

5.2. Multi-layer cellular neural networks

This section considers multi-layer cellular neural networks whose basic patterns are of size k × n.
The foregoing elucidation infers that, without loss of generality, we may assume that k = 2� for some
� ∈ N. Suppose the basic patterns are ordered by χ : {−,+}Z2�×n → {1,2, . . . ,22n�} and Pk is defined
analogously as above. The solution space Y induces Y (i) for i = 1,2, . . . ,n. Similarly, we have labeling
L(i) for i = 1,2, . . . ,n. This leads us to the following theorem.

Proposition 5.5. Suppose S(i) is the symbolic transition matrix of G(i) = (G,L(i)) and G(i) is right-resolving
for i = 1,2, . . . ,n. Let

Pn,n−1;k = {
(Pn−1,n−2 ⊗ I2) · (C p)1�p�2n−1 : Pn−1,n−2 ∈ Pn−1,n−2;k,

C p is an � × � permutation matrix
}
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and

P j,i;k = {
K −1

j,i;k Pn,n−1;k K j,i;k: Pn,n−1;k ∈ Pn,n−1;k
}
, 1 � i < j � n, (i, j) �= (n − 1,n),

where K j,i;k is the permutation which bundles those vertices carrying the same label under L(i) and L( j)

and P2,1;k = {Pk}. Then Y (i) ∼= Y ( j) if and only if S( j) P j,i;k = P j,i;k S(i) for some P j,i;k ∈ P j,i;k, where
1 � i < j � n.

To discuss the relation between Y (i) and Y ( j) for i �= j, we follow the flow chart as in Theorem 4.6
(see Fig. 11). Then, the main results follow.

Theorem 5.6. Suppose Y (1), Y (2), . . . , Y (n) are extracted from an n-layer cellular neural network with labeled
graph representation G(1),G(2), . . . ,G(n) . If h(Y (1)) = h(Y (2)) = · · · = h(Y (n)), then

1. If G(i) is right-resolving and Y (i) is a shift of finite type for all i, then there exist factor maps π̄i j : Y (i) →
Y ( j) for 1 � i, j � n.

2. If G(i) is not right-resolving for some i, let GY (i) be a right-resolving labeled graph representation of Y (i) .
Suppose Y (i) is a shift of finite type for some i.

(i) If TGY (i) ∼FS S TGY ( j) for some i, j, then Y (i) ∼= Y ( j) .

(ii) If TGY (i) ∼FS TGY ( j) for some i, j, then there exists a factor map between Y (i) and Y ( j) provided there
is a factor-like matrix F which commutes with T GY (i) and TGY ( j) .

(iii) Otherwise, Y (i) is strictly finitely equivalent to Y ( j) .

6. Discussion

This elucidation investigates the relations between subspaces of the solution space of a multi-layer
cellular neural network. A small modification of the above procedure allows for decoupling the solu-
tion space of an n-layer cellular neural network into arbitrary k subspaces for 2 � k � n. The existence
of a factor map between two subspaces depends on whether there exists a factor map between their
covering spaces. Note that a covering space of a sofic shift is a shift of finite type. In other words,
to classify the subspaces of a solution space is equivalent to the classification of subshifts of finite
type induced by multi-layer cellular neural networks. It is known that shift equivalence cannot con-
clusively establish the conjugacy between two arbitrary subshifts of finite type [35,36]. We conjecture
that shift equivalence implies that two subshifts of finite type induced from a multi-layer cellular
neural network are conjugate.

Conjecture 1. Suppose Y is the solution space of a multi-layer neural network. Let Y (1), Y (2) be two subshifts
of finite type such that (Y, φ(1), φ(2)) is a finite equivalence between Y (1) and Y (2) . Then Y (1) is conjugate to
Y (2) if and only if Y (1) and Y (2) are shift equivalent.
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