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a b s t r a c t

An appropriate bid price is essential for winning a construction project contract. However, making an
accurate cost estimate is both time-consuming and expensive. Thus, a method that does not take much
time and can approximate a proper bid price can help a contractor in making bid-price decisions when
the available bid-estimation time is insufficient. Such a method can also generate a target cost and pro-
vide a cross-check for their bid prices that were estimated using a detailed process. This study proposes a
novel model for quickly making a bid-price estimation that integrates a probabilistic cost sub-model and
a multi-factor evaluation sub-model. The cost sub-model, which is simulation-based, focuses on the cost
divisions to save estimation time. At the same time, the multi-factor evaluation sub-model captures the
specific factors affecting the cost of each cost division. The advantages of the proposed model are dem-
onstrated by its application to three residential housing projects located in northern Taiwan. The steps for
applying this model to other contractors are also provided.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

An accurate estimation of the bid price for a construction project
is essential to securing the project contract and achieving a reason-
able profit. A detailed cost estimation process is both costly and
time consuming (PEH, 2008). However, in practice, the available
bid-estimation time is often insufficient (Akintoye & Fitzgerald,
2000). Thus, conducting comprehensive and detailed cost estima-
tions are not always possible. Thus, a method that does not take
much time and can approximate a proper bid price can help a
contractor in making bid-price decisions when the available bid-
estimation time is insufficient. Such a method can also generate
a target cost and provide a cross-check for their bid prices that
were estimated using a detailed process.

Although many cost estimating methods (such as the average-
unit-cost method, the cost-capacity factor estimation, and compo-
nent ratios) can quickly compute a total project cost (Barrie &
Paulson, 1992; Hendrickson & Au, 2003; Hong, Hyun, & Moon,
2011), they generally have two significant drawbacks in determin-
ing a reliable bid price. First, these methods focus on the level of
total project cost (i.e., they usually do not examine any details of
cost divisions or cost items) and generate estimates that can vary
widely in terms of accuracy. These methods are suitable for use
ll rights reserved.
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during the early phase of a construction project, such as in the con-
ceptual or schematic design phases, rather than during the bidding
phase. Second, these methods do not explicitly capture the factors
and characteristics of a construction project, such as the type of
retaining walls, building complexity, number of floors, and mate-
rial types, all of which influence project costs. When these project
factors are not systematically evaluated in the decision-making
process, bids are generally unreliable. Thus, a bid-price method
that estimates costs in detail per cost division and which considers
the factors that can influence project cost is preferred.

Therefore, this study developed an innovative model to
compute a project bid price by integrating a probabilistic cost
sub-model with a multi-factor evaluation sub-model. The simula-
tion-based cost sub-model focuses on the cost divisions (i.e., the
project cost is broken down into several cost divisions) to save esti-
mation time and reduce labor costs. In addition, the multi-factor
evaluation sub-model reflects the specific factors affecting the cost
of each cost division.

The remainder of this paper is organized as follows. Section 2
reviews previous research on bidding methods and parametric
estimating methods. The cost divisions for residential building
projects and the factors affecting these division costs are identified
in Sections 3 and 4. The proposed model is described in Section 5.
The experimental results from applying the model to three case
projects are presented in Section 6, and the steps for applying
the model to other construction companies are discussed in
Section 7. Finally, we discuss the results and indicate directions
for future research in Section 8.
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2. Previous research

2.1. Bidding methods

Most bidding research addresses the question of whether to bid
(Bageis & Fortune, 2009; Han & Diekmann, 2001; Kwaku &
Carleton, 1999; Lin & Chen, 2004; Oo, Drew, & Lo, 2007; Wanous,
Boussabaine, & Lewis, 2000) and what bid price (or bid markup)
is appropriate. This study is more focused on the second decision.
Current models for determining bid markups can be classified into
three types (Marzouk & Moselhi, 2003): statistical models; artifi-
cial intelligence-based models; and multi-criteria utility models.
In statistical models, for instance, Carr (1983) developed a general
bidding model that considers the influence of the number of bid-
ders on markup. Additionally, Carr (1987) demonstrated how com-
petitive bid analysis can include resource constraints and
opportunity costs. Dulaima and Shan (2002) investigated the fac-
tors influencing bid markup decisions of large- and medium-size
contractors in Singapore. Lowe and Parvar (2004) used a logistic
regression approach to modelling contractors’ decisions to bid.

Several bidding models that use techniques related to artificial
neural networks have been designed to support markup decisions
via a sequence of deep-reasoning steps (Li & Love, 1999; Moselhi,
Hegazy, & Fazio, 1993). Furthermore, as bid-related decisions are
highly unstructured and no clear rules exist for bidding decisions,
Chua, Li, and Chan (2001) devised a case-based-reasoning bidding
model. Liu and Ling (2003) described a fuzzy neural network based
approach to estimate the markup percentage. Additionally, Liu and
Ling (2005) investigated the factors considered by more successful
contractors in mark-up decisions. Christodoulou (2004) presented
a methodology for arriving at optimum bid markups in static com-
petitive bidding environments using neurofuzzy systems and mul-
tidimensional risk analysis algorithms.

Several criteria or factors guide bidders in determining how to
price their work in relation to estimated construction costs (Chao,
2007; Chua & Li, 2000; Dozzi, AbouRizk, & Schroeder, 1996; Dula-
ima & Shan, 2002; Seydel & Olson, 2001). For example, Dozzi et al.
(1996) applied a multi-criteria utility theory for bid-markup deci-
sions for construction projects. Seydel and Olson (2001) designed
an approach for incorporating multiple criteria into the bidding
decision. Moreover, Marzouk and Moselhi (2003) proposed a mod-
el that estimates the markup and evaluates the bid proposal using
multi-attribute utility theory and the Analytical Hierarchy Process.
Furthermore, Wang, Dzeng, and Lu (2007) used fuzzy integrals to
develop a multi-criteria evaluation model that reflects bidder pref-
erences regarding decision criteria. Chao (2007) adopted risk atti-
tude of the contractor and proposed a fuzzy logic model based
on determining the minimum bid markup with assessments of
chance of winning and loss risk.

In summary, these statistical models have difficulty of capturing
specific project characteristics (e.g., project complexity and market
conditions), whereas artificial intelligence-based models require
numerous training cases or rules that represent the bidding strat-
egies of individual bidders. Notably, multi-criteria evaluations are
more applicable to real-life situations than other models (Lai, Liu,
& Wang, 2002; Marzouk & Moselhi, 2003). Finally, existing models
typically evaluate bid markups or bid prices by focusing on the le-
vel of total bid price.
2.2. Parametric estimating methods

A parametric cost estimating method includes one or several
cost estimating relationships, between the cost (the dependent
variables) and the cost-governing parameters (the independent
variables) (Hegazy & Ayed, 1998; PEH, 2008). Parametric cost esti-
mating methods are often used by both contractors and govern-
ment bodies in the planning and budget stages of a project
(Hegazy & Ayed, 1998). This method is sometimes also used by
contractors to expedite cost estimates when detailed estimating
methods require inordinate amounts of time and resources and
are likely to produce similar results (PEH, 2008).

Several parametric estimation methods based on regression
analysis and neural networks have been suggested to improve
the accuracy of conceptual cost estimates (Gunduz, Ugur, & Ozturk,
2011; Sonmez, 2008). The regression technique allows a relatively
simple analysis to sort out the impact of the parameters on the cost
of the project (Karshenas, 1984; Lowe, Emsley, & Harding, 2006).
Neural networks based on artificial intelligence offer an alternative
approach to estimate costs of building projects (Kim, Seo, & Kang,
2005) and highway projects (Hegazy & Ayed, 1998). In addition,
some parametric estimating models also consider the level of
uncertainty associated with project costs (PEH, 2008; Sonmez,
2008). For instance, Sonmez (2008) integrated the regression anal-
ysis and the bootstrap resampling technique to develop a probabi-
listic and conceptual construction cost estimate. Although most
parametric estimating methods assess costs by focusing on the to-
tal project cost, Sonmez’s model can be used to produce the prob-
abilistic costs of the cost divisions. The produced cost distributions
were used to indicate the range of cost expectations, but they were
not used to directly support the bid-price decision, which was pref-
erably made based on a single point estimate. Thus, for the model
proposed in this study we developed a multi-factor evaluation sub-
model to assess the effects of various factors on the costs of the
cost divisions. Afterwards we generate a single point of bid price.
3. Cost divisions

3.1. Levels of project costs

The costs of a building construction project are generally orga-
nized according to four estimates which are based on different lev-
els of detail. Each estimate level is described as follows. The highest
level is the total bid price. The second level is the bid summary le-
vel or cost division level, which summarizes the various cost divi-
sions. Typical cost divisions include direct costs, such as site work,
concrete, construction equipment, and mechanical costs, and indi-
rect costs such as taxes, insurance, and overhead. Usually, the total
cost of a second-level cost division is the sum of the costs of several
third-level cost items. In this study, the total cost of a cost division
is defined as the product of a unit cost (dollar/square meter) and
the total floor area. (See Section 5.1.1 for further details.)

The third level is the cost item level. Each second-level cost divi-
sion is subdivided into smaller third-level cost items. For instance,
the cost items for the second-level site-excavation cost division are
the construction of slurry walls, pilings, and finished grading. The
cost of a cost item is equal to its unit cost multiplied by the quan-
tity of that item. The fourth level is the unit cost level. A unit cost in
this level is expressed as the cost required to complete a unit of
work associated with a cost item, such as the cost of constructing
a square meter of slurry wall. ‘‘Cost division’’ in this study means a
second-level cost division.
3.2. Cost divisions of residential housing projects

This study focuses on residential housing projects made of rein-
forced concrete (RC). According to the 36 projects completed by a
single contractor, ten cost divisions of construction costs for a res-
idential housing project are as follows: (1) foundation (represented
by C1); (2) structure (C2); (3) external finishes (C3); (4) internal fin-
ishes (C4); (5) doors and windows (C5); (6) elevator (C6); (7)



Table 3
Mean and standard deviation of unit costs (or costs or percentages) for each cost
division in historical cost data.

Cost division Mean of unit cost
(NTD/m2)

Standard deviation of unit cost
(NTD/m2)

1. Foundation 2235.5 1290.5
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mechanical/electrical/plumbing (MEP) (C7); (8) temporary facili-
ties (C8); (9) landscaping (C9); and, (10) markup (C10). Notably, in
this study, the cost division of temporary facilities (C8) includes
several indirect costs such as installing a temporary water supply
and electricity, field and home office overhead, insurance, inspec-
tion fees, and air-pollution control fees.
2. Structure 5312.4 1052.8
3. External

finishes
1578.2 633.0

4. Internal
finishes

3469.8 947.5

5. Windows 1211.9 621.6
6. MEP 3294.1 1619.0
7. Elevator 581.3 462.2

Mean cost (NTD) Standard deviation of cost (NTD)
8. Temporary

facilities
17,614,204.6 18,129,566.3

9. Landscaping 7,626,645.1 8,006,389.0

Mean% Standard deviation%
10. Markup 6.51% 2.86%
4. Factors

Many factors affect the unit cost (or cost) of a cost division. The
major factors affecting unit costs or total costs of the nine cost divi-
sions (C1–C9) are identified by analyzing the 36 completed projects
and interviewing two managers familiar with construction costs of
these residential housing projects (Table 1).

Take the foundation cost division as an example. The unit cost
of this division is dominated by four factors — ground improve-
ment (F1.1), retaining wall (F1.2), excavation method (F1.3), and
soil type (F1.4). Each factor is classified into different kinds of fac-
tor conditions. These factor conditions in the foundation cost divi-
sion are as follows.

� The ground improvement factor (F1.1) indicates whether a pro-
ject site requires ground improvement. Five factor conditions
are identified: no ground improvement (no cost effect);
improved via compaction; improved by well-point dewatering;
improved by consolidation; and, improved by soil replacement
(high cost effect).
� Retaining wall factor (F1.2) has three factor conditions: no

retaining wall (no cost effect); sheet-pile wall; and, slurry wall
(high cost effect).
� Excavation method factor (F1.3) has three factor conditions:

open-cut method (low cost effect); bottom-up method; and,
top-down method (high cost effect).
� Soil type factor (F1.4) has three factor conditions: gravel (low

cost effect), sand, and silt (high cost effect). Excavated gravels
and sand can be recycled, whereas silt must be dumped, which
is costly.

Table 2 shows the three factors influencing the markup percent-
age in the markup cost division (C10). These factors are market
environment (F10.1), company conditions (F10.2), and project con-
Table 1
Factors affecting unit costs or costs in the nine cost divisions.

Cost divisions Factors

1. Foundation F1.1 ground improvement; F1.2 retaining wall; F1.3 excavatio
2. Structure F2.1 concrete strength; F2.2 form types; F2.3 building comple
3. External finishes F3.1 number of floors; F3.2 form types; F3.3 material types of
4. Internal finishes F4.1 form types; F4.2 material types of floors; F4.3 material typ

unit
5. Windows / doors F5.1 building complexity; F5.2 window glass; F5.3 thickness o

types of doors
6. MEP F6.1 functions of equipment; F6.2 quality class of MEP; F6.3 r
7. Elevator F7.1 loading capacity; F7.2 quality class of elevator; F7.3 eleva
8. Temporary

facilities
F8.1 duration; F8.2 total floor area; F8.3 protection of nearby

9. Landscaping F9.1 sporting facilities; F9.2 entertainment facilities; F9.3 plan

Table 2
Factors affecting the markup percentage in the markup cost division.

Factors Sub-factors

F10.1 Market environment F10.1.1 availability of future projects; F10.1.2 economic
F10.2 Company conditions F10.2.1 capital availability; F10.2.2 current workload; F
F10.3 Project conditions F10.3.1 relationship with project client; F10.3.2 project
ditions (F10.3). The right side of Table 3 lists the sub-factors for
each factor. For example, the market environment factor consists
of four sub-factors: availability of future projects (F10.1.1); eco-
nomic conditions (F10.1.2); market competition (F10.1.3); and, la-
bor supply (F10.1.4). In F10.1.1, the markup will typically be low
such that a company remains competitive when very few projects
will be tendered in the near future. Conversely, markup may be
high when many projects will be available in the future; that is,
many opportunities exist. Further details regarding factors and fac-
tor conditions (Tables 1 and 2) can be found in Hsu (2004).

5. Proposed model

Similar to many other methods (Dozzi et al., 1996; Li & Love,
1999; Marzouk & Moselhi, 2003; Wang et al., 2007), the proposed
model is designed to improve the bid-price decision-making pro-
cess. The total cost of a construction project is the sum of the total
costs of all its cost divisions. The proposed method (Fig. 1) evalu-
ates the unit cost (or cost or percentage) of each cost division by
integrating a division-level probabilistic cost sub-model (see the
right-hand side of Fig. 1) and the multi-factor evaluation sub-mod-
n method; F1.4 soil types
xity; F2.4 number of floors; F2.5 floor height; F2.6 earthquake location
external walls, F3.4 floor height; F3.5 building complexity

es of internal walls; F4.4 floor height; F4.5 room area; F4.6 number of rooms in an

f window glass; F5.4 room area; F5.5 number of rooms in an unit; F5.6 material

oom area; F6.4 number of rooms in an unit
tor speed

buildings

ting; F9.4 other landscaping

conditions; F10.1.3 market competition; F10.1.4 labor supply
10.2.3 technology capability
risk; F10.3.3 project complexity; F10.3.4 completeness of tendering information



0

0.5

1.0

Si(1)

Si(1)+Si(2)

Si(1)+Si(2)+Si(3)

Si=Si(1)+…+Si(j)

Effect

0

Cumulative probability
1.0

Minimum
unit cost

Suggested 
unit cost

Unit cost

...

Maximum 
unit cost

.
Multi-factor evaluation sub -model Division-level probabilistic cost sub -model

Fig. 1. Proposed model of each cost division.

Table 4
Simulated minimum and maximum unit costs (or costs or percentages) for each cost
division.

Cost division Minimum unit
cost (NTD/m2)

Maximum unit
cost (NTD/m2)

1. Foundation 179.7 7165.2
2. Structure 2369.3 9291.0
3. External finishes 567.9 3846.7
4. Internal finishes 2160.7 6931.2
5. Windows 715.8 3492.5
6. MEP 993.7 9376.1
7. Elevator 0.0 2368.5

Minimum cost (NTD) Maximum cost(NTD)
8. Temporary facilities 7,398,300 91,964,500
9. Landscaping 0.0000 37,155,300

Minimum% Maximum%
10. Markup 0% 17.26%
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el (left-hand side of Fig. 1). The division-level probabilistic cost
sub-model uses a cumulative distribution to represent the possible
range of unit cost (or cost or percentage) for a particular cost divi-
sion. This type of distribution is used in order to take into consid-
eration the level of uncertainties when it comes to cost estimates,
and it is derived based on historical data from similar residential
housing construction projects. In addition, the minimum distribu-
tion value indicates the minimum unit cost (or cost or percentage)
of a particular cost division under best case scenario condition, and
vice versa for the maximum distribution value.

The multi-factor evaluation sub-model is then applied to reflect
the specific factor conditions. The factor conditions guide bidders
in determining how to price their work above the minimum unit
cost (or cost or percentage) for a cost division. After the unit cost
(or cost or percentage) of each cost division is assessed, total con-
struction costs can be calculated.

5.1. Division-level probabilistic cost sub-model

5.1.1. Total construction cost
In this investigation, total cost, CTot of a project is derived by

CTot ¼ ½construction cost� ð1þmarkupÞ� � ð1þ taxÞ
¼ ½ðC1 þ � � � þ Ci þ C8 þ C9Þ � ð1þ C10Þ� � ð1þ tÞ ð1Þ

where C1–C, are the costs of cost divisions (1)–(9), respectively.
Notably, C10 is the markup and is expressed as a percentage of total
construction cost. The value t is tax, which is a percentage (constant
value, usually 5% in Taiwan) of the sum of total construction cost
plus markup.

In assessing the costs of cost divisions (1)–(7) (i.e., C1–C7), the
cost of a cost division equals its unit cost (i.e., the cost required
to complete a unit of work associated with a cost division) multi-
plied by total floor area. That is,

Ci ¼ Ui � Q for i ¼ 1 � 7 ð2Þ

where Ui is unit cost of cost division i, and Q is total floor area. Thus,
for instance, the cost of division (1) (i.e., C1) equals U1 � Q.

By integrating Eq. (2) into Eq. (1), Eq. (1) can be rewritten as

CTot ¼ f½ðU1Q þ � � � þ U7QÞ þ C8 þ C9� � ð1þ C10Þg � ð1þ tÞ ð3Þ

Notably, the costs of temporary facilities (C8) and landscaping
(C9) are usually uncorrelated with total floor area and are highly
dependent on owner needs in individual projects. Thus, C8 and C9

in Eq. (3) are analyzed directly in terms of cost rather than unit
cost.

Finally, Eq. (3) is rewritten as follows to reflect the effect of
inflation on total construction costs:
CTot ¼ ½ðU1Q þ � � � þ U7QÞ þ C8 þ C9�
CCIyear

CCIave

� �
� ð1þ C10Þ

� �

� ð1þ tÞ ð4Þ

where CCIyear is the construction cost index of the analysis year for a
new project, and CCIave is the average construction cost index of the
years when historical projects were completed. In this study, CCIave

is 76.4 for 1994–2003 — the historical projects were finished in that
period. Notably, we assume the markup percentage (C10) is not af-
fected by inflation.

5.1.2. Historical cost data
The 36 residential housing projects located in northern Taiwan

are used as a historical database. All projects were completed by
one general contractor. As mentioned, all projects were all com-
pleted during 1994–2003. Some major characteristics of these pro-
jects are summarized as follows: (1) all were reinforced concrete
(RC) structures; (2) average total actual cost (including markup)
was about NT $ 295,464,995 (roughly US $8.9 million; US
$1 ffi NT $33); (3) average number of floors, 12; (4) average number
of underground floors, 2; and (5) average total floor area, 16,093
m2. Table 3 lists the means and standard deviations of unit cost
(or cost or percentage) for the ten cost divisions of these projects.

5.1.3. Probabilistic cost distribution
Uis (i = 1 � 7), C8 and C9 are variables in unit costs or costs. Addi-

tionally, C10 is a variable in percentage. In the proposed division-le-
vel cost model, each variable follows a Normal distribution
according to the calculated mean and standard deviation of unit
cost (or cost percentage). A simulation is conducted to generate a



Table 5
Effect values corresponding to various factor conditions in the foundation cost
division.

Factors Factor conditions Effect value
(Ei(j))

Ground improvement
(F1.1)

No ground improvement 0
Improved via compaction 0.2
Improved by well-point
dewatering

0.5

Improved by consolidation 0.8
Improved by soil replacement 1

Retaining wall (F1.2) No retaining wall 0
Sheet-pile wall 0.5
Slurry wall 1

Excavation method
(F1.3)

Open-cut method 0
Bottom-up method 0.5
Top-down method 1

Soil type (F1.4) Gravel 0
Sand 0.5
Silt 1

Table 6
General descriptions of three case projects.

Major characteristics Case project
I

Case project
II

Case project
III

Completion time Aug. 1999 Nov. 2000 Dec. 2004
Construction cost index 77.06 76.69 92.60
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cumulative distribution of unit cost (or cost or percentage) of each
cost division. A common simulation program, @Risk4.5, is used to
execute the simulation algorithm. This algorithm was imple-
mented on a Pentium 3 personal computer running Windows XP.
Generating each distribution 5000 times took approximately 3
minutes. Table 4 shows the simulated minimum and maximum
unit costs (or costs or percentages) of each cost division. Notably,
other methods can be used to produce such a cumulative distribu-
tion. For example, in simulating each cost division, a Beta statistical
distribution may be assumed based on the optimistic, most likely,
and pessimistic unit costs (or costs or percentages) generated from
historical cost data. Additionally, when simulation is unavailable, a
cumulative distribution can be generated using readily available
statistical tables with an assumed normal distribution (Moder,
Phillips, & Davis, 1983).

5.2. Multi-factor evaluation sub- model

The multi-factor evaluation model must identify all factors in
each cost division. Notably, the proposed method does not limit
the number of factors involved. As we assume the factors in a cost
division i are independent, the importance of each factor j is pair-
wisely compared with other factors to obtain the weight (Wi(j)) of
each factor j. The evaluation result of a factor j for a given cost divi-
sion i is a qualitative or quantitative value (e.g., factor condition)
that is mapped to a corresponding effect value (Ei(j)) to represent
the effect of a factor on unit cost (or cost or percentage) of a cost
division i. Multiplying the effect value (Ei(j)) by its weight (Wi(j)) ob-
tains a weighted effect value (Si(j) = Wi(j) � Ei(j)) of a cost division i.
The sum of all weighted effect values of factors is the expected ef-
fect value (Si = RSi(j)) of a cost division i. This process is repeated for
each cost division. The following subsections describe Wi(j), Ei(j) and
Si in detail.

5.2.1. Factor weights
The factors in each cost division are pair-wisely compared to

determine their importance or preferences. The scale of 1–9 is used
to rate the relative importance of pair-wise comparisons (Saaty,
1978). Scale values are as follows: 1, equally important; 3, slightly
more important; 5, strongly more important; 7, demonstratedly
more important; and, 9, absolutely more important. Scale values
2, 4, 6, and 8 denote the degree of importance between values 1
and 3, 3 and 5, 5 and 7, and 7 and 9, respectively. The matrix of
preferences is processed to determine the eigenvector correspond-
ing to the maximum eigenvalue of a matrix (Saaty, 1978). The sum
of weights in each cost division must equal 1.

Take the foundation cost division as an example. The prefer-
ences of the four factors (i.e., F1.1, F1.2, F1.3, and F1.4) are pair-wi-
sely compared (Fig. 2). The eigenvector of the matrix (Fig. 2) is
(0.0632, 0.6005, 0.2731, 0.0632) using the maximum eigenvalue
of 4.0498. That is, the weights of factors F1.1, F1.2, F1.3, and F1.4
are 0.0632, 0.6005, 0.2731, and 0.0632, respectively.

5.2.2. Effect values of factors
Again, the foundation cost division is used as an example. Table

5 summarizes the effect values (Ei(j)) corresponding to the factor
 F1.1 F1.2 F1.3 F1.4 

F1.1 1 1/8 1/5 1 

F1.2 8 1 3 8 

F1.3 5 1/3 1 5 

F1.4 1 1/8 1/5 1 

Fig. 2. Pairwise weighting matrix of factors in the foundation cost division.
conditions of factors F1.1, F1.2, F1.3 and F1.4. For instance, the fac-
tor conditions in the ground improvement factor (F1.1) are no
ground improvement, improved via compaction, improved by
well-point dewatering, improved by consolidation, and improved
by soil replacement. The corresponding effect values of these factor
conditions are 0, 0.2, 0.5, 0.8, and 1, respectively. For example,
when no ground improvement is needed, no cost is added; re-
stated, the effect value is zero. Similarly, the cost is highest when
good soil (improved weight-bearing strength) is purchased to re-
place the poor foundation soil. Thus, the effect value will be highest
(i.e., 1).

5.2.3. Weighted effect values of factors
Take the same foundation cost division as an example. In a given

project, suppose the factor conditions of ‘‘no ground improvement,’’
‘‘slurry wall,’’ ‘‘bottom-up method,’’ and ‘‘silt’’ are selected in factors
F1.1, F1.2, F1.3, and F1.4, respectively. The effect values (Ei(j)) of F1.1,
F1.2, F1.3, and F1.4 will be 0, 1, 0.5, and 1, respectively. The weighted
effect values (Si(j) = Wi(j) � Ei(j)) corresponding to factors F1.1, F1.2,
F1.3, and F1.4 will be 0 (=0 � 6.32%), 0.6005 (=1 � 60.05%), 0.1365
(=0.5 � 27.31%), and 0.0632 (=1 � 6.32%), respectively. Thus, the
expected effect value (Si = RSi(j)) for the foundation cost division will
be 0.8002 (=0 + 0.6005 + 0.1365 + 0.0632).

5.3. Integration of two sub-models

After evaluating the expected effect values (Si) of multiple fac-
tors for each cost division i, the method yields a suggested unit cost
(or cost or percentage) from the cumulative distribution for a cost
division i (right side of Fig. 1). After repeating the same process to
Construction duration
(months)

20 20 23

Total floor area (m2) 7363 4490 14,518
Number of floors 14 13 14
Floor height (m) 3.6 3.2 3.6
Room area (m2) 163.6 171.0 272.7
Number of rooms in an unit 4 4 4
Concrete strength 4000 psi 4000 psi 5000 psi
Retaining wall Slurry wall Slurry wall Slurry wall
Excavation method Bottom up Bottom up Bottom up
Soil type Silt Silt Silt



Table 7
Wi(j), Ei(j), Si(j) and Si for the nine cost divisions in case project I.

Cost division Factor Weight (Wi(j)) Effect value (Ei(j)) Weighted effect value (Si(j) = Ei(j) �Wi(j)) Expected effect value(Si = RSi(j))

1. Foundation F1.1 6.32% 0.0 0.0000 0.8002
F1.2 60.05% 1.0 0.6005
F1.3 27.31% 0.5 0.1365
F1.4 6.32% 1.0 0.0632

2. Structure F2.1 6.91% 0.5 0.0346 0.6618
F2.2 6.91% 1.0 0.0691
F2.3 3.08% 0.5 0.0154
F2.4 15.84% 0.6 0.0885
F2.5 23.59% 1.0 0.2359
F2.6 43.67% 0.5 0.2183

3. External finishes F3.1 3.46% 0.6 0.0194 0.6290
F3.2 6.66% 0.0 0
F3.3 54.87% 0.6 0.3292
F3.4 21.08% 1.0 0.2108
F3.5 13.93% 0.5 0.0696

4. Internal finishes F4.1 9.60% 0.0 0 0.5956
F4.2 44.89% 0.6 0.2693
F4.3 24.99% 0.6 0.1499
F4.4 14.06% 1.0 0.1406
F4.5 2.85% 0.3 0.0087
F4.6 3.62% 0.8 0.0271

5. Windows F5.1 7.77% 0.5 0.0138 0.4454
F5.2 17.36% 0.9 0.0593
F5.3 14.18% 0.5 0.0214
F5.4 4.76% 0.3 0.0331
F5.5 4.89% 0.8 0.1437
F5.6 51.05% 0.3 0.1741

6. MEP F6.1 59.78% 0.5 0.2989 0.5142
F6.2 26.04% 0.5 0.1302
F6.3 4.79% 0.3 0.0146
F6.4 9.40% 0.8 0.0705

7. Elevator F7.1 10.47% 0.5 0.0524 0.5001
F7.2 63.70% 0.5 0.3185
F7.3 25.83% 0.5 0.1292

8. Temporary facilities F8.1 46.29% 0.6 0.2671 0.5122
F8.2 48.15% 0.5 0.2173
F8.3 5.56% 0.5 0.0278

9. Landscaping F9.1 5.14% 0.5 0.0257 0.4465
F9.2 7.93% 0.5 0.0396
F9.3 69.11% 0.5 0.3456
F9.4 17.82% 0.2 0.0356

Table 8
Wi(j), Ei(j), Si(j) and Si for the markup division in case project I.

Factor Weight (Wi(j)) (%) Effect value (Ei(j)) Weighted effect value (Si(j)) Expected effect value (Si)

F10.1 Market environment 63.70 0.6 0.3900 0.6300
F10.1.1 26.22 1.0 0.2622
F10.1.2 56.50 0.3 0.1695
F10.1.3 11.75 1.0 0.1175
F10.1.4 5.53 1.0 0.0553
F10.2 Company conditions 10.47 0.9 0.1000
F10.2.1 19.98 1.0 0.1998
F10.2.2 68.33 1.0 0.6833
F10.2.3 11.69 0.5 0.0584
F10.3 Project conditions 25.83 0.5 0.1400
F10.3.1 8.86 1.0 0.0886
F10.3.2 23.89 0.5 0.1194
F10.3.3 23.89 0.5 0.1194
F10.3.4 43.37 0.5 0.2168
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obtain the unit cost (or cost or percentage) of each cost division, Eq.
(4) is then applied to compute project total bid price.

6. Case studies

6.1. Description of case projects

The proposed method is applied to three residential housing
projects — projects I, II, and III) — all of which were located in
northern Taiwan. These case projects and the aforementioned 36
projects were all completed by the same contractor. Table 6 lists
the major characteristics of the three case projects. For example,
project I is made of RC, has 14 floors and 3 underground floors,
and a total floor area of roughly 7363 m2. Project I, which was com-
pleted in mid-1999; took about 20 months to complete. A cost
manager who was fully involved in the bidding process for these
three projects provided input for application of the proposed meth-
od. The following subsections examine evaluation results.
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Fig. 3. Unit cost suggested for the foundation cost division in case project I.

Table 9
Suggested unit cost (or cost or percentage) of each cost division in case project I.

Cost division Expected effect value (Si) Suggested unit cost (NTD/m2) Suggested cost (NTD) Suggested cost considering CCI (NTD)

1. Foundation 0.8002 3322.3 24,461,430 24,674,361
2. Structure 0.6618 5751.3 42,345,672 42,714,280
3. External finishes 0.6290 1786.3 13,152,170 13,266,656
4. Internal finishes 0.5956 3698.9 27,234,261 27,471,329
5. Windows 0.4454 1126.8 8,296,403 8,368,621
6. MEP 0.5142 3351.5 24,676,424 24,891,227
7. Elevator 0.5001 581.3 4,279,996 4,317,252
8. Temporary facilities 0.5122 18,166,354 18,324,488
9. Landscaping 0.4465 6,552,430 6,609,467

Suggested% Suggested%
10. Markup 0.6300 7.43% 7.43%

Note: CCI is construction cost index; Average CCI is 76.4 for 1994–2003; CCI is 77.06 in 1999.

Table 10
Evaluation results of three case studies.

Case project I Case project
II

Case project
III

Actual bid price (a) $186,493,993 112,570,700 455,501,682
Suggested bid price (b) $192,481,864 113,701,379 460,398,206
Difference ((b) 	 (a)) $5,987,871 1,130,679 4,896,525
Difference in% ((b) 	 (a)/

(a))
3.21% 1.00% 1.08%
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6.2. Evaluation results for project I

Tables 7 and 8 present the calculated weights, effect values,
weighted effect values and expected effect values for each cost
division by applying the proposed multi-factor evaluation model.
For instance, the expected effect value (Si) for the foundation cost
division is 0.8002 (Table 7), and the expected effect value for the
markup division is 0.63 (Table 8).

The expected effect value (Si) of each cost division i is then uti-
lized to determine a suggested unit cost (or cost or percentage)
from the cumulative distribution i. For instance, the suggested unit
cost of the foundation cost division is NT $3322.30/m2 based on the
expected effect value of 0.8002 (Si) (Fig. 3). Similarly, the unit costs
(or costs or percentages) for the other cost divisions can be deter-
mined (left side of Table 9). The details of the evaluation results can
be found in Hsu (2004).

The suggested cost of each division can be computed by multiply-
ing unit cost by total floor area (7362.8 m2). The right side of Table 9
summarizes the suggested cost considering the construction cost
index for each cost division. Finally, based on the suggested costs
of divisions (1)–(9) and the suggested percentage for the markup
division, the suggested total cost using Eq. (4) is NT $192,481,864.
Actual bid price (including costs and markup) for project I was NT
$186,492,943. Thus, total bid price approximated by the proposed
model is roughly 3.21% (=192,481,864	186,492,943/186,492,943)
higher than actual project bid price.
6.3. Evaluations of case projects II and III

The proposed method was also applied to projects II and III. The
right side of Table 10 shows the computational results for the two
projects. The suggested total bid prices are around 1.00% and 1.08%
higher than the actual bid prices of projects II and III, respectively.
7. Steps in applying the model to other companies

Fig. 4 presents the steps in applying the proposed model to
other construction companies for estimating a bid price for a par-
ticular project type. These steps are as follows. First, a company
must prepare a cost sub-model; that is, a cost database of a partic-
ular project type (e.g., warehouse projects) must be established
(Step 1.1). In Step 1.2, the mean and standard deviation of the unit
cost (or cost or percentage) of each cost division must be identified.
In Step 1.3, the cumulative distribution of unit cost (or cost or per-
centage) of each cost division must be determined using @Risk
simulation or a statistical table of Normal distribution.

Second, a company must generate a multi-factor evaluation
sub-model of that particular project type. In Step 2.1, the factors
and factor conditions affecting the unit cost (or cost or percentage)
of each cost division must be identified. In Step 2.2, the effect val-
ues of factor conditions must be specified. In Step 2.3, the factor
weights of each cost division should be given based on pairwise
comparisons between factors.

Finally, with the cost sub-model and multi-factor evaluation
sub-model established, a company can estimate the bid price of a
new project via Steps 3.1–3.5 (Fig. 4). This model can be imple-



Fig. 4. Steps in applying the proposed model to other construction companies.
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mented easily in a computerized environment using such tools as
spreadsheets. In such a computerized environment, obtaining the
bid price of a new project requires only a few hours. However, a
company must establish several models (with a different cost data-
base, factors, and factor conditions) to deal with different project
types.

8. Conclusions

The proposed model generates reliable results that are 3.21%,
1%, and 1.08% different from the actual bid prices of projects I, II
and II, respectively. This model is innovative in two significant
ways. First, the cost sub-model is focused on the level of the cost
divisions rather than on the level of the total bid price. In addition,
since the project costs are usually uncertain (i.e., represented by a
cumulative distribution of project costs), the proposed cost sub-
model fits real-world practices more closely than the existing mod-
els (Wang et al., 2007). Second, incorporating the effects of various
factors on the cost of the cost divisions can systematically capture
the bid-price decision-making process. In general, the model can
suggest an approximate bid price in a rather short period of time,
allowing contractors to quickly make a bid-price decision, espe-
cially when sufficient estimation time is not available, or to
cross-check their bid price based on a detailed estimation process.
This model can also be easily applied to other types of projects and
be implemented by most construction companies.

The evaluation results of the three case studies were presented
to two cost-estimating managers of the contractor who provided
the historical cost data for this study. Overall, they appreciated
the evaluation results and the strengths of our proposed model.
They believe that the model will assist contractors with verifying
the accuracy of their bid price calculated according to the conven-
tional detailed estimating process. They also agreed that the model
was helpful for approximating the project value and to decide
whether or not to bid for a given project. However, they also indi-
cated that they would be reluctant to use the bid price obtained by
our proposed model directly for submission because they were not
familiar with probabilistic estimating techniques. The contractor’s
comment regarding their unfamiliarity with probabilistic estimat-
ing techniques is consistent with the study conducted by Akintoye
and Fitzgerald (2000). Their comment suggests that academic
researchers need to promote the advantage of probabilistic esti-
mating by reporting much more real-world case studies and gain
the confidence of the contractors.

Subsequent research projects are as follows. First, like several
other bidding models (Carr, 1987; Chua et al., 2001), the proposed
model should be extended to derive a bid price that maximizes the
probability of being awarded the contract. Second, computeriza-
tion will markedly reduce the time needed to execute the model.
Third, the model can be applied to other projects for further refine-
ment (e.g., refining the effect values shown in Table 5). Fourth, the
parametric range estimating of cost distribution suggested by Son-
mez (2008) may be applied and substitute the probabilistic cost
sub-model used in this study.
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