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Effective disaster prediction relies on using correct disaster decision model to predict the disaster occur-
rence accurately. This study proposes three effective debris-flow prediction models and an inference
engine to predict and decide the debris-flow occurrence in Taiwan. The proposed prediction models
are based on linear regression, multivariate analysis, and back-propagation networks. To create a
practical simulation environment, the decision database is the pre-analyzed 181 potential debris-flows
in Taiwan. According to the simulation results, the prediction model based on back-propagation networks
predicted the debris flow most accurately. Moreover, a Real-time Mobile Debris Flow Disaster Forecast
System (RM(DF)2) was implemented as a three-tier architecture consisting of mobile appliances, intelli-
gent situation-aware agents and decision support servers based on the wireless/mobile Internet commu-
nications. The RM(DF)2 system provides real-time communication between the disaster area and the
rescue-control center, and effectively prevents and manages debris-flow disasters.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to Taiwan’s distinctive location on the seismic belt, debris-
flow disaster prediction and notification has become an urgent task
for Taiwan authorities. To build disaster-prevention mechanisms,
the government is now actively promoting national disaster pre-
vention programs. Damage to slopelands caused by earthquake
has lowered the threshold of debris-flow occurrence year by year.
If the area with a slope greater than 15� exceeds 3 hectares, then
serious debris-flow disasters may easily occur and some areas near
mountains were particularly severely hit by mass debris flows
(Shieh, Chen, Tsai, & Wu, 2009). The authorities concerned there-
fore spent significant amounts of money setting up a debris-flow
monitoring and detecting system. Nevertheless, the established
monitoring and detecting stations often break down, and the accu-
racy rate is below 30% (Tamotsu, 2002). In this way, the detection
results are only used as references for studies, rather than for real-
time disaster prevention. Moreover, debris flows often destroy
communication lines, paralyzing communication systems. As a re-
sult, setting up an effective real-time debris-flow disaster preven-
tion and notification system without the limit of time and space
has become an urgent task for the government.
ll rights reserved.
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Taiwan’s dense population accelerates the development of slope-
lands. Therefore, debris-flow disasters extend to the over-developed
slopelands. For instance, in 2003, Typhoon Xangsane brought floods
and mudflows to the residential areas on Xizhi’s mountaintops.
Some residential regions, such as the slopelands which aggregate
dense population and most hilly areas in Nantou County, have been
equipped with communicative infrastructures. In these areas, easy-
to-carry information and communication equipments, such as PDAs
combined with cellphones, can be used for real-time multimedia
disaster information transmission, including data, sounds and
photos, as well as disaster decision and prevention.

In this study, a Real-time Mobile Debris-Flow Disaster Forecast
System (RM(DF)2) was designed to achieve the prediction and guard
against of debris-flow disasters. In RM(DF)2, users can apply a PDA
or other handheld devices to input the information of the related
disaster region and send the information back to the decision sup-
port system of the rescue center via Global System for Mobile Com-
munications (GSM), General Packet Radio Service (GPRS), Universal
Mobile Telecommunications System (UMTS), or Long Term Evolution
(LTE) networks for disaster analysis. This study proposes three strict
debris-flow mathematical analysis models based on (1) multiple
linear regression, (2) multivariate analysis and (3) back-propaga-
tion network. Selecting appropriate disaster factors is the most
important part of setting up a debris-flow prediction model. The
correct selection of mudflow disaster factors can improve the accu-
racy of prediction model and then predict precisely the debris-flow
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recurrence. The chosen disaster factors in this study are classified as
non-real-time factors and real-time factors.

(i) Non-real-time factors result from long-term environmental
changes, including effective watershed, effective channel
length, effective channel slope, and the rocks in the effective
watershed.

(ii) Real-time factors can lead to immediate hazards. Such fac-
tors include the collapsed area within the effective
watershed, effective accumulated precipitation, effective
rainfall intensity, and vegetation index.

These disaster factors were extracted by using GIS and RS tech-
nology. Additionally, the accuracy of each debris-flow prediction
model was examined herein by analyzing the historical indices of
the 181 potential debris-flow hazardous torrents in Nantou
County, Taiwan. Then, the best prediction model was chosen for
precise and objective debris-flow disaster prediction.

This study has seven sections. Section 2 describes the relevant
references and their advantages and disadvantages. Section 3 de-
scribes the configuration of the debris-flow disaster factor database.
The selection and extraction of the occurring factors of debris-flow
disasters are the main discussion in this section. Section 4 presents
the architecture of the proposed debris-flow prediction model.
Section 5 presents the analysis of three prediction models. Section
6 presents the implementation of the RM(DF)2 system. The final
section draws a conclusion and suggests subjects for future research.
2. Related work

Debris-flow disaster notification and warning systems are typi-
cally divided into contact and non-contact alarm models (Wei, Gao,
& Cui, 2006): (1) Contact alarm models use debris-flow transmis-
sion and sensing equipment to generate the alarm signals. (2)
Non-contact alarm are classified into three types. (i) Image moni-
toring alarms use cameras to identify debris flows. However, this
alarm is restricted to the weather and light conditions. (ii) Super-
sonic bit alarms use supersonic monitoring instruments to detect
debris flows. The alarm produces a warning when the test value
reaches a predetermined warning value. (iii) Debris-flow geoacou-
stic alarms produce alarm signals by sensing the special geoacou-
stic wave formed by debris-flow movement. Wei et al. proposed
the disaster mitigation decision support system, which uses mass
instruments to conduct debris-flow disaster prevention and test-
ing. However, too many potential debris-flow hazardous torrents
exist, meaning that the mechanical equipment requires adjust-
ment and maintenance at any moment. In other word, performing
the disaster prevention tasks would cost a fortune.

Cheng proposed the following classes of debris-flow model: (i)
periodicity, (ii) randomness, and (iii) near periodicity (Cheng,
2002). Cheng’s debris-flow occurring models mainly relate to the
random events caused by rainstorms. The scale of occurrence is rel-
evant to the rainfall and the quantity of screes accumulated in the
valley. Cheng also found that the near-periodicity of debris-flow
occurrence is closely linked to the local climate. However, the accu-
rate occurring timing is always hard to predict precisely. A sudden
heavy rain may produce a severe debris-flow disaster. Therefore,
the debris-flow occurring model factor parameters should be
strictly and carefully defined to enhance the prediction accuracy.

In the study of Chang et al. mechanical vision was used to assess
the occurrence of mudflows and give warning signals (Chang,
Huang, & Lee, 2005). Chang et al.’s study integrates machinery,
electronics, optics and computers to assess the following four im-
age processes: (i) moving objects, (ii) the wave front of debris
flows, (iii) objects in the stream on the scene and (iv) the grain
of debris-flows and floods. First, the image bits are transformed
and de-speckled. The distinctive objects are separated from the
background image to be compared with the previous one and
checked. Then, the signals are transformed into readable messages
or data to measure the disaster condition and achieve an early
warning of debris-flow disasters. However, the image processing
method requires leased lines and high bandwidth for photo trans-
mission. Chang et al.’s system has a high setup cost, and most
images cannot be easily distinguished among the noise factors.

Both Yu’s study of slump-mud-flow forecasts (Yu, 2002) and
Tan’s study of ‘‘the distribution of mudflow channel critical rainfall
line’’ (Tan, Luo, & Wang, 2000) use rainfall parameters, including
rainfall and rainfall intensity, to assess the possibility of debris-
flow occurrence. Professors Yu and Tan also emphasize that rainfall
parameters are important debris-flow occurrence factors. How-
ever, debris-flow occurrence is not only determined by a single
rainfall factor. Other relevant factors should also be considered to
improve the accuracy of the inference.

Chen took the 528 potential debris-flow hazardous torrents in
northern Taiwan as sample spaces. Chen analyzed the hazard levels
of debris-flow occurrences (Chen, 2002) based on rainfall factors,
including hourly rainfall and effective accumulated rainfall, and
used simple fuzzy theory to assess the possibility of debris-flow
disasters resulting from potential debris-flow hazardous torrents.
Chen undertook fieldwork, and then used fuzzy theory and previous
experiences to create a hazard level analysis of the potential debris-
flow hazard torrents. The result of the analysis was charted and
taken as early warning suggestions. Chen’s study focused on the
complete collection of information, making the analytical steps
complicated and time-consuming. The proposed fuzzy theory sets
up the assessing model by only using the case-inference method,
and gives early warnings in spread sheets. Chen’s study does not ap-
ply information technology effectively enough.

Liu used hydrological and physiographical factors to evaluate
the potential energy of debris-flow occurring from the sample tor-
rents, which can be considered as the rainfall threshold for a deb-
ris-flow early warning (Liu, 2000). Lui’s study consists of three
steps. (i) Choose a sample stream, list its characteristics, and deter-
mine the related potential debris-flow factors by statistical inspec-
tion. (ii) Combine the results of precipitation analysis to formulate
the rainfall threshold for debris-flow occurrence. (iii) Compare the
threshold rainfall line of debris-flow occurrence with the fre-
quency cycle of rainstorm recurrence, and evaluate the hazard le-
vel. Although this study infers the prediction formulae of the
debris-flow line threshold and debris-flow occurrence, the maxi-
mum accuracy of the prediction formulae is only 80%. Additionally,
the prediction formulae are only suitable for some streams. The
reliability of the prediction formulae requires further discussion.

Considering the flaws found in the above studies, the design
principles and functions of RM(DF)2 are as follows.

(1) The proposed system requires only cheap portable devices,
e.g., a PDA and a cell phone, and not a high-priced hardware
system.

(2) The occurrence of debris flows belongs to a random event.
Therefore, the debris flows should be evaluated by real-time
functions and immediate on-line analysis. If users are dis-
connected, then they can use the regulation and case infer-
ence engine input on a PDA to aid assessment (George &
William, 1999; Huang, 2000).

(3) To predict and assess the occurrence of debris flows, three
numerical analysis models are considered, (i) multiple linear
regression, (ii) multivariate analysis and (iii) back-propaga-
tion network. Additionally, a precise numerical inference,
which is quicker and more objective than pattern recogni-
tion, was conducted on the selected factors.
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(4) The choice of debris-flow danger factors is the most impor-
tant part in the foundation of the debris-flow prediction
model. The appropriate choice of disaster factors can
improve the accuracy of the prediction model and help pre-
dict the recurrence of debris-flow disasters. The disaster fac-
tors chosen in this study are divided into non-real-time
factors and real-time factors. (i) Non-real-time factors are
derived from long-term environmental changes. For
instance, the rocks in the effective watershed is a non-real-
time factor. (ii) Real-time factors can lead to immediate haz-
ards. Effective rainfall intensity is an example of a real-time
factor. Decision strategies and assessment of related danger
factors are discussed in Sections 4 and 5.

3. The setup of the database of debris-flow disaster factors

This study adopted multiple linear regression, multivariate
analysis and back-propagation network for regression analysis,
and examined these three approaches to obtain the optimal analy-
sis model. The accuracy of the prediction model is dependent on
the selection of debris-flow danger factors and the establishment
of the database. Related research methods and foundation strate-
gies are described below.

3.1. The selection of debris-flow danger factors

In 2000, 181 streams located in the effective watersheds with
slope greater than 15� in Nantou County were defined as potential
debris-flow hazardous torrents. In 2001, Typhoon Toraji brought
debris flows to all 181 potential debris-flow hazardous torrents.
Fig. 1. SPOT satellite images (conducting OR pe
This study utilized the data and information of the debris flows
in the 181 hazardous torrents as research samples. The choice of
debris-flow danger factors is the most significant part in the foun-
dation of a real-time debris-flow prediction model. The correct
choice can make the prediction model achieve expected effects
and precisely predict the occurrence of debris-flow disasters. A
debris-flow is defined by three major conditions, (i) large water
supply, (ii) large channel deposits and material sources, and (iii)
steep slope conditions (Shieh et al., 2009).

The chosen danger factors in this study are divided into non-
real-time factors and real-time factors. (i) Non-real-time factors
are derived from long-term environmental changes, and therefore
we require a long-range monitor to determine the changes. Non-
real-time factors include (1) the effective watershed, (2) the length
of the effective channel, (3) the slope of the effective channel and
(4) the rocks in the effective watershed. (ii) Real-time factors result
from immediate changes in disaster environment, and include (1)
the collapsed area within the effective watershed, (2) effective
accumulated precipitation, (3) effective rainfall intensity and (4)
the vegetation index. Except the uncertainty of the factor, the col-
lapsed area within the effective watershed, the real-time informa-
tion of effective accumulated precipitation and effective rainfall
intensity can be achieved from the environmental cognition agent
designed in the system. The change potential of the disaster envi-
ronment can also be monitored in real time by using the messages
from the real-time factors.

This study applied satellite Remote Sensing (RS) technology to
calculate the effective area. In RS technology, the radiation values
of Infrared (IR) wave band and NDVI reflected from the earth sur-
face denote the collapsed areas within effective watersheds. If
rforming) IR and NDVI statistical analysis.
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the average IR/NDVI value is low, then the average collapsed area
within the effective watershed is large. Fig. 1 illustrates the bound-
ary line, which is transformed and classified from the SPOT satellite
images of Nantou disaster area in 2001, between the vegetation
area and the collapsed area.

3.2. The extraction of debris-flow danger factors

The accuracy of the extraction of debris-flow danger factors is
crucial to the success of the regression model. If a bad factor is
Fig. 2. Delimitation of effective watershed of debris flows.

Fig. 3. Extraction of danger fact
extracted, then the variable becomes a noise among many data
in the regression model, or even lowers the reliability of the regres-
sion model (Shieh et al., 2009). Herein, GIS/RS information technol-
ogy was employed to extract the debris-flow danger factors and set
up the database of debris-flow danger factors in Nantou County.
The eight extraction methods adopted in the research are de-
scribed below.

(i) Extraction of non-real-time factors: Non-real-time factors
include effective watershed, effective channel length, effec-
tive channel slope, and the variety of rocks in the effective
watershed. The extraction of these slow-changing environ-
mental factors requires a long-term monitoring and compli-
cated geomorphic calculation (Antenucci, 1991; Tamotsu,
2002). This study used GIS and RS technology, and defined
as a slope steeper than 15� as the effective watershed of
the drainage area (Shieh et al., 2009). Fig. 2 shows the
extracted effective catchment area. Fig. 3 illustrates the cal-
culation of the effective watershed, stream length, stream
slope and lithological properties based on the overlying of
disaster coverages. The danger factor information can be
used for numerical regression analysis.

(ii) Extraction of real-time factors: The real-time factors include
effective accumulated precipitation, effective rainfall inten-
sity, IR mean value in the effective watershed and NDVI mean
value in the effective watershed. The real-time information
ors via GIS/RS information.



Fig. 4. Real-time monitoring of debris-flow danger factors via RS.
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of effective accumulated precipitation (mm) and effective
rainfall intensity (1 h/mm) can be obtained from the environ-
mental cognition agent designed in the RM(DF)2 system
(Kung & Ku, 2003). As shown in Fig. 4, the IR mean value
and NDVI mean value in the effective watershed are
extracted from the high-resolution satellite images filmed
in different times (Gilabert & González-Piqueras, 2002; Yang
et al., 2004).

The extracted non-real-time and real-time factors are transmit-
ted to the rear-end professional system to calculate the real-time
regression and estimate the precise on-site potential debris-flow
hazard level. Fig. 5 displays the database of debris-flow danger fac-
tors based on the danger-factor extracted values of the 181
streams in Nantou County. Such values are actually generated by
using object-oriented programming using the connective database.
4. The theories and architecture designs of debris-flow
prediction model

This research utilized multiple linear regression, multivariate
analysis, and back-propagation network to generate the debris-
flow disaster prediction scheme. The related research theories
and system designs are described below.
4.1. Multiple linear regression method

Suppose that Y is a variable and that Xi (i = 1,2, . . .,k) is an inde-
pendent variable. Let the expected value of variable Y be the linear
function of independent variable Xi, and modify the error accuracy
according to the independent random error variable ei (Iliadis,
Papastavrou, & Lefakis, 2002; Shieh et al., 2009). The hypothesis
of the multiple linear model is:

Y1 ¼ B0 þ B1x11 þ B2x12 þ � � � þ Bkx1k þ e1

Y2 ¼ B0 þ B1x21 þ B2x22 þ � � � þ Bkx2k þ e2

..

.

Yn ¼ B0 þ B1xn1 þ B2xn2 þ � � � þ Bkxnk þ en

The matrix is as follows:

Y1

Y2

..

.

Y3

2
66664

3
77775 ¼

1 x11 x12 � � � x1k

1 x21 x22 � � � x2k

..

. ..
. ..

. ..
.

1 xn1 xn2 � � � xnk

2
66664

3
77775

B0

B1

..

.

Bn

2
66664

3
77775þ

e1

e2

..

.

e3

2
66664

3
77775

The regular equation sets are transformed by least binary multipli-
cation and partial differential:



Fig. 5. Database of debris-flow danger factors in Nantou County.
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nb0 þ b1

X
x1 þ b2

X
x2 þ � � � þ bk

X
xk ¼

X
Y

b0

X
x1 þ b1

X
x2

1 þ b2

X
x1:x2 þ � � � þ bk

X
x1 � xk ¼

X
x1 � Y

..

.

b0

X
xk þ b1

X
x1 � xk þ b2

X
x2 � xk þ � � � þ bk

X
x2

k ¼
X

xk � Y

The coefficient matrix in the above regular equation sets is a sym-
metrix matrix. Let A be the coefficient matrix, and let B be the
right-end constant term matrix. The matrix equations are given
below:

A ¼

nP
x1

..

.

P
xk

P
x1P
x2

1

..

.

P
x1 � xk

P
x2P

x1 � x2

..

.

P
x2 � xk

� � �
� � �

� � �

P
xkP

x1 � xk

..

.

P
x2

k

2
666664

3
777775

¼

1 1 � � � 1

x11 x21 � � � xn1

..

. ..
. ..

.

x1k x2k � � � xnk

2
666664

3
777775
�

1 x11 x12 x1k

1 x21 x22 x2k

..

. ..
. ..

.

1 xn1 � � � xnk

2
666664

3
777775
¼ x0 � x
B ¼

P
YP

x1 � Y
..
.

P
xk � Y

2
66664

3
77775 ¼

1 1 � � � 1
x11 x21 � � � xn1

..

. ..
. ..

.

x1k x2k � � � xnk

2
66664

3
77775 �

Y1

Y2

..

.

Yn

2
66664

3
77775 ¼ x0 � Y

Hence, the matrix type of the regular equation is shown in For-
mula (1):

ðx0 � xÞb ¼ x0 � Y ð1Þ
Ab ¼ B

where b represents the unknown number in the regular equation,
and b = [b0,b1, . . .,bk]. The reversed matrix of (x0 � x) exists when
the coefficient matrix has full rank. Thus, coefficient b can be given
by Formula (2):

b ¼ ðx0 � xÞ�1x0 � Y ð2Þ

Then, the multiple linear model, Formula (3), can be obtained
(by OR with OR using) Formula (2):

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ � � � þ bkxk ð3Þ
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4.2. Multivariate analysis method

The multivariate analysis method focuses on analyzing the
disaster factor variability and estimating the variance of potential
debris-flow torrents. The calculated variance values can be used
to evaluate the influential ratio, and each danger factor is given
an evaluation value. Then, the disequilibrium index, Dt, of each fac-
tor can also be calculated by applying a high-adaptive statistic
assessment model (Lin, 1994). The disequilibrium index Dt repre-
sents the relative level, which takes a value between 1 and 10,
where a value of 10 implies a high probability of debris-flow occur-
rence. The definition of Dt is described below:

Dt ¼ dw1
1 � dw2

2 � dw3
3 � � � � � dWn

n ð4Þ

Dt disequilibrium index of potential danger factors; d1, . . .,dn evalu-
ated value of variable influential factors; w1, . . .,wn weighted value
of each variance factor.
Fig. 6. The flow chart of back-pro
The classified progression evaluated value of each variance fac-
tor is calculated as follows:

dn ¼
aðXi � XminÞ
ðXmax � XminÞ

þ 1 ð5Þ

a specific constant value; dn evaluated variance factor; Xi classified
percentage of debris-flow occurrence for each factor; Xmax and Xmin

maximum and minimum of Xi, respectively.
The coefficient of variation for each factor is (calculated OR

computed) as follows:

t ¼ r
X
� 100% ð6Þ

t and r variation coefficient and standard deviation, respectively; X
mean value of classified destruction percentage for each factor.

Finally, the variation coefficient of each factor is divided by the
sum total of the coefficient of variation of all factors, (yielding OR
pagation network algorithm.
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resulting in) the effective weighted value of the specific factor. The
definition of Wi is given below:

Wi ¼
ti

t1 þ t2 þ � � � þ tn
ð7Þ

Wi effective weighted value of the specific factor; ti coefficient of
variation of each factor.
4.3. Back-propagation network algorithm

Neural networking is an information management technology
derived from research on the human brain and neural system. By
means of information output and input a system model will be com-
pleted to make inferences, predictions, decisions and diagnoses. A
neural network is a non-linear statistical technique (Skapura,
1995). This research applied the back-propagation network
algorithm to analyze the potential debris-flow hazard level. This
algorithm is a typical supervised learning network (Lin & Chang,
2003), which learns the internal reflection regulations between
the input and output. The regulations are expressed with the con-
nected weighted value of each network processing unit. To analyze
any new cases, users simply need to key in input values or indepen-
dent variables to obtain the inferential related output values quickly.
Therefore, this study used back-propagation network algorithm to
estimate the hazardous levels of potential debris-flow hazard
torrents and the probability of debris-flow occurrence.
Fig. 7. Error of the operation of mu
4.3.1. Data pre-processing analysis
Before the data from each influential factor are input into the

back-propagation network system, they need to be pre-processed
to map the source input variables to the same interval. Although
the input processing units of the supervised back-propagation net-
work accept any variable values, the significance of the small-
range variables can not be expressed, if different processing units
accept too large variable ranges, causing large-ranged variables
to take control of the entire network learning process and affect
the network learning process. Therefore, this study adopts proba-
bility mapping to transform the input variable range, as described
below:

(1) Define the mean value of a statistical variable as l, and the
standard deviation as r.

(2) Define the demanded minimum as Dmin and the demanded
maximum as Dmax.

(3) Define the data format Formula (8) as follows:
ltiple li
Xnew ¼
1
2

� �
� Xoldðl� krÞ

kr

� �
� ðDmax � DminÞ þ Dmin ð8Þ
Here X is the independent variable; l refers to the mean value; r
means the standard deviation; Dmin and Dmax stand for the mini-
mum and maximum, respectively, and k is the transition coefficient.

If k = 3.29, then 99.9% data are mapped into the [Dmin,Dmax]
interval, while k = 2.81, 2.58, 1.96, 1.65 and 1.28 map the variable
near regression model.
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values 99.5%, 99%, 95%, 90% and 80%, respectively, onto the
[Dmin,Dmax] interval (Skapura, 1995).

Data pre-processing can be used to analyze every factor, and to
measure the mean value and the standard deviation of each exam-
ple variable. Then, the probability mapping formula can be applied
to convert the variable ranges for each sample.
4.3.2. The algorithmic flow of a back-propagation network
The operation and algorithmic process of a back-propagation

network has the following steps.

(1) Set up a parameter.
(2) Set up the weighted matrices, W_xh and W_hy, and the ini-

tial values of partial weighted vector, h_h and h_y, as uni-
formly random numbers.

(3) Calculate the output quantity of the hidden layer.
(4) Determine the tolerant difference quantity between the out-

put layer and the hidden layer.
(5) Calculate the difference quantity, d, between the output

layer and the hidden layer.
(6) Determine whether the difference quantity between the out-

put layer and the hidden layer is larger than the tolerant dif-
ference. If the difference quantity is smaller than the tolerant
difference quantity, then the regression model is optimal.

(7) If the difference quantity is larger than the tolerant differ-
ence quantity, then calculate the weighted matrices and
the corrections of partial weighted values in the output
and the hidden layers.

(8) Revise the weighted matrices and the partial weighted val-
ues in the output layer and the hidden layer, and repeat
Steps 3–8 until the difference quantity lies within the range
of the tolerant difference quantity. Then, compare the
Fig. 8. Error of operation of t
correlation of sensitivity correction to determine the optimal
regression model. The flow chart of the above algorithm is
illustrated in Fig. 6.

4.3.3. The sensitivity analysis of the network model
In a back-propagation network, if the relation of input and out-

put units is homogeneous, then users can input the mapped output
unit sensitivity of each unit respectively onto the linked weighted
analysis network. The positive or negative value of sensitivity, in-
creases in proportion to the positive or negative correlation be-
tween the input and output units. This network learning process
uses the gradient steepest descent method to minimize the energy
function; that is, when a training example is input, the network
needs to adjust the weighted value within a small range. The sen-
sitivity of the adjusted range and error function needs to be di-
rectly proportional to the weighted value, which means the error
function and the partial differential value are in direct proportion
(Skapura, 1995). The formula is described below:

DWij ¼ �g � @E
@Wij

ð9Þ

In the formula Wij represents the joint weighted value between the
ith and jth units, and g denotes the error adjusted range used by the
learning velocity to control the gradient steepest descent method.
5. Verification and analysis of the debris-flow prediction
(scheme OR system OR model)

This section verifies and compares the three analytical models,
multiple linear regression, multivariate analysis and back-propa-
gation network, and then presents the optimal debris-flow predic-
tion (scheme OR system OR model).
he multivariate analysis.
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5.1. Verification and analysis of hazard prediction (scheme OR system
OR model)

5.1.1. Verification and analysis of multiple linear regression
This analytical method is intended to find the weighted coeffi-

cient of each independent variable X based on the expected value
of variable Y. In the expected value matrix, Y = 1 signifies debris-
flow occurrence, while Y = 0 signifies non-occurrence. Each factor
is treated as an independent variable matrix for the sum of the ex-
pected value matrixes. Then, regression analysis and verification
were performed through a MATLAB computer program. The analy-
sis is conducted in a 95% confidence interval, and the analytical re-
sults are graded by using statistical techniques based on upper and
lower threshold intervals. The regression model is defined in the
following Formula (10):

Y ¼ 1:641� 0:157IR þ 0:299NDVIþ 0:0335Re þ 0:0262Er

þ 0:0153E‘ þ 0:0289Es þ 0:0109Ea þ 0:0029Eg ð10Þ

Y = the hazardous degree of the debris-flow; IR = effective IR mean;
Re = effective accumulated precipitation; Er = effective rainfall
intensity; Ea = effective watershed; E‘ = effective channel length;
Es = effective channel slope; Eg = rocks in the effective watershed;
NDVI = effective NDVI mean (NDVI is the vegetation index).
Fig. 9. Optimal model training
Fig. 7 shows the distribution of the factors from the 181 poten-
tial debris-flow hazardous torrents operating in the multiple linear
regression model. As shown in the distribution, the multiple linear
regression model had an error probability of about 25–35%.

5.1.2. Verification and analysis of multivariate analysis
The primary steps of this analysis method are taken to analyze

the variability of the debris-flow danger factors and calculate the
potential debris-flow variance values. The variation values are se-
quenced to indicate the influential weighted ratio of each danger
factor, which is given a weighted evaluation value. Then, the slope
disequilibrium index Dt is adopted to calculate the high-adaptive
statistic assessment scheme. The formula is defined as below:

Dt ¼ IR0:15 � NDVI0:16 � R0:16
e � E0:16

r � E0:06
‘ � E0:17

s � E0:06
a � E0:09

g

ð11Þ

Dt = disequilibrium index; IR = effective IR mean; Re = effective
accumulated precipitation; Er = effective rainfall intensity;
Ea = effective watershed; E‘ = effective channel length; Es = effective
channel slope; Eg = rocks in the effective watershed; NDVI = effec-
tive NDVI mean.

The graded evaluation values are taken as the independent var-
iable matrix, which is used in Formula (11). Therefore, the error
processed by PCNeuron.



Fig. 10. System architecture of back-propagation network analysis.
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probability of this model is tested and verified by means of a
graded observation based on upper and lower interval statistical
analysis. As illustrated in Fig. 8, the error probability is about
3.39–6.07%, which is lower than that in the multiple linear regres-
sion model.
Fig. 11. Error verification of back-p
5.1.3. Verification and analysis of back-propagation network
A back-propagation network system is used to output and input

data and to construct the debris-flow prediction model. In the ex-
pected-value matrix, a value of 1 signifies occurrence of debris-
flow, and a value of 0 signifies non-occurrence. The resulting of
danger factor classification scheme is taken as the independent
variable matrix. Then, the PCNeuron software package is applied
to train the optimal numbers of the network hidden layers and
the overall network simulation architecture. In this method, the
learning initial velocity is 0.5, the reduction coefficient is 0.95,
and the lower threshold value is 0.05. The result of the training re-
veals that the ‘‘error oscillation (over-learning) phenomenon’’ is
relatively low, and that when the circulating learning numbers
reach 30,000 times, the training can achieve almost complete con-
vergence. Fig. 9 illustrates the optimal training system. The train-
ing of the 20 developed network hidden layers reveals that the
error oscillation in hidden layer 1 is the highest, that in hidden
layer 3 is reduced, and that in hidden layer 5 is the lowest. Hence,
the optimal number of hidden layers is five. Fig. 10 shows the oper-
ated training results and the overall network architecture. This
infrastructure adopts the optimal network model in which eight
input layers produce five hidden layers and one output layer.
Fig. 11 displays the distribution of verified results and the error
probability of the network system. The back-propagation network
ropagation network analysis.



Table 1
Weighted ranking comparison of the three regression model factors.

Ranking Linear regression Multivariate analysis Back-propagation network

Factor Weighted coefficient of independent variable Factor Weight The coefficient of variation Factor The absolute value of sensitivity

1 IR 0.2991 Es 0.17 71.15 NDVI 8.136
2 NDVI 0.1571 Re 0.16 67.45 IR 7.829
3 Re 0.0335 Er 0.16 67.27 Er 1.075
4 Es 0.0289 NDVI 0.16 66.7 Re 0.963
5 Er 0.0262 IR 0.15 65.38 Es 0.200
6 El 0.0153 Eg 0.09 38.24 Ea 0.183
7 Ea 0.0109 El 0.06 26.68 El 0.118
8 Eg 0.0029 Ea 0.06 25.54 Eg 0.113
Error probability 28.18–35% 3.39–6.07% 1.16–1.87%

Table 2
Accuracy comparison of the regression models.

Ranking Regression analysis model Overall error probability (181 data) Verified error probability (100 random data)

Minimal (%) Average (%) Maximal (%) Minimal (%) Average (%) Maximal (%)

1 Back-propagation network 1.16 1.43 1.87 1.21 1.53 1.74
2 Multivariate analysis 3.39 5.18 6.07 7.84 9.32 11.6
3 Linear regression 25.18 32.77 35.00 29.46 35.61 38.87

Fig. 12. Optimal numerical model flowchart of back-propagation network.
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is verified via a MATLAB program, and analyzed through a 95% con-
fidence interval. The back-propagation network model is verified
means of a disorder matrix and the classified observation of the
upper and lower thresholds. The analytical result indicates that
the error probability of back-propagation network prediction mod-
el is about 1.16–1.87%, which is the best among the three predic-
tion models.

5.2. Analyses of regression results and the comparison of model
accuracy

5.2.1. Analyses of regression results
The danger factors are ranked in Table 1.

(i) When these three regression models are analyzed with fac-
tor correlation, the potential debris-flow occurrence rate has
a negative correlation. Smaller NDVI and IR mean values of
the effective watershed imply a larger collapsed area. A neg-
ative correlation may also mean the great volume of soil
deposited upstream and a high probability of potential deb-
ris-flow occurrence. This result is corresponding to the fact.
The vegetative conditions and the IR radiation value can also
be applied to assess the collapse and debris deposition. The
weighted rankings of NDVI and IR factors are placed first and
second in the multiple linear regression and back-propaga-
tion network. In other word, the collapsed area within effec-
tive watershed significantly affects the debris-flow
occurrence. The other danger factors reveal a positive corre-
lation with the debris-flow occurrence. The selected danger
factors are ranked 2nd, 3rd, 4th and 5th, respectively, which
suggests that longer rainfall duration or greater intensity
leads to higher probability of debris-flow occurrence.

(ii) The factor of the slope of the effective channel (Es) ranks 1st
in Multivariate Analysis, while the models in the other two
analyses rank 4th and 5th, respectively. The varieties of
rocks denoted by Eg are the basic components of the slope.
In this study, the lithological properties are divided into sed-
imentary and metamorphic rocks known as the values1 and
2, respectively. The sorted potential debris-flow hazardous
torrents in Nantou County consist of 88 torrents of sedimen-
tary rocks and 93 torrents of metamorphic rocks. After



Fig. 13. Distribution of Back-Propagation analysis output values.

Table 3
Classification of network output values and debris-flow hazardous degrees.

Network output value Total Occurring numbers Occurring rate (%) Potential hazardous degree Status

Output value < 0.1 64 0 0 Low risk degree Ordinary (green light)
0.1 < Output value > 0.8 7 4 57 Middle risk degree Near warning (yellow light)
Output value > 0.8 110 109 99 High risk degree Warning (red light)

Fig. 14. Classification of network output values and debris-flow hazard levels.
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Fig. 15. Real-time Mobile Debris Flow Disaster Forecast System (RM(DF)2) architecture.

Table 4
Specification of software devices used in RM(DF)2.

Specification of software

EVB 3.0
VB 6.0
ASP 2.0
MS_SQL 2000
PhotoShop 7.0
IIS 5.0
Win CE 3.0
MS_SQL 2000 FOR Win CE
Cosmo Player
ParallelGraphics Pocket Cortona
Map Explorer 2001
mmVISION iPictures & iVideo
Compaq WL100 Wireless Lan for Pocket PC
FlyJacket Tools
IA Style

Table 5
Specification of hardware devices used in RM(DF)2.

Specification of hardware

PIII-850 RAM512 � 2
Compaq Ipaq 3630 (PDA) � 2
Acer C300 Tablet PC � 1
Access Point � 1
IEEE 802.11b (wireless network card) � 3
P7389i GPRSx 1
HP Jornada Pocket PC � 1
Ipaq � 1
Compact GPS � 1
Lifeview flyJacket i3800 � 1
Lifevies flyJacket Icam � 1
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Typhoon Toraji’s invasion, debris flows occurred in 40 tor-
rents of sedimentary rocks and 72 torrents of metamorphic
rocks because metamorphic rocks are weaker than sedimen-
tary ones. The occurrence rate of debris flows in metamor-
phic rocks is 77.42%, which is obviously higher than the
rate of 44.94% in sedimentary rocks. Additionally, the posi-
tive correlation result in the regression analysis shows a
high occurrence rate in metamorphic rocks, which corre-
sponds to observations. Additionally, the factors of effective
watershed and stream length correlate positively with the
debris-flow occurrence. A larger effective watershed implies
the stream contains more water, increasing the probability
of debris-flow occurrence. A longer effective channel length
increases the distance for debris-flow movements. These
two inferences both correspond to empirical observations.

The analytical results also show that real-time factors influence
debris-flow occurrence more significantly than non-real-time fac-
tors. Therefore, RM(DF)2 focuses on real-time factors, while the
non-real-time factors are built in to the rear-end database for the
enquiry function. Environmental cognition agent provides real-
time information related to real-time factors, and uses GIS and
RS to consider high-accuracy satellite images in different time sec-
tions, allowing users to monitor the debris deposition and vegeta-
tive situations of the streams and increasing the accuracy of the
debris-flow prediction model.

5.2.2. The accuracy comparison of the regression models
Table 2 lists the overall error probability data of the three

regression models, and the verified error probability of 100 ran-
domly selected data. The data reveal that back-propagation analy-
sis is more accurate than the other two methods. Hence, this back-
propagation analysis was adopted as the optimal numerical system
for the debris-flow real-time prediction system.

5.3. The optimal numerical debris-flow (systems OR schemes OR
models) and the classification of potential hazard levels

For the optimal analysis result and the minimal error probabil-
ity, this study takes the output value of back-propagation model as
the potential hazard levels of the potential debris-flow hazardous
torrents in Nantou. Furthermore, the potential hazard levels are
classified to distinguish among levels of debris-flow risk.

Fig. 12 illustrates the optimal numerical model flow chart of
back-propagation analysis. When the user inputs the values of
the eight danger factors, the decision support system incorporates



Fig. 16. PDA function display in RM(DF)2.

Fig. 17. PC function display in RM(DF)2.
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Fig. 18. WEB rainfall agent.

Fig. 19. Rainfall agent on PDA.
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the eight classified values into the optimal model flow,
transfers the classified values via the linear system, and then calcu-
lates the output volume of the hidden layer by incorporating the
weighted matrix and partial weighted vector into the hidden layer
non-linear system. Besides, the expected output volume is inferred
from the output layer non-linear system, and then the expected
output volume is finally transferred into the optimal network esti-
mate value.



Fig. 20. Modeling photo and segmented modeling photo.

Fig. 21. Real-time aerial photo and on-line communication image.

5854 H.-Y. Kung et al. / Expert Systems with Applications 39 (2012) 5838–5856
Because the back-propagation analysis model does not predict
the stream hazard level, this study re-classifies all output values,
leading to the result shown in Fig. 13. The potential hazardous
degrees were divided into low, intermediate and high levels, be-
cause having more than three levels may lower the efficiency of
hazard classification. That is, when too many levels are applied,



Fig. 22. Debris flow disaster warning in RM(DF)2.
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the debris-flow occurrence rates of the middle levels are too close
to their neighboring levels to categorize levels efficiently. Fig. 13
and Table 3 indicate that back-propagation analysis has the best ef-
fect and the lowest error probability among the tested models.
Fig. 14 shows the relationship between the network output values
and the classification of debris-flow hazard levels. The output val-
ues are classified into corresponding intervals. The expected inter-
val division values are set to 0.8 and 0.1. An output value lower
than 0.1 indicates a low probability of debris-flow occurrence. An
output value in the range 0.1–0.8 is classified as a middling prob-
ability of debris-flow occurrence, while the output value above 0.8
is classified as a high probability.
6. System implementation

Fig. 15 shows the Real-time Mobile Debris Flow Disaster Forecast
System (RM(DF)2) architecture, which consists of the mobile user,
front-end application server and rear-end decision support system.
RM(DF)2 users can utilize a Tablet PC, PDA, Notebook or desktop
computer to obtain access to remote disaster prevention data
(Meggers, Park, Fasbeder, & Kreller, 1998; Mohan, Smith, & Li,
1999). The data is simplified by the environmental cognition agent
in the application server and is displayed in a virtual reality format.
The user performs debris-flow field work by using a mobile device
to input relevant information for decision inference and analysis
(Hare, 2002; Pang & Poon, 2001). The required software and hard-
ware devices are shown in Tables 4 and 5.

Figs. 16 and 17 illustrate the functions of information input
from the disaster area and the debris-flow multimedia information
reception. If the mobile communication system is destroyed, then
users can make inferences from the regulation inference mecha-
nism installed in the portable devices. In this case, a PDA is easy
to carry and suitable for manipulating data.
The front-end application server focuses on providing related
multimedia application and environmental cognition agent ser-
vices (Huhns & Singh, 1997; Kung & Ku, 2003; Lo, Chen, Cheng, &
Kung, 2011; Nwana & Ndumu, 1997). The application server per-
forms information classification and cleanup, and cooperates with
WEB/WAP functions to proceed with information transmission and
enquiry as well as VR topography simulation. In Fig. 18 the rainfall
agent is shown by using the WEB interface. Fig. 19 illustrates the
rainfall data received by the rainfall agent on the PDA. Fig. 20 dis-
plays the on-the-spot simulations of the VR digital topography or
contour map on the PDA. Fig. 21 shows the application of GPS tech-
nology on roads in Nantou County. The GPS files are transmitted to
GIS layers for analysis, and converted to high accuracy satellite
images such as the Quickbird satellite images with resolution
67 � 67 cm or aerial photos to improve the positioning function.
Finally, the satellite images and aerial photos are analyzed by
means of the RS system.

The rear-end decision support system (DSS) comprises a model-
ing base, database and dialogue unit (Efraim & Jay, 1998). The
modeling base includes multiple linear regression, multivariate
analysis and back-propagation network. These models are ana-
lyzed and estimated by using eight numerical factors: effective wa-
tershed, the effective channel length, effective channel slope, rocks
in the effective watershed, collapsed area in the effective wa-
tershed, effective accumulated precipitation, effective rainfall
intensity and vegetation index. When the inferred value is evalu-
ated as dangerous, the DSS sends the danger signal back to the mo-
bile user. Finally, the system images are displayed in Fig. 22.
7. Conclusions

This study proposed multiple linear regression, multivariate
analysis and back-propagation network to form debris-flow disaster
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prediction models. The effective watershed, effective channel
length, effective channel slope, the rocks in the effective watershed,
collapsed area in the effective watershed, effective accumulated pre-
cipitation, effective rainfall intensity and vegetation index were de-
fined as the influential factors to estimate the debris-flow
occurrence. In addition, a Real-time Mobile Debris Flow Disaster Fore-
cast System (RM(DF)2) was implemented to verify the feasibility and
effectiveness of the designed model.

The historical data of the 181 potential debris-flow dangerous
torrents in Nantou County were taken as example cases. When
analyzed with multiple linear regression, the average threshold
was set to 5.0927, and the upper and lower thresholds were set
to 5.4463 and 4.7392, respectively. The analytical result reveals
that the maximal error rate reached 35%, meaning that multiple
linear regression model cannot effectively distinguish among the
data of all the potential torrents in most situations, and therefore
cannot precisely predict the occurrence of debris-flow. When ana-
lyzed with multivariate analysis, the average threshold was set to
5.256, and the upper and lower thresholds were set to 5.5757 and
4.9583, respectively. The analytical result shows that the maximal
error rate dropped to 6.07%. Therefore, the assessment accuracy of
multivariate analysis is much higher than that of multiple linear
regression. Obviously, multivariate analysis has better distinguish-
ability than multiple linear regression. When analyzed by 8–5–1
back-propagation network, the average threshold was set to
0.6174, and the upper and lower thresholds were set 0.6757 and
0.559, respectively. The maximal error rate was only 1.87%, indi-
cating that this analysis model can evaluate the 181 cases almost
distinctly. Among these three analytical models, Back-Propagation
Network has the best prediction accuracy. However, multiple lin-
ear regression has the lowest Time Complexity, the slightest bur-
den on the system operation.

RM(DF)2 adopts a three-tier architecture. The front-end applica-
tion server takes charge of the transmission. The rear-end decision
support system infers the possibility of debris-flow disasters. The
mobile user can obtain the required information promptly and pre-
cisely, and thus obtain the inferred result. However, if the water
volume of the potential debris-flow dangerous torrent increases,
the rear-end decision support system might fail to infer the danger
of the streams. Therefore, a future strategy for improvement is to
convert the decision support system into a distributed system.
Additionally, future research will further emphasize gathering
new potential torrent data and used 3G mobile communicative
networks to improve self-examination of danger areas by cell
phone users. Hopefully, by means of such a system, early disaster
warnings can be in time to the victims so that they can evacuate
from the disaster area safety.
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