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Abstract: Parallel multithreaded architectures 
take advantage of the ability to execute more 
than one thread simultaneously on a single chip 
at low synchronisation and communication costs 
and high hardware resource utilisation. However, 
a high bandwidth cache, such as a multibank 
cache, is especially critical to serve memory 
accesses issued at the same time from different 
threads. To prevent bank conflicts of multibank 
cache from seriously degrading system 
performance, a loop partition method is proposed 
to reduce or even eliminate bank conflicts. The 
partition allows each thread access to certain 
bank modules and prevents any two from 
accessing the same bank module. The method 
neither slows down the clock rate nor increases 
the array subscript expression complexity. The 
performance gains of the bank-conflict-free loop 
partition approach are shown in simulation 
results. 

1 Introduction 

In the near future, improvements in semiconductor 
technology will allow multiple high performance float- 
ing point units and several megabits of memory to 
reside on a single chip [l]. This trend is stimulating the 
design of multithreaded processors [2-6]. In multi- 
threaded architectures, whenever a long latency opera- 
tion take places in a running thread, the system 
immediately switches out the thread and selects one of 
the waiting threads for execution. Thus, long latencies 
can be hidden by executing threads, which improves 
utilisation of system resources [2]. 

There are two kinds of multithreaded processors: 
concurrent multithreaded processors (CMPs) and par- 
allel multithreaded processors (PMPs) [4]. CMPs exe- 
cute only one thread at any time. They rapidly switch 
to one of  the waiting threads when the running thread 
encounters such situations as data absences or synchro- 
nisation failures, which cause long processor latencies. 
The success of a CMP design depends on providing a 
fast context switching mechanism to efficiently overlap 
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long latencies. Architectures possessing this ability 
include HEP [2], Sparcle [4], Tera [5] and *T [6].  

PMP architectures, on the other hand, are capable of 
executing more than one thread at the same time [4]. 
Although, they usually require more expensive hard- 
ware and greater design complexity, they can hide 
latencies at the instruction level rather than at the 
thread level. When an instruction from a thread cannot 
be issued, because of either a control or data depend- 
ence within the thread, an independent instruction 
from another thread is executed instead. Thus, the 
advantage of PMPs is that they enable greater hard- 
ware utilisation because the functional units in this 
processor are shared by all the parallel running threads. 
Some examples of PMP architecture are described in 
[l-31. It is expected that this type of processor will 
become one of the most popular forms of single proces- 
sor design because of its better resource utilisation. In 
addition, because multibank caches are often included 
in PMP architectures to provide high bandwidth mem- 
ory subsystems [l], in this paper the PMP architecture 
will be studied with a multibank cache. 

A good loop partition technique is very important 
for both multiprocessor systems and PMP architectures 
because it can exploit more parallelism from a pro- 
gram. Although there have been many partition tech- 
niques focused on exploring cache locality, the features 
o f  multibank caches have been ignored [9]. One multi- 
bank cache feature is that several memory accesses can 
be served simultaneously. However, if a bank module 
receives more than one access at the same time, there 
will be a bank conflict. Bank conflicts severely degrade 
system performance. Therefore, reducing cache-bank 
conflicts is very important in partitioning loops in PMP 
architectures. In this paper, we propose a loop parti- 
tion method that improves system performance accord- 
ing to special considerations on multibank caches. The 
loop is partitioned on the basis of multibank cache 
data allocation characteristics, so as to reduce bank 
conflicts and thus enhance the system performance. It 
was found that some important properties help parti- 
tion the loop without bank conflicts. According to sim- 
ulation results, the ideal case o f  this method can, at 
best, speed system performance by a factor of 1.9 over 
other methods. 

2 Basic configuration and issues 

The PMBC (parallel multithreaded multibank cache) 
processor is a PMP architecture with a multibank 
cache, as shown in Fig. 1. This architecture has two 
distinguishing features: (i) several threads executed 
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simultaneously in the same chip can access the single 
shared cache at the same time, and (ii) the multibank 
cache allows more than one memory access to be 
served at the same time. A PMP comprises several log- 
ical processors (LP), each of which can execute one 
individual thread. An LP is composed of a thread slot, 
several functional units, and a register set. Each thread 
slot has its own program counter and decoder unit. 
Instructions are fetched from the instruction cache into 
the thread slot and then scheduled into the functional 
units after decoding. Data are fetched from or written 
into the corresponding register set. There are many reg- 
ister sets, which provide for fast context switching 
among running threads, blocked threads and ready 
threads. Synchronisation and communication between 
threads are performed through the shared memory. 

I unit I I unit I I unit 

( instruction cache ) 

I 

1 
instruction fetchunit 

0 . .  

functional * - 
units 

Naturally, since there will be many simultaneous 
memory accesses from multiple threads, the PMP needs 
a high bandwidth cache subsystem, otherwise the cache 
subsystem will become a bottleneck and severely 
degrade system performance. The multibank cache is a 
popular way of providing high bandwidth for memory 
accesses [1,3]. If the data requested by several threads 
are allocated to different bank modules, all the memory 
access requests can be granted simultaneously. On the 
other hand, a bank conflict will occur if more than one 
memory request for a single bank module arrives at the 
same time, or if the bank module is busy when the 
memory request arrives. Whenever a bank conflict 
occurs, one of the requests is arbitrarily granted to 
access the bank module. The other requests are blocked 
and must wait for the next arbitration. The memory 
access time increases in proportion to the time these 
blocked requests must wait. That is to say if the aver- 
age memory access time is increased, the total program 
execution time will also be increased. If the bank con- 
flict ratio can be reduced, or even eliminated, obvi- 
ously, system performance would be improved. Since a 
large percentage of the execution time is spent in exe- 
cuting the loop body, the intention of this paper is to 
propose a loop partition approach that will reduce, or 
even eliminate bank conflicts. 

The loop is partitioned into threads such that each 
thread can access specific bank modules but no two 
threads can access the same bank module. The method 

multi- 
bank 
data 

employs a software approach that does not raise tne 
complexity of the array subscript expression. It is based 
on data allocation characteristics of the multibank 
cache, which has different properties and solution tech- 
niques from those either in multiprocessor systems or 
in multibank memory systems [7-151. 

Many research projects on loop partitions used in 
multiprocessor systems have been proposed [7-111. In 
multiprocessor systems, each processing element has its 
own cache, and copies of data are stored in several dif- 
ferent caches. Therefore, there are cache coherence 
problems in multiprocessor systems. Basically, the pur- 
poses of these projects have been to reduce synchroni- 
sation overhead and communication traffic between the 
memory modules in the shared or distributed memory 
system. The principles of these loop partitions exploit 
the locality of the data caches, instead of the memory 
modules. Thus, it does not matter whether the memory 
is multibank or not. In a PMP architecture, however, 
although multiple simultaneous running threads shares 
a single cache, there is no cache coherence problem 
because there is only one copy of the data. Reducing 
bank conflicts is the special goal of loop partition for 
PMP architecture. 

Many studies have also been done on multibank 
memories for vector1 machines [12-151. In a vector 
machine, when a me ory request from a single instruc- 
tion stream is issue to the memory, an interleaving 

ory address, the acckss stride, and the access length. 
Ideally, an interleaving access will fetch one datum 
from each bank module unless there is bank conflict. 
The goal of these studies has been to reduce bank con- 
flicts by restructuring data allocation. Such a reduction 
can be achieved using hardware or software 
approaches. Although the hardware approach increases 
the length of the critical path and affects the clock rate, 
the software approach results in a very complex array 
subscript expression and a long run time for subscript 
calculation. In PMP architectures, however, multiple 
simultaneous memory requests are issued from many 
streams to a shared cache. In addition, the addresses of 
these requests may have no regularity among them. 
Therefore, a loop partition method in terms of the data 
allocation features in the multibank cache is proposed. 
This method does not increase the subscript expression 
complexity or affect the clock rate. 

3 

In this Section, we consider the following code exe- 
cuted in a PMBC model processor according to the 
subscript expression 

f o r j  =1 to M do 

access occurs. This r 1 quest includes the starting mem- 

Single dimension array, single loop structure 

... A[&] ... 
For convenience, we assume that the number of LPs in 
the PMBC processor is P, P = 2p,  and that the number 
of cache banks is B, B = 2b. Data allocation adopts low 
order interleaving and the datum at address d will be 
allocated to bank r if Y equals (d mod B). Suppose that 
the accessed array elements are allocated to exactly H 
bank modules, where H 2 P and HIP = D. If we parti- 
tion the code into P threads such that each thread ref- 
erences exactly D different bank modules, there will be 
no bank conflict. In the following lemma, we determine 
the sufficient condition for accessing exactly D bank 
modules. 

register register register 
set set set 
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Lemma 1: Assume that B = m*P, where B = 2b, P = 2p, 
and both m and a are integers, 
Let R = { r  j r = a? mod B and j is an integer}, 
Rk = { r  I r = a y  mod B and j = (k + 1) + s*P, s 2 0 
and s is an integer), k is a constant, 0 I k < P, 
U = { R k  I 0 I k < P} 

If (i) a is odd, or 
(ii) a is even and there exist integers a’ and q, a’ > 0, 
4 > 0, such that a = a’*q and a‘*q*P = B, 

then U is a partition of R. 
ProoJ (1) Trivially, the union of all Rk equals R, where 
O i k < P .  
(2) Let a mod B = a’. If r belongs to both R, and R h ,  0 
I g ,  h < P, then r = u*((g + 1) + s*P) mod B = a*((h + 
1) + s’*P) mod B, where s and s’ are nonnegative inte- 
gers. 

(i) a is odd. Let s1 = s mod m, sl’ = s’ mod m. If a 
mod R = o’, then n’*((g + 1) + s,*P) mod B = d*((h + 
1) + sl’*P) mod B. This implies ( (g  - h)  + (sl - sl’)*P) 
mod B = 0. Since 1 - P I g - h I P - 1 and, 1 - m I s1 
- sl’ I m - 1, we have (g - h) + (sl - sl’)*P < B, which 
implies g = h and s1 = sl’. Hence, Rg and Rh are dis- 
joint if g ;t k.. 

(ii) a is even, a = a’*q, and a’*q*P = B. If v1 = s mod 
4, vI’ = s‘ mod q, then (a’*(g + 1) + a’*vl*P) mod B = 
(a’*(h + 1) + a’*vl’*P) mod B. Because u’*(l - P )  I a’*(g 
- h) I a’*(P - 1) and a’*(I - q)*P I a’*(vl - vl’)*P I a’*(q 
- l)*P, we have a’*(l - 4*P) I (a’*(g - h) + a’*(vl - 
vl’)*P) I a’*(q*P - 1). Hence, a’ - B I a’*(g - h) + a’*(vl 
- vl’)*P) 5 B - a‘. Comparing with the previous expres- 
sion: (a’*(g - h) + a’*(vl - vl’)*P) mod B = 0, we have g 
= h and vl = vl’ because -B < a’ - B < 0 and 0 < B - a’ 
< B. That is, Rg and Rh are disjoint if g f h. 
(3) According to the results of (1) and (2), U is a parti- 
tion of R. <Q.E.D.> 

In lemma 1, the meanings of both a and j are the 
same as those in the code segment mentioned above. 
The element r ,  of the sets R and Rk, represents which 
bank module will be allocated, where the subscript k of 
Rk indicates the identification of the logical processor. 
The following lemma describes an alternative way of 
calculating how many bank modules will be accessed 
when the coefficient a is even. 
Lemma 2: Assume that both B and a’ are even and that 
n is an integer. If 2 I a’ I Bl2, a’*n = B, j and j’ are 
nonnegative integers, then (I) the set of the remainders 
of (a’? mod B) is identical to the set of the remainders 
of ((B - a’)? mod B); (2) the remainders of (a’? mod 
B) have exactly IZ different values. 
Pro& (1) If a’? mod B = ( B  - a’)> mod B, then a‘? - 

(B  - a’)*j. mod B = 0. Hence, we have a’*(j + j’) mod B 
= 0. Since a‘ mod B f 0, (j + j‘) mod B = 0. In addi- 
tion, since 2 < j + j’ 2 2*n and 2 I n I Bi2, we have 2 I 
j + j’ I B, which implies j’ = B - j .  
(2) Let j = s1 + s;n, where 0 I s1 < n and s2 is an inte- 
ger. We find that a’? mod B = (a‘*sl + a’*s;n) mod B 
= (a’*sl) mod B. Since 0 I s1 < n, we have 0 I a’*sl < 
a‘*n = B. Hence, there are n different remainders for 
(a’? mod B). <Q.E.D.> 

The partitions of the remainders for a? and (B  - a)? 
are the same, which implies that the number of banks 
that will be accessed can be calculated by either a or ( B  
- a). When a is odd, a different property will be 
obtained as shown below. 
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Lemma 3: Assume that a is odd and that the processor 
is a PMBC model. Let 2 = {A[a*(C + w)] I 0 I w 5 B - 
1, C is an arbitrary constant and w is an integer}, if x f 
y ,  both x and y belong to 2, then x and y will not be 
allocated to the same bank module. 
ProoJ If A[a*(C + sr)] and A[a*(C + s2)] are allocated 
to the same bank module, where 0 I sl, s2 I B - 1, then 
a*(C + sl) mod B = a*(C + s2) mod b. Because a is odd 
and B is even, a mod B f 0. Hence, C + s1 mod B = C 
+ s2 mod B, and we get s1 - s2 mod B = 0. Since 1 - B 
<: s1 - s2 I B - 1, we have s1 = s2. <Q.E.D.> 

We know from lemma 3 that all the B bank modules 
will be accessed individually by consecutive B memory 
references. The following partition rule which precludes 
bank conflicts can be obtained directly from the above 
three lemmas. 
Theorem 1: Let A[a>] be a data array in the following 
loop structure: 

f o r j  = 1 to M do 
... &>-I ... 

Assume that (a  mod B) = e and a’ = min(e, B - e). If 
(1) a is even, a’ > 0, and B mod (a’*P) = 0, or (2) a is 
odd, we can partition this loop into P threads for our 
PMBC model using the following rule, such that each 
thread can be executed concurrently without bank con- 
flict for array A. 

LPk executes: 
f o r j = k +  1 t o M b y P  
... A[a>] ... 

where 0 I k I P - 1, and LPk is one of the P logical 
processors in PMBC. 
Proofi (1) Assume that a is even. If a’ > 0, 2 I a’ I Bl2, 
since a’ = min(e, B - e) and (a  mod B) = e.  Moreover, 
B mod (a’*P) = 0 implies that there exists an integer q 
such that a‘*q*P = B. According to lemma 2, (4*P) 
bank modules will be accessed. In addition, based on 
the result of lemma 1, we can partition this loop into P 
threads such that each thread references exactly q bank 
modules. 
(2) According to lemma 3, we know that B bank mod- 
ules will be accessed. Moreover, in terms of the result 
of lemma 1, we can partition this loop into P threads 
such that each thread references exactly BIP bank mod- 
ules. <Q.E.D.> 

bank 0 
Fig.2 An example for lemmas and theovem access conditions 

(1 1,15,l9 

A [151 
AR31 
A[311 
A[391 

bank? 

To explain the above lemmas and theorem, an exam- 
ple is illustrated in Table 1 and Fig. 2 for the case of a 
= 2, P = 2, and B = 8. In Table 1, we find that the 
remainders can be divided into two partitions: Ro and 
RI .  We also find that the partitions of the remainders 
for a? and ( B  - a)? are the same; that is, the number 
of banks that will be accessed can be calculated by 
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either a or ( B  - a). Fig. 2 shows that LP, always 
accesses banks 2 and 6, which combine to equal set Ro, 
and that the LP1 always accesses banks 0 and 4. 

Next, the partition rules developed in this section are 
applied to more complicated structures. It should be 
noted, however, that different preprocessing procedures 
must be performed for some structures. These proce- 
dures will be discussed in the following two Sections. 

Table 1. Example for lemmas and theorem: remainders 
and partitions 

k =  0 k =  1 

j a*j r (B-a)*j r j a*j r (B-a)*j r 

1 2 2 6  6 2 4 4 1 2  4 

3 6 6 1 8  2 4 8 0 2 4  0 

5 1 0 2 3 0  6 6 1 2 4 3 6  4 

7 1 4 6 4 2  2 8 1 6 0 4 8  0 

9 18 2 54 6 10 20 4 60 4 
11 22 6 66 2 12 24 0 72 0 

13 26 2 78 6 14 28 4 84 4 

15 30 6 90 2 16 32 0 96 0 

17 34 2 102 6 18 36 4 108 4 
_____. ._____ ._____ ....__ ...___ _...._ _..._. ____.. _ _ _ _ _ _  _ _ _ _ _ _  

~ ~ 

a = 2, P =  2, B =  8, R =  IO, 2, 4, 6}, Ro = {2, 61, Rq =IO, 4) 

4 

Consider the example shown in Fig. 3. Because both 
A[0][0] and A[1][0] are allocated to the same bank 
(based on the allocation rule in our PMBC model), we 
cannot make the best use of the high bandwidth cache 
by directly applying theorem I to partition the loop. 
One solution to this problem is to restructure the array 
such that the loop index j is a variable in the subscript 
expression of the last array dimension. 

Multi-dimension array, single loop structure 

for j=Oto2do 

bank 0 bank 1 bank 2 
Fig. 3 The original code segment and data allocation 

declare P[O..71[0..21 

I for j=OtoZdo 
A[Ol[jl = 3*A[llrjl; 

bank 3 

A[lICOI 
A [21[11 
A131121 
A [51 [OI 

bank 3 
Fig.4 
interchange 

The amended code segment and datu allocation after dimension 

Given an array A[il][i21 ...[tl][ i,], if the loop index 
influences the subscript value of the fth dimension, and 
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f does not equal e, we can redeclare the array by inter- 
changing the dimensions f and e.  We see that A[0][0] 
and A[1][0] can be allocated to different bank modules 
after the interchange as shown in Fig. 4. 

Let us consider another problem. As shown in Fig. 4, 
since A[0][0] and A[1][0] are not mapped to the same 
bank module, the partition rule for single dimension 
array, single loop structures mentioned in Section 3 
cannot be directly applied to this example. In order to 
use the results from the preceding Section, we must 
reduce the partition problem by mapping and restruc- 
turing the multidimension array, single loop structure 
into an appropriate single dimension array, single loop 
structure. The principle behind this reduction is that 
only the subscript of the last array dimension will be 
used to determine which bank module will be allocated. 
To meet this requirement, the number of array ele- 
ments in the last dimension must be expanded to a 
multiple of the number of the bank modules. Suppose, 
for instance, that thcrc is an e-dimension array 
A[il][i2]...[i,~l][i]. Assume that the range of the last 
dimension of array A is 0 5 i, < N .  Let re = N mod B, 
where B is the number of bank modules. If re f 0, let 
NI = N + ( B  - re); otherwise, NI = N .  We can redeclare 
the range of the last dimension of array A to be 0 < i, 

After the alignment, there may be some dummy ele- 
ments at the end of the last dimension, but all the first 
elements of every dimension are mapped to bank 0. 
Thus, the bank module that a certain element belongs 
to depends only on the subscript of the last dimension. 
Fig. 5 illustrates the result of the array alignment of the 
code segment in Fig. 4. 

< NI. 

declare A[O..fI10..31 

1 forj=Oto2do 
A[Oltjl = 3*A[II[jl; 

I I I  I 

bank 0 bank 1 bank 2 
I I I  

bank 3 
Fig.5 
ment 

The amended code segment and data allocation after army align- 

Trivially, the alignment procedure cannot be per- 
formed before the interchange procedure because the 
latter will destroy the result of the former. After the 
alignment and the interchange procedures are per- 
formed, loop partition of the multidimension array, 
single loop structure can be performed in terms of the- 
orem 1. 

5 
structure 

Linear subscript expression, nested loop 

According to the statistics reported in previous, related 
articles, a large percentage of expressions are linear. 
Therefore, it is reasonable to assume that the array 
subscript expressions are linear [8]. It also makes sense 
to assume that the array is single-dimensional because 
multidimension arrays can be handled just like single 
dimension arrays in terms of the approaches mentioned 
in the above section. Consider the following code seg- 
ment 
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for i = 1 to N do 
f o r j  = 1 to M do 
,.. A[U,*i + a,> + ao] ... 

In the following paragraphs, we will discuss how to 
partition the loop in terms of the values of ao, aI ,  and 
a2. 
Case I :  The constant a. contributes a constant offset 
for every array access that does not affect the distance 
between two adjacent accesses. Therefore, the constant 
a. can be ignored when the loop is partitioned. 
Case 2: If ((al mod B) mod P) = 0 and ((az mod B) 
mod P)  f 0, then the value of the loop indexj decides 
which elements will be accessed. Hence, we can parti- 
tion the outer loop according to the value of u2. This 
partition method is the same as theorem 1 but replaces 
a with u2. Alternatively, if the loop is interchangeable, 
we can partition the innermost loop after the inter- 
change. 
Case 3: If ((al  mod B) mod P) f 0, then the value of 
loop index j will determine which elements will be 
accessed, and, therefore, we can partition the innermost 
loop according to theorem 1. However, in order to 
allow each logical processor to access specific bank 
modules, we must recalculate the initial value of index j 
whenever index i is increased by one. Let j ,  be the ini- 
tial value of index j when the value of index i is if, and 
((az mod B) mod P) = a2‘. When the value of i becomes 
(i’ + l), the initial value of j will be: 

( j o  - U ; )  mod P 
If there are multiple arrays in the loop body, we can 
choose a major array that is accessed most frequently 
and then divide the loop according to the major array 
subscript expression. 

xtension to NIP systems 

Although the partition method described was devel- 
oped for the PMBC uniprocessor model, we can extend 
this method easily to PMBC-based MP systems. Each 
processing element in this kind of MP system has its 
own local cache, each of which possesses multiple bank 
modules; several simultaneously executing threads 
share this cache. We need to partition loops twice, such 
that each partition has two levels, as shown in Fig. 6. 
The higher level is the basic unit of process scheduling 
and will be allocated to a certain processing element 
which we call a ‘cluster’. Therefore, when partitioning 
loops into clusters, one should be aware of cache local- 
ity. Next, when each cluster is divided into several 
threads, we let each thread access specific bank mod- 
ules such that bank conflicts will be reduced. 

cluster I 
t 

PE0 PE1 
Two-level loop partrtron for  PMBC-based MP systems Fig. 6 

Many studies have been aimed at partitioning loops 
so as to exploit the good cache locality in MP systems, 
but all such research has failed to treat the critical mat- 
ter of whether or not the local cache is multibank. 

However, for the PMBC uniprocessor, the proposed 
loop partition method takes into account multibank 
caches. Hence, we can combine this present approach 
with one result from previous work to take advantage 
of both. First, we apply the current method to partition 
the innermost loop (a loop interchange may be needed 
to utilise the cache features of the PMBC architecture). 
Next, we partition the outer loop into clusters, accord- 
ing to one of the approaches developed in previous 
studies, e.g. loop tiling [16]. 

7 Simulation results 

In this Section, some preliminary performance gains 
resulting from use of the proposed method are evalu- 
ated. It is assumed that applying this method can give a 
bank-conflict-free partition. In addition, an analysis of 
the impacts of the cache parameters is given, including 
the number of bank modules, the number of logical 
processors, and the hit ratio. A simulator has been con- 
structed in the IBM RS/6000 workstation to simulate 
the effect of loop partition for multibank caches that 
uses a random procedure to generate test data instead 
of using real programs. In this way, performance evalu- 
ations can be done by controlling the following impor- 
tant parameters involved in the random procedure: 

0 # p  : the number of logical processors 

0 # b  : the number of bank modules 

0 %h : the hit ratio 
First, we give some reasonable assumptions: the per- 
centage of memory accesses (%m) equals 30%, the hit 
time (T,J equals 1 cycle, the miss time (T,) equals 16 
cycles, and the hit ratio (ohh) equals 95% [l]. Next, we 
define the following two evaluation criteria: 

(i) 
the number of memory accesses 
that cannot be granted 
access to the corresponding 
bank module when issued bank conflict ratio = 

(ii) 

total number of memory accesses 
(1) 

average access time : AAT 

1 1 1 - - 
total number of memory accesses 

where W, represents the waiting time of the ith memory 
access because of a bank conflict, h and z represent the 
number of memory access requests that hit and miss, 
respectively. Additionally, the total number of the 
memory accesses, t, equals h + z. 

average access-time speedup = 
AATmultibank cache 

AATbank-conflict-free cache 

(’4 
where AA Tmultlbankcache represents the average access 
time of the multibank cache without bank-conflict-free 
loop partition, and AA Tbank-confllct.free represents the 
average access time of the multibank cache with loop 
partition when there is no bank conflict. In the multi- 
bank cache configuration, it is assumed that the proba- 
bility of a certain memory request accessing any one of 
the bank modules is equal. However, in the bank-con- 
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flict-free cache configuration, the memory request from 
a thread accesses specific bank modules, and no two 
threads access the same bank module. 

In the following subsection, these two criteria are 
used as a basis to examine the impact of each parame- 
ter. There is one notation that we have to explain first: 

PMBC(P, B) represents a PMBC processor 
with # p  = P and # b  = B 

25 T 

Fig. 7. Fig. 8 shows the speedup of the AAT for vari- 
ous configurations. Because the bank conflict ratio 
decreases similarly, the speedup is decreased when the 
#b increases. The decrease gradient is steeper for con- 
figurations with more logical processors. 

7.2 The consequences of different hit ratios 
The bank conflict ratio is proportional to the hit ratio, 
as shown in Fig. 9. On average, the hit ratio is greater 
than go%, otherwise, the point of using caches is lost. 
The speedup increases when the hit ratio decreases 
from 100Y0 to go%, but after the hit ratio drops below 
90%, the speedup decreases a little, as shown in Fig. 10. 
This is because the performance gain is obtained by 
removing the waiting time for accessing bank modules. 
We express it in the following formula: 

g- WE 
1 

performance gain = (3) %h * Th + (100% - %h) * T, 
0 2 5 ~  

2 4 8 16 32 64 
number of banks 

Fig.7 -.- 2-LP 
-0- 4-LP -+- 8-LP 
-0- 16-LP 

The bank conflict ratio for various configurations 

'"T 
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hit,ratio% 
Fig.9 -.- PMBC(1,2) 
--O- PMBC(2,4) -+- PMBC(4,8) 
-0- PMBC(8,16) 
-A- PMBC(16,32) 

The bank conflict ratio for various hit ratios 
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number of banks 

Fig. 8 -.- 2-LP 
Average access time speedup for various conJigurations 

-0- 4-LP -+- 8-LP 
-0- 16-LP 

7. I The number of logical processors versus 
the number of bank modules 
The larger the #p, the greater the likelihood that the 
bank conflict will occur. This is because more threads 
will issue memory requests to a specific bank module. 
On the other hand, when the #b is enlarged, the possi- 
bility that a certain memory request will access a spe- 
cific bank module is ll#b according to our assumption. 
The bank conflict ratio decreases more and more 
slowly when #b or #p increases gradually, as shown in 

! Q 1.3 t 
-W 

100 95 90 85 80 70 
hit ratio:/. 

Fig. 10 -.- PMBC(2,4) 

-+- PMBC(8,16) 
-0- PMBC(16,32) 

Average access time speedup for various hit ratios 

-0- PMBC(4,8) 

The sum of Clr Wi is related to the bank conflict ratio 
and the miss time, T,, but T, is constant in this 
expression. Both Th and T, are constant in the expres- 
sion of the denominator, so the value of the denomina- 
tor depends only on %h. When the %h is large enough, 
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the sum of Cl‘ Wi dominates the result of the expres- 
sion. Otherwise (100% - %h)*T, dominates the result 
of the expression, because T, is much larger than Th. 

8 Concluding remarks 

In this paper, a loop partition method has been pro- 
posed that can reduce or even eliminate bank conflict 
for parallel multithreaded processor with multibank 
cache configurations. The proposed approach can be 
applied to many numeric calculations, including, inner 
product, matrix multiplication, and Gauss-Jordan 
elimination. For instance, the transformation of matrix 
multiplication is as follows: 

for m = 1 to 25 do 
for i = 1 to 25 do 
temp = Y(i,m); 
f o r j  = 1 to y1 do 
~ ( i j )  = ~ ( i j )  + temp*X(mj); 

=3 

for m = 1 to 25 do 
for i = 1 to 25 do 

temp = Y(i,m); 
(Uk) f o r j  = k + 1 to y1 by P 

x(ij) = x(ij) + temp* x(mj) ;  
So far, we have obtained some important results using 
simulation results: (1) the performance can be 
enhanced, especially when the difference between the 
number of bank modules and the number of logical 
processors is increased; (2) if the number of logical 
processors, #p,  is larger than or equal to the number of 
bank modules, #b, speedup will increase when #p and 
#b increase. The best speedup was approximately 1.9 in 
the simulation results; (3) when the hit ratio decreased, 
speedup first increased, then, once above 90%, 
decreased slowly. 

In the future, more general cases will be further stud- 
ied and analysed. Two important problems remain to 
be solved: (i) finding the heuristic function that selects 
the major array, or the major subscript expression; and 
(ii) partitioning loops when the number of logical proc- 
essors is not a power of 2. 
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