
an

c-c. wu
C. Chen

Indexing terms: Loop partition, Multibunk cache, Bunk conflict, Multithreaded processor, Compile time

Abstract: Parallel multithreaded architectures
take advantage of the ability to execute more
than one thread simultaneously on a single chip
at low synchronisation and communication costs
and high hardware resource utilisation. However,
a high bandwidth cache, such as a multibank
cache, is especially critical to serve memory
accesses issued at the same time from different
threads. To prevent bank conflicts of multibank
cache from seriously degrading system
performance, a loop partition method is proposed
to reduce or even eliminate bank conflicts. The
partition allows each thread access to certain
bank modules and prevents any two from
accessing the same bank module. The method
neither slows down the clock rate nor increases
the array subscript expression complexity. The
performance gains of the bank-conflict-free loop
partition approach are shown in simulation
results.

1 Introduction

In the near future, improvements in semiconductor
technology will allow multiple high performance float-
ing point units and several megabits of memory to
reside on a single chip [l]. This trend is stimulating the
design of multithreaded processors [2-6]. In multi-
threaded architectures, whenever a long latency opera-
tion take places in a running thread, the system
immediately switches out the thread and selects one of
the waiting threads for execution. Thus, long latencies
can be hidden by executing threads, which improves
utilisation of system resources [2].

There are two kinds of multithreaded processors:
concurrent multithreaded processors (CMPs) and par-
allel multithreaded processors (PMPs) [4]. CMPs exe-
cute only one thread at any time. They rapidly switch
to one of the waiting threads when the running thread
encounters such situations as data absences or synchro-
nisation failures, which cause long processor latencies.
The success of a CMP design depends on providing a
fast context switching mechanism to efficiently overlap
0 IEE, 1996
IEE Proceedings online no. 19960007
Paper first received 28th FebruaIy 1995 and in revised form 22nd Septem-
ber 1995
Department of Computer Science & Information Engineering, National
Chiao Tung University, Hsinchu, Taiwan, Republic of China

long latencies. Architectures possessing this ability
include HEP [2], Sparcle [4], Tera [5] and *T [6].

PMP architectures, on the other hand, are capable of
executing more than one thread at the same time [4].
Although, they usually require more expensive hard-
ware and greater design complexity, they can hide
latencies at the instruction level rather than at the
thread level. When an instruction from a thread cannot
be issued, because of either a control or data depend-
ence within the thread, an independent instruction
from another thread is executed instead. Thus, the
advantage of PMPs is that they enable greater hard-
ware utilisation because the functional units in this
processor are shared by all the parallel running threads.
Some examples of PMP architecture are described in
[l-31. It is expected that this type of processor will
become one of the most popular forms of single proces-
sor design because of its better resource utilisation. In
addition, because multibank caches are often included
in PMP architectures to provide high bandwidth mem-
ory subsystems [l], in this paper the PMP architecture
will be studied with a multibank cache.

A good loop partition technique is very important
for both multiprocessor systems and PMP architectures
because it can exploit more parallelism from a pro-
gram. Although there have been many partition tech-
niques focused on exploring cache locality, the features
o f multibank caches have been ignored [9]. One multi-
bank cache feature is that several memory accesses can
be served simultaneously. However, if a bank module
receives more than one access at the same time, there
will be a bank conflict. Bank conflicts severely degrade
system performance. Therefore, reducing cache-bank
conflicts is very important in partitioning loops in PMP
architectures. In this paper, we propose a loop parti-
tion method that improves system performance accord-
ing to special considerations on multibank caches. The
loop is partitioned on the basis of multibank cache
data allocation characteristics, so as to reduce bank
conflicts and thus enhance the system performance. It
was found that some important properties help parti-
tion the loop without bank conflicts. According to sim-
ulation results, the ideal case o f this method can, at
best, speed system performance by a factor of 1.9 over
other methods.

2 Basic configuration and issues

The PMBC (parallel multithreaded multibank cache)
processor is a PMP architecture with a multibank
cache, as shown in Fig. 1. This architecture has two
distinguishing features: (i) several threads executed

IEE Pvoc.-Comput. Digit. Tech., Vol. 143, No. I , Januavy 1996 30

simultaneously in the same chip can access the single
shared cache at the same time, and (ii) the multibank
cache allows more than one memory access to be
served at the same time. A PMP comprises several log-
ical processors (LP), each of which can execute one
individual thread. An LP is composed of a thread slot,
several functional units, and a register set. Each thread
slot has its own program counter and decoder unit.
Instructions are fetched from the instruction cache into
the thread slot and then scheduled into the functional
units after decoding. Data are fetched from or written
into the corresponding register set. There are many reg-
ister sets, which provide for fast context switching
among running threads, blocked threads and ready
threads. Synchronisation and communication between
threads are performed through the shared memory.

I unit I I unit I I unit

(instruction cache)

I

1
instruction fetchunit

0 . .

functional * -
units

Naturally, since there will be many simultaneous
memory accesses from multiple threads, the PMP needs
a high bandwidth cache subsystem, otherwise the cache
subsystem will become a bottleneck and severely
degrade system performance. The multibank cache is a
popular way of providing high bandwidth for memory
accesses [1,3]. If the data requested by several threads
are allocated to different bank modules, all the memory
access requests can be granted simultaneously. On the
other hand, a bank conflict will occur if more than one
memory request for a single bank module arrives at the
same time, or if the bank module is busy when the
memory request arrives. Whenever a bank conflict
occurs, one of the requests is arbitrarily granted to
access the bank module. The other requests are blocked
and must wait for the next arbitration. The memory
access time increases in proportion to the time these
blocked requests must wait. That is to say if the aver-
age memory access time is increased, the total program
execution time will also be increased. If the bank con-
flict ratio can be reduced, or even eliminated, obvi-
ously, system performance would be improved. Since a
large percentage of the execution time is spent in exe-
cuting the loop body, the intention of this paper is to
propose a loop partition approach that will reduce, or
even eliminate bank conflicts.

The loop is partitioned into threads such that each
thread can access specific bank modules but no two
threads can access the same bank module. The method

multi-
bank
data

employs a software approach that does not raise tne
complexity of the array subscript expression. It is based
on data allocation characteristics of the multibank
cache, which has different properties and solution tech-
niques from those either in multiprocessor systems or
in multibank memory systems [7-151.

Many research projects on loop partitions used in
multiprocessor systems have been proposed [7-111. In
multiprocessor systems, each processing element has its
own cache, and copies of data are stored in several dif-
ferent caches. Therefore, there are cache coherence
problems in multiprocessor systems. Basically, the pur-
poses of these projects have been to reduce synchroni-
sation overhead and communication traffic between the
memory modules in the shared or distributed memory
system. The principles of these loop partitions exploit
the locality of the data caches, instead of the memory
modules. Thus, it does not matter whether the memory
is multibank or not. In a PMP architecture, however,
although multiple simultaneous running threads shares
a single cache, there is no cache coherence problem
because there is only one copy of the data. Reducing
bank conflicts is the special goal of loop partition for
PMP architecture.

Many studies have also been done on multibank
memories for vector1 machines [12-151. In a vector
machine, when a me ory request from a single instruc-
tion stream is issue to the memory, an interleaving

ory address, the acckss stride, and the access length.
Ideally, an interleaving access will fetch one datum
from each bank module unless there is bank conflict.
The goal of these studies has been to reduce bank con-
flicts by restructuring data allocation. Such a reduction
can be achieved using hardware or software
approaches. Although the hardware approach increases
the length of the critical path and affects the clock rate,
the software approach results in a very complex array
subscript expression and a long run time for subscript
calculation. In PMP architectures, however, multiple
simultaneous memory requests are issued from many
streams to a shared cache. In addition, the addresses of
these requests may have no regularity among them.
Therefore, a loop partition method in terms of the data
allocation features in the multibank cache is proposed.
This method does not increase the subscript expression
complexity or affect the clock rate.

3

In this Section, we consider the following code exe-
cuted in a PMBC model processor according to the
subscript expression

f o r j =1 to M do

access occurs. This r 1 quest includes the starting mem-

Single dimension array, single loop structure

... A[&] ...
For convenience, we assume that the number of LPs in
the PMBC processor is P, P = 2p, and that the number
of cache banks is B, B = 2b. Data allocation adopts low
order interleaving and the datum at address d will be
allocated to bank r if Y equals (d mod B). Suppose that
the accessed array elements are allocated to exactly H
bank modules, where H 2 P and HIP = D. If we parti-
tion the code into P threads such that each thread ref-
erences exactly D different bank modules, there will be
no bank conflict. In the following lemma, we determine
the sufficient condition for accessing exactly D bank
modules.

register register register
set set set

IEE ProcComput. Digit. Tech., Vol. 143, No. I , January 1996

. . register register
set set

31

Lemma 1: Assume that B = m*P, where B = 2b, P = 2p,
and both m and a are integers,
Let R = { r j r = a? mod B and j is an integer},
Rk = { r I r = a y mod B and j = (k + 1) + s*P, s 2 0
and s is an integer), k is a constant, 0 I k < P,
U = { R k I 0 I k < P}

If (i) a is odd, or
(ii) a is even and there exist integers a’ and q, a’ > 0,
4 > 0, such that a = a’*q and a‘*q*P = B,

then U is a partition of R.
ProoJ (1) Trivially, the union of all Rk equals R, where
O i k < P .
(2) Let a mod B = a’. If r belongs to both R, and R h , 0
I g , h < P, then r = u*((g + 1) + s*P) mod B = a*((h +
1) + s’*P) mod B, where s and s’ are nonnegative inte-
gers.

(i) a is odd. Let s1 = s mod m, sl’ = s’ mod m. If a
mod R = o’, then n’*((g + 1) + s,*P) mod B = d*((h +
1) + sl’*P) mod B. This implies ((g - h) + (sl - sl’)*P)
mod B = 0. Since 1 - P I g - h I P - 1 and, 1 - m I s1
- sl’ I m - 1, we have (g - h) + (sl - sl’)*P < B, which
implies g = h and s1 = sl’. Hence, Rg and Rh are dis-
joint if g ;t k..

(ii) a is even, a = a’*q, and a’*q*P = B. If v1 = s mod
4, vI’ = s‘ mod q, then (a’*(g + 1) + a’*vl*P) mod B =
(a’*(h + 1) + a’*vl’*P) mod B. Because u’*(l - P) I a’*(g
- h) I a’*(P - 1) and a’*(I - q)*P I a’*(vl - vl’)*P I a’*(q
- l)*P, we have a’*(l - 4*P) I (a’*(g - h) + a’*(vl -
vl’)*P) I a’*(q*P - 1). Hence, a’ - B I a’*(g - h) + a’*(vl
- vl’)*P) 5 B - a‘. Comparing with the previous expres-
sion: (a’*(g - h) + a’*(vl - vl’)*P) mod B = 0, we have g
= h and vl = vl’ because -B < a’ - B < 0 and 0 < B - a’
< B. That is, Rg and Rh are disjoint if g f h.
(3) According to the results of (1) and (2), U is a parti-
tion of R. <Q.E.D.>

In lemma 1, the meanings of both a and j are the
same as those in the code segment mentioned above.
The element r , of the sets R and Rk, represents which
bank module will be allocated, where the subscript k of
Rk indicates the identification of the logical processor.
The following lemma describes an alternative way of
calculating how many bank modules will be accessed
when the coefficient a is even.
Lemma 2: Assume that both B and a’ are even and that
n is an integer. If 2 I a’ I Bl2, a’*n = B, j and j’ are
nonnegative integers, then (I) the set of the remainders
of (a’? mod B) is identical to the set of the remainders
of ((B - a’)? mod B); (2) the remainders of (a’? mod
B) have exactly IZ different values.
Pro& (1) If a’? mod B = (B - a’)> mod B, then a‘? -

(B - a’)*j. mod B = 0. Hence, we have a’*(j + j’) mod B
= 0. Since a‘ mod B f 0, (j + j‘) mod B = 0. In addi-
tion, since 2 < j + j’ 2 2*n and 2 I n I Bi2, we have 2 I
j + j’ I B, which implies j’ = B - j .
(2) Let j = s1 + s;n, where 0 I s1 < n and s2 is an inte-
ger. We find that a’? mod B = (a‘*sl + a’*s;n) mod B
= (a’*sl) mod B. Since 0 I s1 < n, we have 0 I a’*sl <
a‘*n = B. Hence, there are n different remainders for
(a’? mod B). <Q.E.D.>

The partitions of the remainders for a? and (B - a)?
are the same, which implies that the number of banks
that will be accessed can be calculated by either a or (B
- a). When a is odd, a different property will be
obtained as shown below.

32

Lemma 3: Assume that a is odd and that the processor
is a PMBC model. Let 2 = {A[a*(C + w)] I 0 I w 5 B -
1, C is an arbitrary constant and w is an integer}, if x f
y , both x and y belong to 2, then x and y will not be
allocated to the same bank module.
ProoJ If A[a*(C + sr)] and A[a*(C + s2)] are allocated
to the same bank module, where 0 I sl, s2 I B - 1, then
a*(C + sl) mod B = a*(C + s2) mod b. Because a is odd
and B is even, a mod B f 0. Hence, C + s1 mod B = C
+ s2 mod B, and we get s1 - s2 mod B = 0. Since 1 - B
<: s1 - s2 I B - 1, we have s1 = s2. <Q.E.D.>

We know from lemma 3 that all the B bank modules
will be accessed individually by consecutive B memory
references. The following partition rule which precludes
bank conflicts can be obtained directly from the above
three lemmas.
Theorem 1: Let A[a>] be a data array in the following
loop structure:

f o r j = 1 to M do
... &>-I ...

Assume that (a mod B) = e and a’ = min(e, B - e). If
(1) a is even, a’ > 0, and B mod (a’*P) = 0, or (2) a is
odd, we can partition this loop into P threads for our
PMBC model using the following rule, such that each
thread can be executed concurrently without bank con-
flict for array A.

LPk executes:
f o r j = k + 1 t o M b y P
... A[a>] ...

where 0 I k I P - 1, and LPk is one of the P logical
processors in PMBC.
Proofi (1) Assume that a is even. If a’ > 0, 2 I a’ I Bl2,
since a’ = min(e, B - e) and (a mod B) = e. Moreover,
B mod (a’*P) = 0 implies that there exists an integer q
such that a‘*q*P = B. According to lemma 2, (4*P)
bank modules will be accessed. In addition, based on
the result of lemma 1, we can partition this loop into P
threads such that each thread references exactly q bank
modules.
(2) According to lemma 3, we know that B bank mod-
ules will be accessed. Moreover, in terms of the result
of lemma 1, we can partition this loop into P threads
such that each thread references exactly BIP bank mod-
ules. <Q.E.D.>

bank 0
Fig.2 An example for lemmas and theovem access conditions

(1 1,15,l9

A [151
AR31
A[311
A[391

bank?

To explain the above lemmas and theorem, an exam-
ple is illustrated in Table 1 and Fig. 2 for the case of a
= 2, P = 2, and B = 8. In Table 1, we find that the
remainders can be divided into two partitions: Ro and
RI . We also find that the partitions of the remainders
for a? and (B - a)? are the same; that is, the number
of banks that will be accessed can be calculated by

IEE Pvoc.-Comput Digit. Tech., Vol. 143, No. 1, Januavy 1996

either a or (B - a). Fig. 2 shows that LP, always
accesses banks 2 and 6, which combine to equal set Ro,
and that the LP1 always accesses banks 0 and 4.

Next, the partition rules developed in this section are
applied to more complicated structures. It should be
noted, however, that different preprocessing procedures
must be performed for some structures. These proce-
dures will be discussed in the following two Sections.

Table 1. Example for lemmas and theorem: remainders
and partitions

k = 0 k = 1

j a*j r (B-a)*j r j a*j r (B-a)*j r

1 2 2 6 6 2 4 4 1 2 4

3 6 6 1 8 2 4 8 0 2 4 0

5 1 0 2 3 0 6 6 1 2 4 3 6 4

7 1 4 6 4 2 2 8 1 6 0 4 8 0

9 18 2 54 6 10 20 4 60 4
11 22 6 66 2 12 24 0 72 0

13 26 2 78 6 14 28 4 84 4

15 30 6 90 2 16 32 0 96 0

17 34 2 102 6 18 36 4 108 4
_____. ._____ ._______ ...___ _...._ _..._. ____.. _ _ _ _ _ _ _ _ _ _ _ _

~ ~

a = 2, P = 2, B = 8, R = IO, 2, 4, 6}, Ro = {2, 61, Rq =IO, 4)

4

Consider the example shown in Fig. 3. Because both
A[0][0] and A[1][0] are allocated to the same bank
(based on the allocation rule in our PMBC model), we
cannot make the best use of the high bandwidth cache
by directly applying theorem I to partition the loop.
One solution to this problem is to restructure the array
such that the loop index j is a variable in the subscript
expression of the last array dimension.

Multi-dimension array, single loop structure

for j=Oto2do

bank 0 bank 1 bank 2
Fig. 3 The original code segment and data allocation

declare P[O..71[0..21

I for j=OtoZdo
A[Ol[jl = 3*A[llrjl;

bank 3

A[lICOI
A [21[11
A131121
A [51 [OI

bank 3
Fig.4
interchange

The amended code segment and datu allocation after dimension

Given an array A[il][i21 ...[tl][i,], if the loop index
influences the subscript value of the fth dimension, and

IEE Proc-Comput. Digit. Tech., Vol. 143, No. I , January 1996

f does not equal e, we can redeclare the array by inter-
changing the dimensions f and e. We see that A[0][0]
and A[1][0] can be allocated to different bank modules
after the interchange as shown in Fig. 4.

Let us consider another problem. As shown in Fig. 4,
since A[0][0] and A[1][0] are not mapped to the same
bank module, the partition rule for single dimension
array, single loop structures mentioned in Section 3
cannot be directly applied to this example. In order to
use the results from the preceding Section, we must
reduce the partition problem by mapping and restruc-
turing the multidimension array, single loop structure
into an appropriate single dimension array, single loop
structure. The principle behind this reduction is that
only the subscript of the last array dimension will be
used to determine which bank module will be allocated.
To meet this requirement, the number of array ele-
ments in the last dimension must be expanded to a
multiple of the number of the bank modules. Suppose,
for instance, that thcrc is an e-dimension array
A[il][i2]...[i,~l][i]. Assume that the range of the last
dimension of array A is 0 5 i, < N . Let re = N mod B,
where B is the number of bank modules. If re f 0, let
NI = N + (B - re); otherwise, NI = N . We can redeclare
the range of the last dimension of array A to be 0 < i,

After the alignment, there may be some dummy ele-
ments at the end of the last dimension, but all the first
elements of every dimension are mapped to bank 0.
Thus, the bank module that a certain element belongs
to depends only on the subscript of the last dimension.
Fig. 5 illustrates the result of the array alignment of the
code segment in Fig. 4.

< NI.

declare A[O..fI10..31

1 forj=Oto2do
A[Oltjl = 3*A[II[jl;

I I I I

bank 0 bank 1 bank 2
I I I

bank 3
Fig.5
ment

The amended code segment and data allocation after army align-

Trivially, the alignment procedure cannot be per-
formed before the interchange procedure because the
latter will destroy the result of the former. After the
alignment and the interchange procedures are per-
formed, loop partition of the multidimension array,
single loop structure can be performed in terms of the-
orem 1.

5
structure

Linear subscript expression, nested loop

According to the statistics reported in previous, related
articles, a large percentage of expressions are linear.
Therefore, it is reasonable to assume that the array
subscript expressions are linear [8]. It also makes sense
to assume that the array is single-dimensional because
multidimension arrays can be handled just like single
dimension arrays in terms of the approaches mentioned
in the above section. Consider the following code seg-
ment

33

for i = 1 to N do
f o r j = 1 to M do
,.. A[U,*i + a,> + ao] ...

In the following paragraphs, we will discuss how to
partition the loop in terms of the values of ao, aI , and
a2.
Case I : The constant a. contributes a constant offset
for every array access that does not affect the distance
between two adjacent accesses. Therefore, the constant
a. can be ignored when the loop is partitioned.
Case 2: If ((al mod B) mod P) = 0 and ((az mod B)
mod P) f 0, then the value of the loop indexj decides
which elements will be accessed. Hence, we can parti-
tion the outer loop according to the value of u2. This
partition method is the same as theorem 1 but replaces
a with u2. Alternatively, if the loop is interchangeable,
we can partition the innermost loop after the inter-
change.
Case 3: If ((al mod B) mod P) f 0, then the value of
loop index j will determine which elements will be
accessed, and, therefore, we can partition the innermost
loop according to theorem 1. However, in order to
allow each logical processor to access specific bank
modules, we must recalculate the initial value of index j
whenever index i is increased by one. Let j , be the ini-
tial value of index j when the value of index i is if, and
((az mod B) mod P) = a2‘. When the value of i becomes
(i’ + l), the initial value of j will be:

(j o - U ;) mod P
If there are multiple arrays in the loop body, we can
choose a major array that is accessed most frequently
and then divide the loop according to the major array
subscript expression.

xtension to NIP systems

Although the partition method described was devel-
oped for the PMBC uniprocessor model, we can extend
this method easily to PMBC-based MP systems. Each
processing element in this kind of MP system has its
own local cache, each of which possesses multiple bank
modules; several simultaneously executing threads
share this cache. We need to partition loops twice, such
that each partition has two levels, as shown in Fig. 6.
The higher level is the basic unit of process scheduling
and will be allocated to a certain processing element
which we call a ‘cluster’. Therefore, when partitioning
loops into clusters, one should be aware of cache local-
ity. Next, when each cluster is divided into several
threads, we let each thread access specific bank mod-
ules such that bank conflicts will be reduced.

cluster I
t

PE0 PE1
Two-level loop partrtron for PMBC-based MP systems Fig. 6

Many studies have been aimed at partitioning loops
so as to exploit the good cache locality in MP systems,
but all such research has failed to treat the critical mat-
ter of whether or not the local cache is multibank.

However, for the PMBC uniprocessor, the proposed
loop partition method takes into account multibank
caches. Hence, we can combine this present approach
with one result from previous work to take advantage
of both. First, we apply the current method to partition
the innermost loop (a loop interchange may be needed
to utilise the cache features of the PMBC architecture).
Next, we partition the outer loop into clusters, accord-
ing to one of the approaches developed in previous
studies, e.g. loop tiling [16].

7 Simulation results

In this Section, some preliminary performance gains
resulting from use of the proposed method are evalu-
ated. It is assumed that applying this method can give a
bank-conflict-free partition. In addition, an analysis of
the impacts of the cache parameters is given, including
the number of bank modules, the number of logical
processors, and the hit ratio. A simulator has been con-
structed in the IBM RS/6000 workstation to simulate
the effect of loop partition for multibank caches that
uses a random procedure to generate test data instead
of using real programs. In this way, performance evalu-
ations can be done by controlling the following impor-
tant parameters involved in the random procedure:

0 # p : the number of logical processors

0 # b : the number of bank modules

0 %h : the hit ratio
First, we give some reasonable assumptions: the per-
centage of memory accesses (%m) equals 30%, the hit
time (T,J equals 1 cycle, the miss time (T,) equals 16
cycles, and the hit ratio (ohh) equals 95% [l]. Next, we
define the following two evaluation criteria:

(i)
the number of memory accesses
that cannot be granted
access to the corresponding
bank module when issued bank conflict ratio =

(ii)

total number of memory accesses
(1)

average access time : AAT

1 1 1 - -
total number of memory accesses

where W, represents the waiting time of the ith memory
access because of a bank conflict, h and z represent the
number of memory access requests that hit and miss,
respectively. Additionally, the total number of the
memory accesses, t, equals h + z.

average access-time speedup =
AATmultibank cache

AATbank-conflict-free cache

(’4
where AA Tmultlbankcache represents the average access
time of the multibank cache without bank-conflict-free
loop partition, and AA Tbank-confllct.free represents the
average access time of the multibank cache with loop
partition when there is no bank conflict. In the multi-
bank cache configuration, it is assumed that the proba-
bility of a certain memory request accessing any one of
the bank modules is equal. However, in the bank-con-

34 IEE ProcComput. Digit. Tech., Vol. 143, No. 1, January 1996

flict-free cache configuration, the memory request from
a thread accesses specific bank modules, and no two
threads access the same bank module.

In the following subsection, these two criteria are
used as a basis to examine the impact of each parame-
ter. There is one notation that we have to explain first:

PMBC(P, B) represents a PMBC processor
with # p = P and # b = B

25 T

Fig. 7. Fig. 8 shows the speedup of the AAT for vari-
ous configurations. Because the bank conflict ratio
decreases similarly, the speedup is decreased when the
#b increases. The decrease gradient is steeper for con-
figurations with more logical processors.

7.2 The consequences of different hit ratios
The bank conflict ratio is proportional to the hit ratio,
as shown in Fig. 9. On average, the hit ratio is greater
than go%, otherwise, the point of using caches is lost.
The speedup increases when the hit ratio decreases
from 100Y0 to go%, but after the hit ratio drops below
90%, the speedup decreases a little, as shown in Fig. 10.
This is because the performance gain is obtained by
removing the waiting time for accessing bank modules.
We express it in the following formula:

g- WE
1

performance gain = (3) %h * Th + (100% - %h) * T,
0 2 5 ~

2 4 8 16 32 64
number of banks

Fig.7 -.- 2-LP
-0- 4-LP -+- 8-LP
-0- 16-LP

The bank conflict ratio for various configurations

'"T
0 4-F-F-m-F-F
100 95 90 85 80 70

hit,ratio%
Fig.9 -.- PMBC(1,2)
--O- PMBC(2,4) -+- PMBC(4,8)
-0- PMBC(8,16)
-A- PMBC(16,32)

The bank conflict ratio for various hit ratios

2 4 8 16 32 64
number of banks

Fig. 8 -.- 2-LP
Average access time speedup for various conJigurations

-0- 4-LP -+- 8-LP
-0- 16-LP

7. I The number of logical processors versus
the number of bank modules
The larger the #p, the greater the likelihood that the
bank conflict will occur. This is because more threads
will issue memory requests to a specific bank module.
On the other hand, when the #b is enlarged, the possi-
bility that a certain memory request will access a spe-
cific bank module is ll#b according to our assumption.
The bank conflict ratio decreases more and more
slowly when #b or #p increases gradually, as shown in

! Q 1.3 t
-W

100 95 90 85 80 70
hit ratio:/.

Fig. 10 -.- PMBC(2,4)

-+- PMBC(8,16)
-0- PMBC(16,32)

Average access time speedup for various hit ratios

-0- PMBC(4,8)

The sum of Clr Wi is related to the bank conflict ratio
and the miss time, T,, but T, is constant in this
expression. Both Th and T, are constant in the expres-
sion of the denominator, so the value of the denomina-
tor depends only on %h. When the %h is large enough,

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 1, January 1996 35

the sum of Cl‘ Wi dominates the result of the expres-
sion. Otherwise (100% - %h)*T, dominates the result
of the expression, because T, is much larger than Th.

8 Concluding remarks

In this paper, a loop partition method has been pro-
posed that can reduce or even eliminate bank conflict
for parallel multithreaded processor with multibank
cache configurations. The proposed approach can be
applied to many numeric calculations, including, inner
product, matrix multiplication, and Gauss-Jordan
elimination. For instance, the transformation of matrix
multiplication is as follows:

for m = 1 to 25 do
for i = 1 to 25 do
temp = Y(i,m);
f o r j = 1 to y1 do
~ (i j) = ~ (i j) + temp*X(mj);

=3

for m = 1 to 25 do
for i = 1 to 25 do

temp = Y(i,m);
(Uk) f o r j = k + 1 to y1 by P

x(ij) = x(ij) + temp* x(mj) ;
So far, we have obtained some important results using
simulation results: (1) the performance can be
enhanced, especially when the difference between the
number of bank modules and the number of logical
processors is increased; (2) if the number of logical
processors, #p, is larger than or equal to the number of
bank modules, #b, speedup will increase when #p and
#b increase. The best speedup was approximately 1.9 in
the simulation results; (3) when the hit ratio decreased,
speedup first increased, then, once above 90%,
decreased slowly.

In the future, more general cases will be further stud-
ied and analysed. Two important problems remain to
be solved: (i) finding the heuristic function that selects
the major array, or the major subscript expression; and
(ii) partitioning loops when the number of logical proc-
essors is not a power of 2.

9 Acknowledgments

The authors would like to thank the reviewers for their
helpful comments. This research was supported by

National Science Council under the contract number:
NSC84-222 1 -E009-00 1.

10 References

1

2

3

4

5

6

7

8

9

10

11

12

13

14

KECKLER, S.W., and DALLY, W.J.: ‘Processor coupling: inte-
grating compiler time and runtime scheduling for parallelism’,
Proceedings of the 19th Annual International Symposium on
Computer Architecture, May 1992, pp. 202-213
IANNUCCI, R.A., GAO, G.R., HALSTEAD, R.H. Jr, and
SMITH, B.: ‘Multithreading: a summary of the state of the art’
(Kluwer Academic, 1993)
HIRATA, H., KIMURA, K., NAGAMINE, S., and MOCHI-
ZUKI, Y.: ‘An elementary processor architecture with simultane-
ous instruction issuing from multiple threads’, Proceedings of the
19th International Symposium on Computer Architecture, May
1992, pp. 136145
AGARWAL, A., KUBIATOWICZ, J., KRANZ, D., LIM, B.-H.,
YEUNG, D., D’SOUZA, G., and PARKIN, M.: ‘Sparcle: an
evolutionary processor design for large-scale multiprocessors’,
IEEE Micro, 1993, 13, (3), pp. 48-61
ALVERSON, G., ALVERSON, R., CALLAHAN, D.,
KOBLENZ, B., PORTERFIELD, A., and SMITH, B.: ‘Exploit-
ing heterogeneous parallelism on a multithreaded multiprocessor’,
Workshop on Multithreaded Computers, Proceedings of Super-
computing’91, Albuquerque, New Mexico, November 1991
NIKHIL, R.S., PAPADOPOULOS, G.M., and ARVIND : ‘“T:
A multithreaded massively parallel architecture’, Proceedings of
the 19th International Symoosium on Computer Architecture. .~
1992, pp. 1561 67
HUANG. C.-H., and SADAYAPPAN. P.: ‘Communications-free
hyperplane partitioning of nested loops’, J. Parallel and Distrib-
uted Computing, 1993, 19, pp. 90-102
FANG, J.Z. and LU, M.: ‘An iteration partition approach for
cache or local memory thrashing on parallel processing’, IEEE
Trans. Computers, 1993, 42, (5), pp. 529-546
BANERJEE, U., EIGENMANN, R., NICOLAU, A., and
PADUA, D.A.: ‘Automatic program parallelization’, Proc. IEEE,
1993, 81, (2), pp. 21 1-243
WOLF, M.E., and LAM, M.S.: ‘A data locality optimizing algo-
rithm’, Proceedings of ACM SIGPLAN’91 Conference on Puo-
gramming Language Design and Implementation, 1991, pp. 3044
RAMANUJAM, J., and SADAYAPPAN, P.: ‘Compile-time
techniques for data distribution in distributed memory machines’,
IEEE Trans. Parallel Distributed Systems, 1991, 2, (4), pp. 472-
482
BAILEY, D.H.: ‘Vector computer memory bank contention’,
IEEE Trans., 1987, C-36, pp. 293-298
RAGHAVAN, R., and HAYES, J.P.: ‘On randomly interleaved
memories’, Proceedings of Supercomputing’90, November 1990,

HARPER, D.T.: ‘Increased memory performance during vector
access through the use of linear address transformations’, IEEE
Trans. Comnuters. 1992. 41. DV. 227-230

pp. 49-58

1 I I

15 SOHI, G.S:: ‘High-bandwidth interleaved memories for vector
processors-A simulation study’, IEEE Trans. Computers, 1993, 42,
(11, PP. 34-44

16 HWANG, K.: ‘Advance computer architecture: parallelism, scala-
bility, programmability’ (McGraw-Hill, 1993)

36 IEE Proc.-Comput Digit. Tech., Vol. 143, No. 1. Januavy 1996

