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Exploiting Event-Level Parallelism for Parallel
Network Simulation on Multicore Systems
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Abstract—This paper proposes a parallel simulation methodology to speed up network simulations on modern multicore systems. In
this paper, we present the design and implementation of this approach and the performance speedups achieved under various network
conditions. This methodology provides two unique and important advantages: 1) one can readily enjoy performance speedups without
using an unfamiliar simulation language/library to rewrite his protocol module code for parallel simulations, and 2) one can conduct
parallel simulations in the same way as when he conducts sequential simulations. We implemented this methodology and evaluated its
performance speedups on the popular ns-2 network simulator. Our results show that this methodology is feasible and can provide
satisfactory performance speedups under high event load conditions on wired networks.

Index Terms—Network simulation, parallel simulation, multicore system.

1 INTRODUCTION

MULTICORE computers have been ubiquitous in the
current market. On such a computer, efficiently
using the computing power of all cores (CPUs) to finish
a task becomes important and challenging. (Note: in the
rest of this paper, we use the conventional term “CPU”
and “core” interchangeably when no ambiguity results.)
As pointed out in [5], it is difficult for an application
(including a network simulator) to automatically gain
performance speedups on multicore systems because the
application process can only be run on a single CPU at any
given time. To gain performance speedups, an application
program first needs to be made “multithreaded” so that its
threads can be run on multiple CPUs simultaneously.
However, turning an application program to be “multi-
threaded” is not trivial and does not necessarily achieve
good performance speedups [5].

In the context of network simulations, parallel and
distributed simulations can be categorized into two
methodologies [7]—the conservative methodology and the
optimistic methodology. Using either methodology, a
simulation user needs to partition a simulated network
into several portions and modify simulation code to
perform simulation clock synchronization among these
portions to avoid causality errors. The conservative meth-
odology, although simpler to be implemented into the
simulation code, usually results in very low performance
speedups under tiny lookahead values [7]. On the other
hand, the optimistic methodology, although potentially
capable of achieving higher performance speedups than the
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conservative methodology, is very complicated and re-
quires substantial modifications to the simulation code.

So far, parallel network simulations have not made a
substantial impact on the network community. This may be
attributed to the following reasons. First, parallelizing
existing network simulators to achieve good performance
speedups is difficult. In [8], Jones and Das attempted to
parallelize the widely used open source network simulator
ns-2, but could only support simple point-to-point links
with static routing and UDP traffic. The supports for TCP
connections, dynamic routing, and shared medium net-
works were not provided due to high complexities. In [16],
Wu et al. attempted to parallelize a widely used commercial
network simulator, called OPNET Modeler, but could only
support simple UDP and IP protocols. The supports for TCP
connections and other protocols were not provided due to
extensive uses of global states, zero lookahead interactions,
and pointer data structures in OPNET Modeler.

The second reason is that simulation users need to learn
parallel simulation concepts and approaches to conduct
parallel network simulations. Using parallel network
simulation techniques to achieve good performance speed-
ups is difficult for users without such trainings and
knowledge. In [13] and [14], Riley et al. used a federated
approach to interconnect multiple ns-2 simulation engines
to simulate a network. In these proposals, each ns-2
simulation engine simulates a part of the whole network.
The developed simulation platform is called Parallel/
Distributed Network Simulator (PDNS). PDNS reduces
the required modification to ns-2 simulation code. How-
ever, to use PDNS, a user needs to learn the modified ns-2
scripting language provided by PDNS and the concepts of
parallel simulation, so that he can properly partition a
simulated network into several portions and map them onto
available CPUs for better performance.

Partitioning a large-scale network with a large number of
nodes is a tedious task for the user. Worse yet, finding a
load-balancing partition to achieve good performance
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speedups is difficult and would be tricky, because dynamic
traffic changes should be taken into consideration. For
example, the amount of traffic that are generated and
processed in each network portion should be balanced
during simulation. However, such information would be
difficult to obtain and estimate when a user plans the
network partition.

These observations show a need of network simulation
users: a methodology to enjoy performance speedups
without changing the way they used to conduct a
simulation (i.e., the way that they used to operate a
sequential network simulator). Without the need of learning
extra knowledge for parallel simulation, it can be expected
that simulation users will be more willing to use parallel
simulation techniques to speedup their simulations.

To this end, in this paper, we propose a parallel
simulation methodology, called “Event-Level Parallelism
(ELP).” The idea of ELP is analogous to that of the
“Instruction-Level Parallelism (ILP)” approach employed
in the computer architecture and compiler research. The ILP
approach exploits instruction-level parallelism to achieve
performance speedups over multiple CPUs without finding
the parallelism inherent and latent in an application. In
contrast to conventional parallel simulation approaches,
which need to partition a network into several portions and
perform simulation clock synchronization among them, the
ELP approach does not require a user to partition a
network. A user can run up his familiar network simulator,
which has been slightly modified for using the ELP
approach, as usual. During execution, the ELP-enabled
parallel network simulator will automatically search for
“safe events” [7] and dispatch them to its internal Worker
Threads (WTs) for parallel execution over multiple CPUs.

In this paper, we show that the ELP approach generates
correct simulation results and achieves satisfactory perfor-
mance speedups under high event load conditions on wired
networks. With its easy-to-use property and good perfor-
mance speedups on wired networks, simulation users will
be more willing to use the ELP approach for parallel
simulations on modern multicore systems.

The remainder of this paper is organized as follows. In
Section 2, we describe related work in the field of parallel
network simulations. In Section 3, we present the design
and architecture of the ELP approach. In Section 4, we
explain how to examine whether an event can affect another
event in the ELP approach. In Section 5, we present the
performance speedup results of the ELP approach under
various network conditions using the popular ns-2 network
simulator. The comparison between the results derived
from the analytical model and those obtained from real-life
experiments are also presented. Finally, we conclude the
paper in Section 6.

2 RELATED WORK

The parallelization of network simulations has been studied
for a long time. The work reported in [8], [16], [13], and [14],
and their differences are already discussed in Section 1. The
PDNS proposed in [13] and [14] has been obsolete and not
available for being evaluated on the state-of-the-art operat-
ing systems. In [18], Zeng et al. proposed GloMoSim, a

library for parallel simulation of large-scale wireless net-
works based on the conservative approach. The library was
developed using a C-based parallel simulation language
called PARSEC [1]. In [4], Cowie et al. presented the
Scalable Simulation Framework (SSF) and its parallel
version DaSSF written in C++ or Java. SSF/DaSSF defines
five core classes and provides the SSF Application
Programming Interface for users to develop their protocol
modules. In [2], Bhatt et al. presented Ted/GTW. Ted is a
small language expressing a natural modeling framework
that is transparently mapped onto a parallel simulation
kernel, the Georgia Tech Time Warp (GTW) [6].

These previous approaches are scalable when the looka-
head value is large. However, when the lookahead value is
tiny, the achieved performance speedups can be very poor,
making the speed of a parallel network simulation much
lower than that of its corresponding sequential network
simulation. In addition, some of them require a simulation
user to develop simulation codes “from scratch” so that the
simulation codes can be tailored for parallel execution. A
simulation user needs to learn the language or library to
develop his protocol modules, partition the simulated
network into Logical Processes (LPs), and wisely map LPs
to CPUs to achieve good performance speedups. Using
these approaches, one cannot use existing popular network
simulators such as ns-2 and OPNET Modeler. Regarding
the issue of the poor parallelism among LPs when the
lookahead values are tiny, Lin et al. proposed an algorithm
to explore the parallelism inside an LP in [9].

In [11], Park and Fujimoto presented the Aurora
approach for web-based distributed parallel simulation.
Aurora is designed for high throughput computing where
the goal is to harness available computing cycles from a
large number of machines. Its primary goal is not to achieve
high performance speedups because it is not suitable for
every type of simulation. Due to the high cost of
communication among machines, this approach is best
suited for applications where a significant amount of
computation can be handed to a client machine for
execution. In Aurora, the parallel simulation program is
composed of a collection of LPs and adopts a master/
worker architecture. In Aurora, LPs and their associated
data structures and states are clustered into “work units”
and the master dispatches these work units to available
client machines (workers) for parallel execution. Similar to
our proposed ELP approach, Aurora also adopts a
centralized conservative synchronization mechanism to
determine what events in an LP (i.e., work unit) are safe
to be processed on a client machine.

The implementation of Aurora differs from that of the
ELP approach. However, if the Aurora approach is
implemented on a multicore machine rather than on a
distributed multimachine environment, its operations are
semantically similar to those of the ELP approach. For
example, ELP that differentiates packet arrival events from
local computation events is equivalent to Aurora that defines
individual network nodes as LPs and schedules them
according to the earliest timestamp of events within each
LP. That way, events (messages) between LPs correspond to
packet arrival events, and events internal to each LP to local
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computation events. Although our proposed ELP approach
can be semantically similar to Aurora, in [11] Park and
Fujimoto did not address how to turn the multimachine
version of Aurora into an efficient multicore version. Our
proposed ELP approach serves an example implementation
that exploits multithread architecture to efficiently realize a
parallel simulation engine combining the centralized event
list design and multiple LPs.

In the literature, several previous works also use a
central event list for parallel execution of safe events in [3]
and [12]. However, the degrees of parallel event execution
in these proposals are very low as compared with our ELP
approach. In [3], only the events with the same timestamp
can be executed in parallel. As a result, the achieved
performance speedups are very low. In [12], a window-
based scheme, called the Moving Time Window (MTW)), is
used to find safe events that can be executed in parallel. In
MTW, the event execution units are allowed to simulta-
neously execute events with timestamps falling into a
calculated time window [Ty, T + dL], where T,.; denotes
the timestamp of the earliest unprocessed event and dL
denotes a known time interval during which all events in
the system are guaranteed to be independent of each other.
For example, it is known that an event representing an
outgoing packet sent by node 7 to node j at time 7" will not
affect other events on node j until the transmission time of
this packet (denoted as T'x) plus the signal propagation
delay over the link (i, j) (denoted as D;;) has elapsed (i.e.,
after T+ T« + D;;). To find the dL of a simulated network,
the minimum of all Tz + D;;, where i and j represent any
possible index of links, is used as the dL in MTW. Because
the found dL is mostly small (which is the minimum of all
possible Tz + D;;), the number of safe events found in
MTW is also small, resulting in low performance speedups.

In contrast, our ELP approach uses the path lookahead
values of paths among nodes to check whether two events
are safe for execution to each other. Note that, although the
path lookahead notion has been present in the literature,
there has been no work that exploits it to find parallelism at
the event level with a central event list. Our ELP approach
is the first work that combines the central event list
architecture with the path lookahead notion to find the
event-level parallelism. Our simulation results show that
such a combination can achieve satisfactory performance
speedups in wired network simulations without the need to
modify existing simulation code or partition the simulated
network topology.

Xiao et al. [17] and Simmonds et al. [15] proposed the
Critical Channel Traversing (CCT) algorithm for conserva-
tive distributed simulation systems with low granularity
on shared-memory multiprocessor computers. The CCT
algorithm still needs to partition a simulated topology into
several partitions. Events generated in a partition can be
executed by several LPs, which are dynamically mapped
onto available CPUs. In the CCT algorithm, a channel is
defined as a unidirectional connection between two LPs.
By properly arranging the execution priority of events on
each channel, the cache locality for events to be processed
can be increased, leading to more cache hits in each CPU
and thus resulting in a better simulation performance.

Event Queue

Dequeue the | Dequeue the
head event E,| head event E,
if E is safe.

Dequeue the
head event E,
if E is safe.

Dequeue the
head event E,
if E is safe.

Worker
Thread 0

Fig. 1. The architecture of a parallel network simulator using the ELP
approach.

if E is safe.

Insert new events if needed

Since the CCT algorithm still needs to partition a simulated
network, the designs proposed in [17] and [15] are different
from the ELP approach.

3 THE ELP APPROACH

Fig. 1 shows the thread architecture of a parallel network
simulator using the ELP approach. In the ELP thread
architecture, multiple WTs are created in the simulation
program and they run in parallel to collaboratively
complete a simulation. When a simulation is started, the
main (first) WT first initializes a path lookahead table
covering all simulated nodes. This table is used for
determining whether an event is safe to be executed and
will be explained in Section 4. It then creates other (N—1)
WTs, where N is the total number of WTs used in a
simulation. The value of N is specified by the user and is
usually set to the number of cores available on the system.
During simulation, each created WT executes Algorithm 1,
which is explained below.

Algorithm 1. The Operation of WT ¢
1: Quun :={ e e is an event to be simulated and sorted by
its timestamp}
2: event(i) = NULL
: while Q,,,, # 0 do
4:  Contend for the write lock of Q..
(If WT i does not win the write lock of Q,,,, it will
sleep until some WT releases the write lock of Q
WT i should repeat this lock contending process
until it wins the write lock of Q,,,.)

@

run®

5. enead — get-head(Q,y,)
6: se_flag := true
7. for j:=0to |WT|—1do
8: if j # ¢ and event(j) # NULL then
9: if is_safe(event(j), eneaq) = false then
10: se_flag = false
11: break
12: end if
13: end if
14: end for
15: if se_flag = true then
16: €head < dequeue (Q,u,)
17: event(i) = epead
18: Release the write lock of Q,,,
19: Execute event(i) (If WT ¢ needs to generate

another event and insert it into Q,,,,, WT i should
contend for the write lock of Q,,, again.)
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20: else

21: event(i) = NULL

22: Release the write lock of Q,,
23: end if

24: end while

Initially, every WT sets its local event as NULL and
contends for the access to the global event queue (denoted
as Q). Only after winning the access to Q,,,, can a WT
proceed to do its task. WTs that fail to win the access to Q,,,
should put themselves into the sleep state until the winning
WT releases the lock for Q,,,. At that time, they will be
wakened up and contend for the access to Q,,, again.

An event currently possessed (i.e., currently executed or
to be executed) by a WT j is denoted as event(j). The
is_safe() function checks the safe event relationships
between epeaqa and event(j), for all possible j in the system.
If enead and the events possessed by other WTs can be
executed in parallel without generating causality errors, the
is_safe() function returns true as its output. Otherwise, it
returns false. Its details are explained in Section 4.

Note that, in the is_safe() function, WT ¢ need not acquire
the read lock to event(j). This is because in our ELP
architecture a WT j erases its own event(j) only when it
wins the access to Q,,, again. Because the access to Q,,, is
exclusive, when WT i is checking the safety relationship
among events, no other WTs will change the ELP-related
information of their (possessed) events.

Using this design, the local event of WT j read by WT ¢
is, therefore, either the one that WT j is currently executed
or the one that WT j has finished executing. However, in
either case, the correctness of the simulation results
generated by the ELP approach is not affected. This is
because the ELP approach employs the safe event rule set
(explained in Section 4) to control concurrency of event
execution. Thus, the events that have been processed or is
being processed by WT j are always safe to the event that is
going to be processed by WT .

Using this peer thread architecture design, at any point
of time it is guaranteed that at least one WT will be able to
find a safe event to execute. This is because, like in a
sequential simulation, the event with the smallest time-
stamp in the whole simulated network (i.e., in Q,,,) must be
a safe event. This property enables the ELP approach to
quickly find a safe event to execute even under tiny
lookahead values.

We implemented our ELP approach in the ns-2 network
simulator (version 2.31). The modifications to ns-2 can be
divided into four parts. The first part is adding two fields
into the event structure to store the IDs of the source node
and the destination node for an event. These two fields are
used to compute the path lookahead values of an event. The
second part is expanding the tcl scripts provided by ns-2
such that, when a protocol module is initialized, its node ID
will be properly assigned. The third part is to provide a
facility to automatically fill in the source and destination
node IDs of an event when it is inserted into the event list
(i.e., Quun)- This can be accomplished by expanding the APIs
used by a protocol module to insert an event into Q.

The final part is the modification to the event scheduler
(in the common/scheduler.cc file in its package). The

modified Scheduler::run() function, which is the first func-
tion invoked by ns-2 when it starts to run a simulation, first
initializes 1) the path lookahead table for all simulated
nodes, 2) the global data structures for storing the
information of each WT, and 3) the mutex lock of Q-
Creating the path lookahead table requires the link delay
information, which can be obtained from the simulation
case description file (i.e., the ¢c! file used by ns-2).

This run() function then creates (N — 1) WTs, where N is
the number of specified WTs. The main thread and other
WTs then, respectively, run a while loop that implements
Algorithm 1. We use the heap scheduler, which has been
provided by ns-2, to implement the function of Q,,,. Our
proposed ELP approach hides the modifications to the
network simulator from users and protocol designers. Thus,
they can use the ELP-enabled network simulator in the
same way as using a sequential network simulator and
benefit from the speedup brought by the ELP approach
without extra efforts.

Note that, the ELP approach is only applicable to those
event-driven network simulators where the states of each
simulated node’s protocols are separately maintained. For
example, most protocols of ns-2 do not use global variables
to maintain their operations. However, for those network
simulators without this property, the ELP approach may
not generate the same simulation results as the sequential
approach does. In this case, the ELP approach is applicable
only when the order of updating shared global variables
does not affect the observed simulation results.

Another limitation of the ELP approach is that, because
all WTs are run on the same machine, the ELP approach
can generate good speedup performance only when the
amount of memory consumed by the simulation program
does not exceed the amount of the main memory installed
on the machine. Fortunately, as the semiconductor technol-
ogy advances, the high-end work station can be installed
with up to 32-GB main memory nowadays, greatly
increasing the scalability of the ELP approach. The ELP
approach is not designed for running huge-scale simula-
tions with the required amount of memory exceeding that
can be afforded by a single machine. In such cases, the
existing parallel simulation techniques using multiple
machines are more preferred.

4 THE “SAFE” EVENT RELATIONSHIP

In this section, we present the safe event rules used in the
is_safe() function to check whether an event is safe to be
executed. The safety of executing events in parallel is based
on the notion of “lookahead.” Its detailed explanations can
be found in [7] and is briefly explained here.

Consider that a sequential network simulator has
advanced its simulation clock to simulation time T, which
is the timestamp of the next unprocessed (i.e., the first)
event e, in the event queue, and is going to execute that
event. Without loss of generality, assume that there is a
constraint that a new event must be scheduled at least L
units of simulation time into the future, then it can be
guaranteed that all new events scheduled during the
execution of ene must have a timestamp larger than or
equal to (T'+ L).
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With this property, eext and any other event in the event
queue with a timestamp less than (I'+ L) can be safely
executed in parallel without generating causality errors. In
this example, a pair of e, and an event with a timestamp
less than (T + L) are called “safe events” and L is the
lookahead value for ee. In the context of network
simulation, a lookahead value L for an event e that
represents a packet transmitted over a link / can be easily
derived as follows:

L =D +TzTime, (1)

where D is the signal propagation delay over the link [ and
TxTime is the transmission time of the packet represented
by e over link l. D is a fixed value and T'zT'ime is the packet
length divided by the bandwidth of link /. When the packet
represented by e is transmitted over link [, it requires the
time amount L to arrive at the other end of I. (L includes the
time required by the network interface on the remote node
to receive all bits carried by this packet.)

Consider the case that the current simulation time is ¢;,
an event e; is being executed at the source node of a link,
and during the execution of e; a packet is generated by e;
and transmitted to the destination node of the link. Assume
that there is an event e; in the event queue with a
timestamp of ¢, larger than ¢; and it is to be executed on
the destination node of the link. If ¢; + D + TxTime > to, 1
cannot affect ey, meaning that e; and e, are safe events and
can be executed in parallel. On the other hand, if
ty + D + TxzTime < ty, e; can affect e; because, before e, is
executed, a packet generated by e; may have arrived at the
node that will execute e; and changed the node’s internal
states. In this condition, e; and ey should be executed
sequentially according to their timestamps to avoid caus-
ality errors.

In the ELP approach, events are divided into two types:
1) a packet arrival event and 2) a local computation event. A
packet arrival event is used to simulate a packet arriving at
a simulated network node. When such an event is executed
at its timestamp, the internal state (e.g., the buffer
occupancy level) of the receiving node may be changed to
reflect the fact that a packet has been received. Suppose that
a packet arrival event represents a packet sent from node 4
to node j, then in the ELP approach the source and
destination node ID fields of its event structure are set to ¢
and j, respectively.

On the other hand, a local computation event is used to
simulate the local computation behavior of a simulated
network node (e.g., the expiration of a local timer that
triggers the execution of its associated function). Such an
event only modifies the internal state of the node where the
event is executed and does not transmit a packet to another
node. For a local computation event to be executed on node
i, both the source and destination node ID fields of its event
structure are set to ¢ in the ELP approach.

Note that in a simulated node’s protocol stack, a packet
arrival event for a specific destination node can only be
scheduled at the bottom physical layer of the source node,
which models the operations of the network interface at the
source node of the link. Consider the triggering of a “hello
message” timer, which is commonly used in a routing
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Fig. 2. The time overhead used for building the path lookahead table.

protocol to send out a HELLO packet to inform other nodes
of the aliveness of this sending node. In this example,
although the upper-layer routing protocol schedules a
packet transmission event (not an arrival event), before this
event reaches the bottom physical layer, when it passes
along all protocol modules in the protocol stack, it is still
considered a local computation event because the execution
of this event only affects the internal state of the local node.
A more generic discussion about the safe event rule set
used by the ELP approach is presented in Section 1 of the
provided supplementary data, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu
tersociety.org/10.1109/TPDS.2011.215.

5 PERFORMANCE EVALUATION

We evaluate the performance of the ELP approach using the
widely used ns-2 network simulator [10], which is open
source and widely used in the network research commu-
nity. We modified the event scheduler of ns-2 to make it
multithreaded and ELP-capable. In the following, we
denote the N-thread ELP version of the ns-2 network
simulator as “N-WT” for brevity. For example, 1-WT ns-2
denotes the modified ELP-capable ns-2 using only one WT.
The simulation results generated by 1-WT ns-2 are the same
as those generated by the original single-thread ns-2.
Before comparing their simulation speedups, we first
validated the correctness of simulation results generated by
the ELP approach. We used many different simulation cases
to do the validations. For each of these cases, we compared
the packet log files generated by 1-WT ns-2 and 8-WT ns-2.
The packet log file records the timestamps of the transmis-
sion and reception events of every packet generated during
a simulation. Events occurring on the same time 7' are
sorted in the nondecreasing order based on the source node
IDs. After carefully checking, we found that the packet log
files generated by 1-WT ns-2 and 8-WT are exactly the same.
This evidences that the ELP approach is feasible and valid.
Although the building of the path lookahead table in the
ELP approach may require some time, it is insignificant to
the total simulation time under most conditions. For
example, when the simulated network load is heavy, the
number of simulated network nodes is small, or the total
simulated time is large, the overhead of building the path
lookahead table is insignificant. We plotted the proportion
of the total simulation time used by 1-WT ns-2 for building
the path lookahead table in Fig. 2, where 1-WT ns-2 is used
to simulate N x N grid networks and the simulated time is
180 seconds only. One can see that such time overheads are
not significant. This means that the performance of 1-WT
ns-2 is very close to that of the original ns-2 in most
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TABLE 1
The Used Parameter Settings
Parameter Name Value
ns-2 Version 2.31
Machine Model Tyan GT20-B7002
CPU Model Intel Xeon E5520 Quad Core

2.27GHZ X2

4 GBytes

3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9,
Simulated Grid Network Topologies 10x10, 20x20, 30x30, 40x40, 50x50*
Number of WTs 1,2,3,4,56,7,8

Simulated Time (s) 180

Traffic Type
Interface Output Queue Length (pkts) | 50

Event Computation Empty 0, 1, 10, 20, 30, 50, 60, 70, 80, 90,
Loop Count (k) 100, (3 on sending nodes, 60 on
receiving nodes)*

1, 10%, 100

1, 10%, 50, 100, 200

0.05, 0.5*, 5, 50, 500, 5000

100, 500, 1000, 1400*

Main Memory

Link Bandwidth (Mbps)

Link Delay (ms)

Packet Generation Interval (ms)
Payload Length (Byte)

conditions. Thus, for simplicity the performance of 1-WT
ns-2 is used as the baseline performance in this study.

The parameter settings used in our simulations are
listed in Table 1. For each parameter, we varied its value to
study its effects on the simulation performance. The default
value used for a parameter when it is not explicitly
specified is indicated by a star sign (*). Two performance
metrics are used to study the performance of the ELP
approach: 1) speedup and 2) P,,. The speedup is defined as
the time required by 1-WT ns-2 network simulator to
complete the simulation case divided by that required by
an N-WT ELP-capable ns-2 network simulator to complete
the same simulation case. The formal definition of speedup
can be found in Section 2 of the supplementary data, which
can be found on the Computer Society Digital Library. The
P, is defined as the probability for a WT to find a safe
event to execute.

To obtain P, results, during simulation, for each WT
we recorded how many times it entered Q,,, trying to find
a safe event and how many times it succeeded in finding a
safe event. The P, value of a WT is obtained by dividing
the latter number by the former number and the P, result
of a simulation case is obtained by averaging the P,
values of all WTs in the case. A larger P, value indicates
that a WT has a higher probability to find a safe event to
execute and thus the event-level parallelism can be easily
exploited. In contrast, a smaller P, value indicates that a
WT has a lower probability to find a safe event to execute
and in this condition the event-level parallelism is hard to
be exploited.

We created twelve grid wired network topologies, each
containing 9(3 x 3),16(4 x 4),...,2,500(50 x 50) nodes, re-
spectively. In these grid networks, each node is connected
to its nearest neighboring nodes. An N x N simulated grid
network has N rows, each having N nodes. During
simulation, a Constant-Bit-Rate (CBR) UDP flow is created
to generate traffic on each row. The source node and
destination node of a flow are, respectively, set to the
leftmost node and the rightmost node on the row where the
flow resides. Each point plotted in the presented figures is
the average across 10 simulation runs using different
random number seeds.

Speedup
o == N W A 00O N ©

0 20 40 60 80 100 120
Physical-layer Event Load (k empty loops)

Fig. 3. UDP speedup over different event computation loads.

Fig. 3 shows the speedup results of the ELP approach over
different event computation loads in the 10 x 10 simulated
grid network with the packet transmission interval and the
packet size set to 50 microseconds and 1,000 bytes,
respectively. There are several findings about Fig. 3. First,
when the physical-layer event computation load is heavy
enough, the simulation speedup achieved by the ELP
approach can approach N. For example, a speedup of 7.21
can be achieved when 8 WTs are set up. Several reasons can
explain why the ELP approach cannot achieve a speedup of 8
on a 8-CPU system. In the 1-WT ns-2 code, some parts of
code are not event-related and thus cannot be executed in
parallel using the ELP approach. One example is the code
related to enqueuing/dequeuing a packet into/from the
event queue. These operations must be executed sequen-
tially without intervention from other operations to ensure
the consistency of the event queue. As a result, it is
impossible to always achieve a speedup of N on a N-CPU
system. In addition to the above reason, the locking and
unlocking operations to shared global variable during event
execution (e.g., the event ID acquisition in ns-2) account for
other overheads that further decrease the speedup. The
effects of locking/unlocking operations are discussed in
Section 3.2 of the provided supplementary data, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.215.

The second finding is that, when the physical-layer event
computation load goes down to less than 2K integer
operations, the speedups of multi-WT ns-2 simulations
become less than 1, meaning that in this situation their
simulations are slower than the corresponding 1-WT ns-2
simulations. This phenomenon is expected and explained
here. In the ELP approach, after finishing executing an
event, each WT will try to find another safe event to
execute. The process of finding a safe event includes:

1. locking the event queue;

2. comparing the source and destination node IDs of
the head event in the event queue with the ones
currently possessed by other WTs;

3. comparing the lookahead values of these events to
determine whether they are safe events (if needed);
and

4. unlocking the event queue.

These overheads,’ although not much, occur each time when
a WT tries to find a safe event. Therefore, when the event

1. From our measurements, the pthread library on Linux requires tens of
nanoseconds to resolve the contention of a lock on a 1.6 GHZ CPU.
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Fig. 4. UDP P, results over event computation loads.

computation load is tiny, these undesired time overheads
become significant. The speedup results shown in Fig. 3
suggest that the ELP approach is more suitable for accurate
heavy-load network simulations (e.g., the simulations that
perform time-consuming physical-layer processings).

Note that, due to the peer thread architecture used by the
ELP approach, when the event computation load is not
heavy enough, it is easy to vary the number of activated
WTs to achieve a simulation performance not worse than
what 1-WT ns-2 can achieve. One approach is to first
compare the simulation speedup achieved by the ELP
approach using multiple WTs against that achieved by 1-
WT ns-2 on a simulation case. If the speedup is less than 1,
then one can simulate all remaining cases (e.g., with
different random number seeds) using the ELP approach
with only one WT activated. In the ELP approach, if it is
invoked with only one WT activated, the four operations
(described above) associated with an event execution will
be automatically skipped during simulation as there is no
need to do so. In such a situation, the ELP approach with
only one WT activated can perform the same as 1-WT ns-2.
Controlling the number of WTs to be activated in the ELP
approach is simple. It can be specified as a command-line
argument to the ELP simulation engine or let the ELP
simulation engine dynamically measure the performance
speedup and accordingly adjust the number of activated
WTs during simulation. This advanced topic is out of the
scope of this paper and is left as our future work.

Fig. 4 shows the relationships between P, and the event
computation load. This phenomenon can be explained from
two aspects. First, when the number of activated WTs
increases, safe events that can be processed in parallel are
consumed more quickly. As a result, the probability for a
WT to find a safe event to execute is reduced. Second, when
the event computation load increases from 0 to 2K, P, of 8-
WT ns-2 slightly decreases. This is because, when the event
computation load increases from a very light load to a
moderate load, the WTs executing very-light-load events
will often need to wait for the safe events generated by the
WTs that are executing heavier load events. Therefore, P,
of 8-WT ns-2 slightly decreases when the event computation
load increases from 0 to 2K. However, when the event
computation load further increases from 2K, each WT will
now spend most of its time on executing heavy-load events.
In such a condition, the probability of such waitings
becomes stable, causing the P, value of 8-WT ns-2 to
become stable as well.

To clearly formulate the performance of the ELP
approach, we have built an analytical model to analyze its
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Fig. 5. Theoretical speedups and actual speedups.

performance. Due to the space limitation, we will only
briefly describe the final form of the model, leaving the
derivation steps in Section 2 of the provided supplementary
data, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.215.

Denote S, as the set of all events that are generated and
processed by all WTs during a simulation run. Without loss
of generality, suppose that events in S, have n different
processing loads. Thus, S, can be defined as

Sy = Ul S, forany 4,7, S;NS; =0, (2)

where each S; is the set of events associated with a specific
processing time T;. Following this, the speedup of the ELP
approach for a simulation case can be defined as follows:

Speedup = {ZOSJ * Tz)}

i=1

n )
/{Z(|5i| T;) /(N * Pa) + To}

i=1

where N denotes the number of WTs used in simulation, P,,
denotes the probability that a WT finds a safe event, and 75,
denotes the time amount taking into account all overheads
incurred by the ELP approach.

We plotted the theoretical speedup of the 8-WT ns-2
simulator derived from our analytical model and the actual
speedup in Fig. 5. The values of the parameters for the
analytical model are obtained from real measurements as
follows: the P, results have been plotted in Fig. 4; the event
execution time results are measured and plotted in Fig. 6;
and the time required for a WT to find safe events is
measured and plotted in Fig. 7. The total number of
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Fig. 6. Event execution time over event computation loads.
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Fig. 7. Time for finding a safe event over event computation loads.

executed events in a simulation run in this series of
experiments is 21,196,621. Fig. 5 shows that the theoretical
speedup results derived from our analytical model match
the actual speedup results quite well. However, there is
some mismatch between these two results. This is because
to obtain the event execution time results and the time for a
WT to find safe events, logging the timestamps before/after
executing several function calls is needed. Logging time-
stamps in a real system requires switches between the user
space and the kernel space. This inevitably causes the
switching overhead to be included in the logged time
results. Therefore, the logged “find safe event” times are a
bit higher than their actual values, which makes the
theoretical speedup a bit lower than the actual speedup.

To further study the performance of our proposed ELP
approach, we conducted a series of simulation experiments
to study its performance under different network condi-
tions. These extensive experiment results are presented in
Section 3 of the provided supplementary data, which can be
found on the Computer Society Digital Library.

6 CONCLUSIONS

In this paper, we propose a parallel simulation approach
that exploits the event-level parallelism to enable easy-to-
use and efficient parallel network simulations. The perfor-
mance of the ELP approach is evaluated using the ns-2
network simulator. Our experiment results show that 1) in a
simulated wired network abundant event-level parallelism
can be exploited by multicore systems; and 2) the ELP
approach can provide satisfactory performance speedups
under high event load conditions on wired networks. Our
future work is to design and implement a more efficient
methodology to find safe events to further improve the
performance of the ELP approach.
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