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In this paper, we study the system diagnosis on an n-dimensional star under the compar-
ison model. Following the concept of local diagnosability [3], the strong local diagnosability
property [7] is discussed; this property describes the equivalence of the local diagnosability
of a node and its degree. We prove that an n-dimensional star has this property, and it
keeps this strong property even if there exist n � 3 missing edges in it.
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1. Introduction

In recent years, with the continuing advancements in semiconductor technology, large multiprocessor systems such as
very-large-scale integration (VLSI) systems have become increasingly popular. Such systems must be capable of uninter-
rupted processing, and therefore, the reliability of the processors in these systems should be considered. The diagnosis of
such systems involves the identification of all the faulty processors in the system. The diagnosability of the system refers
to the maximum number of faulty processors that can definitely be identified.

Several approaches to system diagnosis have been developed in previous researches. One major approach, called the com-
parison diagnosis model, was proposed by Maeng and Malek [13,14]. In this model, diagnosis is performed by simulta-
neously sending two identical signals from a processor to two other linked processors and then comparing the responses.
The test results are collected and analyzed to identify all the faulty processors. Following the traditional concept of diagnos-
ability, many variants of diagnosability measurements have been presented. A different measurement called conditional
diagnosability was proposed [8], and a more precise concept called strong diagnosability has been widely applied to various
networks [4–6].

In contrast to the traditional concept of diagnosability, Chiang and Tan [3] introduced a different concept for system diag-
nosis called local diagnosability; this method requires only the correct identification of the status of a single processor. Each
processor has its own local diagnosability, and there exists a strong relationship between the local diagnosability and the
traditional diagnosability. In the comparison diagnosis model for a given processor, a local structure called an extended star
has also been presented for guaranteeing a processor’s local diagnosability.
. All rights reserved.
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Among all well-known topologies, the star graph is one of the most popular ones. Its features include node symmetry,
edge symmetry, regular and low degree of node, and small diameter. Since its introduction, this topology has attracted con-
siderable attention. Some studies have discussed the diameter and fault diameters [9,15,16]. When linearly many vertices
are deleted in a star graph, the resulting graph has a large connected component containing almost all remaining vertices
[2]. The problem of embedding a linear array of vertices (or a ring) into the star graph has also been solved, even when there
exist some vertex faults in the target star graph [10]. With edge faults, the star graph has been proved to have fault-tolerant
Hamiltonian laceability [12]. The robustness of star graphs with edge faults has been addressed [11], and the improvement of
bounds on edge failure tolerance has also been investigated [18]. For system diagnosis, Zheng et al. [20] showed that the
traditional diagnosability of an n-dimensional star is n � 1 for n P 4.

In this paper, we study system diagnosis by following the concept of local diagnosability [3]. Based on this concept, we
obtain a simple proof of the fact that the diagnosability of an n-dimensional star Sn is n � 1 for n P 4; this is the same result
as that obtained by Zheng et al. [20]. Moreover, we study the diagnosability of a star graph in the presence of arbitrary dis-
tributed missing edges under the comparison diagnosis model. A relative study was discussed for the case of a hypercube by
Wang [19]. Furthermore, we have studied the strong local diagnosability property [7]. A given processor has the strong local
diagnosability property if its local diagnosability equals its degree, where the degree is defined as the number of links inci-
dent to this processor. A system has the strong local diagnosability property if every processor in it has this property. We
prove that each processor in an n-dimensional star Sn has this strong local diagnosability property, and this property is main-
tained even if Sn has up to n � 3 missing edges. The number n � 3 is tight in the sense that the strong local diagnosability
property cannot be guaranteed if there are n � 2 missing edges.

The remainder of this paper is organized as follows. In Section 2, we present some definitions, notations, and terminol-
ogies. The concept of local diagnosability for system diagnosis is also introduced in this section. Then, in Section 3, we prove
that an n-dimensional star keeps the strong local diagnosability property even if there exist n � 3 missing edges in it. Finally,
some conclusions are presented in Section 4.
2. Preliminaries and local diagnosability

The topology of a multiprocessor system can be modeled as an undirected graph G = (V,E), where the set of nodes V rep-
resents the set of all processors and the set of edges E represents the set of all connecting links between the processors. Let G0

be a subgraph of G and v be a node in G0; then, degG0 ðvÞ denotes the degree of v in subgraph G0. The neighborhood set of a
node v, denoted by N(v), is defined as the set of all nodes adjacent to v.

Let n be a positive integer and hni be the set {1, 2 . . .n}. An n-dimensional star [1], denoted by Sn, is a graph whose set of
nodes consists of all permutations on hni. Each node is uniquely assigned a label x1x2 . . .xn, where xi 2 hni for 1 6 i 6 n and
xi – xj for i – j. Each node x1x2 . . .xi�1xixi+1 . . .xn is adjacent to the nodes xix2 . . .xi�1x1xi+1 . . .xn for 2 6 i 6 n, that is, nodes ob-
tained by the transposition of the first coordinate with the ith coordinate of the node. Consequently, there exist n! nodes in
an n-dimensional star, and each node has degree n � 1. Let x = x1x2 . . .xn be a node in an n-dimensional star Sn. We use (x)i to
denote the ith coordinate xi of x for 1 6 i 6 n. We say that two nodes x and y in Sn are adjacent to each other with an ith edge
or an edge in dimension i if x can be obtained by the transposition of the first coordinate with the ith coordinate of y. Then, x
is said to be the ith neighbor of y and it is denoted as x = yi, and vice versa. In addition, we use Si

n to denote the subgraph of Sn

that is induced by the nodes x0s with (x)n = i for 1 6 i 6 n. Thus, Sn can be decomposed into n subgraphs Si
n for 1 6 i 6 n and

each Si
n is isomorphic to Sn�1.

Under the comparison model [13,14], a system performs diagnosis by the specific procedure described below. For each
processor w linked to two distinct processors u and v, the diagnosis is performed by simultaneously sending two identical
signals from w to u and from w to v, and then comparing their returning responses. The comparison result of w for the two
responses from u and v is denoted by r((u,v)w). An agreement is denoted by r((u,v)w) = 0, whereas a disagreement is denoted
by r((u,v)w) = 1. Because the comparator processor might be faulty, if r((u,v)w) = 1, at least one member of {u,v,w} is faulty;
or, if r((u,v)w) = 0 and w is known to be fault-free, both u and v are fault-free. Furthermore, a special case of the comparison
model, called the MM⁄ model [17], assumes that a comparison is performed by each processor for each pair of distinct con-
nected neighbors.

A labeled multigraph M = (V,C), called a comparison graph, is usually used to model this diagnosis strategy, where V rep-
resents the set of all processors in G and C represents the set of labeled edges. Each labeled edge (u,v)w 2 C implies that pro-
cessors u and v are being compared by processor w.

The collection of all test results of a test assignment is called a syndrome. Formally, a syndrome is a function r:C ? {0,1}.
For a given syndrome r, a subset of processors F � V(G) is said to be consistent with r if the syndrome r can be produced
when all processors in F are faulty and all processors in V � F are fault-free. Let rF denote the set of syndromes that are con-
sistent with F. We say that a system is diagnosable if for every syndrome r, a unique set of processors F � V is consistent with
it. A system is defined to be t-diagnosable if the system is diagnosable as long as the number of faulty processors does not
exceed t. In other words, a system is t-diagnosable if given a test syndrome rF produced by the system under the presence of
a set of faulty nodes F with jFj 6 t, any set of faulty nodes F0 consistent with rF with jF0j 6 t must be F0 = F. The maximum
number t for which a system is t-diagnosable is called the diagnosability of the system. Two distinct subsets of processors
F1, F2 � V are distinguishable if and only if every syndrome consistent with F1 differs from that consistent with F2.
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The next lemma follows trivially from the definition of the t-diagnosability of a system.

Lemma 1 [17]. A system G(V,E) is t-diagnosable if and only if, for each pair of distinct set of nodes (F1,F2) with jF1j, jF2j 6 t, (F1,F2)
is a distinguishable pair.

The following lemma is a useful characterization for the distinguishability of two sets of nodes under the comparison
model.

Lemma 2 [17]. Let F1 and F2 be two distinct subsets of nodes. (F1,F2) is a distinguishable pair if and only if at least one of the
following conditions is satisfied: (See Fig. 1 for an illustration.)

(1) $u, w 2 V � F1 � F2 and $v 2 (F1 � F2) [ (F2 � F1) such that (u,v)w 2 C.
(2) $u, v 2 F1 � F2 and $w 2 V � F1 � F2 such that (u,v)w 2 C, or
(3) $u, v 2 F2 � F1 and $w 2 V � F1 � F2 such that (u,v)w 2 C.

In contrast to the global sense in system diagnosis, Chiang and Tan [3] present a local concept called the local diagnos-
ability of a given node in a system. This method requires only the correct identification of the faulty or fault-free status of a
single node. Below are two definitions that introduce the concept of local diagnosability.

Definition 1 (3). A system G(V,E) is locally t-diagnosable at node x if, given a test syndrome rF produced by the system
under the presence of a set of faulty nodes F containing node x with jFj 6 t, every set of faulty nodes F0 consistent with rF and
jF0j 6 t, must also contain node x.
Definition 2 (3). The local diagnosability tl(x) of a node x in a system G(V,E) is defined to be the maximum number of t for G
being locally t-diagnosable at x, that is, tl(x) = max{tjG is locally t � diagnosable at x}.

The close relationship between the local diagnosability and the traditional diagnosability is stated as follows.

Lemma 3 (3). A system G(V,E) is t-diagnosable if and only if G is locally t-diagnosable at every node.
Lemma 4 (3). The diagnosability t(G) of a system G(V,E) is equal to the minimum value among the local diagnosability of every
node in G, that is, t(G) = min{tl(x)jfor all x 2 V(G)}.

Under the comparison diagnosis model, an extended star structure for guaranteeing the local diagnosability of a given
node is stated as below.

Definition 3 (3). Let x be a node in a graph G(V,E). For n 6 degG(x), we define an extended star ES(x;n) of order n at node x
with the node set V(ES(x;n)) = {x} [ {vijj1 6 i 6 n,1 6 j 6 4} and the edge set E(ES(x;n)) = {(x,vk1), (vk1,vk2), (vk2,vk3),
(vk3,vk4)j1 6 k 6 n}. (See Fig. 2 for an illustration.)

We say that there exists an extended star structure ES(x;n) # G at node x if G contains an extended star ES(x;n) of order n
at node x as a subgraph. Node x is called the root of ES(x;n). The extended star is a useful structure for computing the local
diagnosability of a given node.

Lemma 5 (3). Let x be a node in a system G(V,E) with degG(x) = n. The local diagnosability of x is n if there exists an extended star
ES(x;n) # G at x.

Consequently, for every processor in a regular recursively constructed system, its local diagnosability can be easily deter-
mined by finding an extended star structure at this processor. Moreover, the diagnosability of the entire system can also be
obtained accordingly.
Fig. 1. Distinguishability of two sets of nodes for Lemma 2.
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Fig. 2. Extended star structure ES(x;n) of order n.
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3. Strong local diagnosability property

In this section, we discuss the strong local diagnosability property [7]; this property describes the equivalence of the local
diagnosability of a node and its degree. We prove that an n-dimensional star has this property, and it keeps this strong prop-
erty even if there exists a bounded amount of missing edges.

Definition 4 (7). Let x be a node in a graph G(V,E). Node x has the strong local diagnosability property if the local
diagnosability of x equals to its degree in G. That is, tl(x) = degG(x).
Definition 5 (7). Let G(V,E) be a graph. Graph G has the strong local diagnosability property if the local diagnosability of
every node equals to its degree in G. That is, tl(x) = degG(x), for all x 2 V(G).

In the following, we show that an n-dimensional star with n P 4 has the strong local diagnosability property.

Lemma 6. For each node x in an n-dimensional star Sn with n P 4, there exists an extended star ES(x;n � 1) # Sn of order n � 1
at x.
Proof. We use the notations mentioned in Definition 3 to find an extended star ES(x;n � 1) as a subgraph of an n-dimen-
sional star Sn at a given node x. Because Sn is node symmetric, we arbitrarily choose x = x1x2 . . .xn to be the root of an
ES(x;n � 1).

For n = 4, we can find an extended star ES(x;3) of order 3 at node x = x1x2x3x4 (as shown in Fig. 3), where the set of nodes
contains x, v11 = x2x1x3x4, v12 = x3x1x2x4, v13 = x4x1x2x3, v14 = x2x1x4x3, v21 = x3x2x1x4, v22 = x4x2x1x3, v23 = x2x4x1x3, v24 =
x3x4x1x2, v31 = x4x2x3x1, v32 = x2x4x3x1, v33 = x3x4x2x1, and v34 = x4x3x2x1, and the set of edges is {(x,vk1), (vk1,vk2),
(vk2,vk3), (vk3,vk4)j1 6 k 6 3}.

Suppose the result holds for all Sn�1, for some n P 5. Now we claim the result also holds for Sn, that is, there is an extended
star ES(x;n � 1) # Sn of order n � 1 at each node x 2 V(Sn). Since the definition of star graphs, an Sn can be seen as a
composition of n Sn�1’s. Let Sn�1(x) be the subgraph of Sn induced by all nodes z0s where their nth coordinates are the same as
that of x, that is, (z)n = (x)n. By the assumption, there exists an ES(x;n � 2) # Sn�1(x) at node x. Pick the nth neighbor of x
denoted xn. Let Sn�1(xn) be the subgraph of Sn that xn belongs to, in which all nodes has the same nth coordinate as xn. We can
x=x1x2x3x4

v11=x2x1x3x4

v12=x3x1x2x4

v13=x4x1x2x3

v14=x2x1x4x3

v21=x3x2x1x4

v22=x4x2x1x3

v23=x2x4x1x3

v24=x3x4x1x2

v31=x4x2x3x1

v32=x2x4x3x1

v33=x3x4x2x1

v34=x4x3x2x1

Fig. 3. The base case for the proof of Lemma 6: an ES(x;3) of order 3 at x = x1x2x3x4.
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easily find another three different nodes a, b, and c, all in Sn�1(xn), such that xn, a, b, and c form a path in Sn�1(xn). The reason
is that the girth of Sn�1 is six and each node in it has degree n � 2, which is larger than two when n P 5. Consequently, there
exists an extended star ES(x;n � 1) # Sn of order n � 1 at each node x 2 V(Sn) for n P 4. h
Theorem 1. Let Sn be an n-dimensional star and n P 4. Each node x in Sn has the strong local diagnosability property and graph Sn

has the strong local diagnosability property.
Proof. By Lemmas 5 and 6, the local diagnosability of each node x 2 V(Sn) is n � 1, because the degree of x in Sn is n � 1 and
there exists an extended star ES(x;n � 1) of order n � 1 at x for n P 4. Thus, every node in an n-dimensional star Sn with
n P 4 has the strong local diagnosability property. Therefore, graph Sn has the strong local diagnosability property. h

By the theorem above, we conclude that the diagnosability of Sn is n � 1 for n P 4; this is the same result as that obtained
by Zheng et al. [20].

In some circumstances, some links in a multiprocessor system may be missing. A missing edge indicates a link between
two processors that has broken or failed for some reason. The existence of missing edges in a system may reduce the diag-
nosability of the entire system and change the local diagnosability of each node in some manner. Meanwhile, the presence of
missing edges changes the degrees of some of the nodes within the system. More precisely, in a regular graph, nodes adja-
cent to some missing edges have lower degrees than other nodes. Accordingly, with a small number of missing edges, the
nodes connecting to these edges may not keep the strong local diagnosability property, and the graph may not keep the
strong local diagnosability property as well. Therefore, these new degrees will be used to decide whether the incomplete
graph keeps the strong local diagnosability property.

In the following, we show that an n-dimensional star Sn keeps the strong local diagnosability property even with up to
n � 3 missing edges for n P 4.

Before proving this claim, we present an example to show that an n-dimensional star Sn may not keep the strong local
diagnosability property if there exist n � 2 missing edges. For an arbitrary node x in Sn, x is labeled as a permutation on
hni. Suppose there exist n � 2 missing edges in Sn that are incident to node x (as shown in Fig. 4). Then, the remaining degree
of x in this incomplete star with missing edges is 1. Let y be the only node adjacent to x. Let F1 be the set of nodes
{y} [ N(y) � {x} with jF1j = n � 1, and F2 be the set of nodes N(y) with jF2j = n � 1. By Lemma 2, (F1,F2) is not a distinguishable
pair under the comparison diagnosis model, and this incomplete star with missing edges is not (n � 1)-local diagnosable at y.
Because the local diagnosability of y (which is less than n � 1) does not equal its degree (which is n � 1) in this incomplete
star graph Sn, node y has no strong local diagnosability property anymore. Therefore, an incomplete star Sn with n � 2 miss-
ing edges cannot be guaranteed to have the strong local diagnosability property.

We now prove that an n-dimensional star Sn still keeps the strong local diagnosability property, provided that the number
of missing edges is at most n � 3 for n P 4. Note that for a given set of edges L # E(G) in a system G, we use G � L to denote
the subgraph with node set V(G) and edge set E(G) � L.

Lemma 7. Let Sn be an n-dimensional star with n P 4, and let F be an arbitrary set of missing edges with jFj 6 n � 3. For each node
x in Sn, there exists an extended star ESðx; degSn�FðxÞÞ# Sn � F at x, where degSn�FðxÞ denotes the remaining degree of node x in
Sn � F.
Proof. We prove this lemma by induction on n.
For the base case n = 4, each node in S4 is labeled as a permutation on h4i. Let x = x1x2x3x4 be any node in S4. We first

construct two extended star structures of order 3 around node x; one of which is the same as that described in the
proof of Lemma 6 (as shown in Fig. 5(a)), and the other one contains the node set {x,v11 = x2x1x3x4,v12 = x4x1x3x2,v13 =
x1x4x3x2,v14 = x3x4x1x2,v21 = x3x2x1x4,v22 = x2x3x1x4,v23 = x1x3x2x4,v24 = x4x3x2x1,v31 = x4x2x3x1, v32 = x3x2x4x1,v33 = x1x2x4x3,v34

= x2x1x4x3} and the edge set {(x,vk1), (vk1,vk2), (vk2,vk3), (vk3,vk4)j1 6 k 6 3} (as shown in Fig. 5(b)). It is easy to check that in
both structures, except for the 2nd, 3rd, or 4th edge of x, all edges are different.
x
x
xy

F1 F2

Fig. 4. Example showing that an n-dimensional star Sn has no strong local diagnosability property with n � 2 missing edges.



x=x1x2x3x4

v11=x2x1x3x4

v12=x3x1x2x4

v13=x4x1x2x3

v14=x2x1x4x3

v21=x3x2x1x4

v22=x4x2x1x3

v23=x2x4x1x3

v24=x3x4x1x2
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(a) (b)

x=x1x2x3x4

v11=x2x1x3x4

v12=x4x1x3x2

v13=x1x4x3x2

v14=x3x4x1x2

v21=x3x2x1x4

v22=x2x3x1x4

v23=x1x3x2x4

v24=x4x3x2x1

v31=x4x2x3x1
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Fig. 5. Two possible extended stars ES(x;3) at any node x = x1x2x3x4 described in the proof of Lemma 7.
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Since n � 3 = 1, we only need to consider two situations in which the number of missing edges is 0 or 1. If there exist no
missing edges in S4, an ES(x;3) at x indeed exists. If there exists one missing edge in S4, one of two following cases may occur:
(1) if the missing edge is the 2nd, 3rd, or 4th edge of x, the degree of x is 2 and there exists an ES(x;2) at x; (2) otherwise, we
can pick any one of the two above structures to avoid the missing edge, in order to form an extended star ES(x;3) at x. As a
consequence, there exists an extended star ESðx; degSn�FðxÞÞ# Sn � F at each node x for n = 4 and jFj = 0 or 1.

For induction hypothesis, we suppose that the result is true for Sn�1, for some n P 5. That is, for any set of missing edges F
with jFj 6 (n � 3) � 1, there exists an ESðx; degSn�1�FðxÞÞ# Sn�1 � F at each node x 2 V(Sn�1) � F.

Now, we claim that the result also holds for Sn, for all jFj 6 n � 3. We shall prove that for a set of missing edges F with
jFj 6 n � 3, there exists an ESðx; degSn�FðxÞÞ# Sn � F at each node x 2 V(Sn) � F. Assume that the number of missing edges is at
most n � 3 in an n-dimensional star Sn for n P 5. Let f = (u,v) be an arbitrary missing edge. Because the star graph is edge
symmetric, without lost of generality, we let v = un. The n-dimensional star Sn can be seen as the composition of n subgraphs
Sk

n for 1 6 k 6 n, where Sk
n is a subgraph of Sn induced by the nodes z0s with (z)n = k. Thus, the number of all missing edges F

except f in Sn is at most n � 4. Consider a node x in Sn; x is in one of the n induced subgraphs Sk
n; 1 6 k 6 n, and each Sk

n is
isomorphic to an (n � 1)-dimensional star Sn�1. Let Sn�1(x) be the substar that x belongs to. By the induction hypothesis,
there exists an extended star ESðx; degSn�1ðxÞ�F0 ðxÞÞ# Sn�1ðxÞ � F 0 at x, where F0 is the set of all missing edges in Sn�1(x) and
jF0j 6 n � 4.

If the nth edge of x is missing (Fig. 6(a)), the degree of x in Sn�1(x) � F0 is equal to the degree of x in this incomplete star
Sn � F with at most n � 3 missing edges. If the nth edge of x is not missing (Fig. 6(b)), x is adjacent to its nth neighbor,
denoted by xn, through the nth edge. Let Sn�1(xn) be the subgraph that xn belongs to. Since jF � fj 6 n � 4, each node in
Sn�1(xn) � F is adjacent to at least two other nodes in Sn�1(xn) � F. We note again that in a star graph Sn�1, each node has
degree n � 2. Then, xn is adjacent to a node a in Sn�1(xn) � F, a is adjacent to another node b in Sn�1(xn) � F, and b is adjacent
to another node c other than xn, a in Sn�1(xn) � F since the girth of Sn�1 is six and the degree of each vertex in Sn�1(xn) � F is
not less than two. As a result, for n P 5, there exists an ESðx; degSn�FðxÞÞ# Sn � F at x for all jFj 6 n � 3. The proof is
complete. h
Theorem 2. Let Sn be an n-dimensional star and n P 4, and let F be an arbitrary set of missing edges with jFj 6 n � 3. For each
node x in Sn with missing edges F, node x has the strong local diagnosability property and graph Sn � F has the strong local diag-
nosability property.
x

xn

a
b
c

u

v

xn

f
x

u

v

f

(a) (b)

X

X X

Sn-1(xn)

Sn-1(x ) 

Sn-1(xn)

Sn-1(x ) 

Fig. 6. Illustration of the inductive step in the proof of Lemma 7.
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Proof. By Lemmas 5 and 7, the local diagnosability of each node x in an incomplete n-dimensional star Sn � F is equal to its
remaining degree for n P 4 and jFj 6 n � 3. Thus, every node in Sn � F has the strong local diagnosability property. Conse-
quently, graph Sn � F has the strong local diagnosability property. h
4. Conclusions

In this paper, we studied the system diagnosis of an n-dimensional star under the comparison model. Following the con-
cept of local diagnosability and the extended star structure proposed by Chiang and Tan [3], the diagnosability of a system
can be determined in a straightforward manner. By the definition of the strong local diagnosability property [7], we proved
that an n-dimensional star has this property, and it keeps this strong property even if there exist up to n � 3 missing edges in
it. As a result, the diagnosability of an incomplete n-dimensional star system with arbitrary missing links can be obtained as
the minimum value among the remaining degree of every processor, provided that the cardinality of the set of missing links
does not exceed n � 3.
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