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We have calculated the vibrational and rotational autoionization rate constants for diatomic molecules
H2, N2, and HCl in high Rydberg states by employing the density matrix formulation with the inverse
Born–Oppenheimer approximation basis set. The purpose is to simulate the main radiationless processes
occurring in zero electron kinetic energy (ZEKE) spectroscopy. The quantum numbers and the energy
dependences of the calculated autoionization rate constants are represented as the scaling laws via non-
linear regression. These data provide a suitable starting point for quantitative study of the intricate
dynamics involved in ZEKE Rydberg states.
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1. Introduction

Zero electron kinetic energy (ZEKE) spectroscopy is a very high
resolution photoelectron spectroscopy (PES) for studying the struc-
tures and dynamics of neutral and ionic molecules [1–4]. It has
been routinely used to determine the rovibronic energy levels of
polyatomic molecular ions and to obtain information on the
dynamical and thermodynamical properties of molecular systems
[4–10]. Moreover, several new laser spectroscopy methods, such
as mass analyzed threshold ionization (MATI) spectroscopy [11],
threshold ion-pair production spectroscopy (TIPPS) [12], and the
Rydberg-tagging time-of-flight (RTTOF) method [13] employ
detection concepts similar to that used in ZEKE spectroscopy. This
has stimulated considerable interest in understanding of the
behavior of molecules with energies very close to their ionization
thresholds. The central point in understanding the observed ZEKE
spectra, which underpins the success of ZEKE techniques, is the
intricate dynamics of very high Rydberg states with a principal
quantum number n = 100 or more. The study of high Rydberg
states represents a huge extension of the conventional spectros-
copy and dynamics of ground states and low electronically excited
states. However, in contrast to the latter, high Rydberg dynamics
exhibits special characteristics, which have been difficult to inter-
pret using familiar principles applicable for low-lying states.

In a ZEKE experiment, a laser pulse will excite the molecule to a
high Rydberg state just beneath the ionization threshold. Upon the
ll rights reserved.

).
excitation, many radiative and radiationless processes occur. These
include spontaneous emission, autoionization, field induced ioni-
zation and channel coupling. Then the electrons would be detected
by using a delayed ionizing field. Different from the conventional
photoelectron spectroscopy, which directly detects electrons in
the continuum states, in ZEKE spectroscopy the electrons from
the high Rydberg states are observed [14,15]. For this reason, it is
crucial to find a suitable representation of the high Rydberg state
for studying the involved radiative and radiationless processes.
The optically pumped state is described as a high n Rydberg elec-
tronic state where classically the electron moves relatively slower
than the nuclear motion of the parent ion. In this case, the Rydberg
electronic energy levels are even smaller than the rovibrational en-
ergy levels of the ion. This classical picture motivates the concept
of the inverse Born–Oppenheimer approximation (IBOA) [16–18]
and using the IBOA we can establish a proper basis set for the study
of ZEKE/MATI spectra [19,20].

Because the measurements of ZEKE spectra consist of a series of
processes, the density matrix formulation is a proper technique to
start. The master equations (MEs) can be derived for each process
and can be solved sequentially given proper experimental condi-
tions such as frequencies, intensities, pulse duration of the pump-
ing laser, and the time-durations of l-mixing, discrimination field
and extraction fields. By solving this series of MEs we obtain not
only the intensity of ZEKE electrons associated with the ZEKE spec-
tra but the insight into the most detailed dynamics associated with
these states.

In this paper, we present the master equation for autoionization
dynamics based on the inverse Born–Oppenheimer approximation.

http://dx.doi.org/10.1016/j.chemphys.2012.01.002
mailto:sdchao@iam.ntu.edu.tw
http://dx.doi.org/10.1016/j.chemphys.2012.01.002
http://www.sciencedirect.com/science/journal/03010104
http://www.elsevier.com/locate/chemphys


Fig. 1. The schematic plot of vibrational autoionization based on the model of IBOA.
During the autoionization cwm ? cw0k, the ion core would relax from a vibration-
ally excited state cw to a lower state cw0 , while the electron in the high Rydberg
state m would autoionize to the continuum state k.
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With such approach we calculate the autoionization rates con-
stants for both vibrationally and rotationally radiationless transi-
tions among ZEKE Rydberg states. In Section 2, we outline the
necessary theoretical formulations and in Section 3 we show the
numerical calculation of autoionization rate constants and the re-
lated scaling laws. A brief summary is given in Section 4.

2. Theory

We use the stochastic Liouville equation [20]

dq̂
dt
¼ � i

�h
½Ĥ; q̂� � Ĉq̂ ð2:1Þ

where Ĥ and q̂ represent the molecular Hamiltonian and the den-
sity matrix of the molecule, respectively, and Ĉ denotes the damp-
ing operator. The diagonal (off-diagonal) matrix elements of q̂
represent the population (coherence or phase) of the molecule.
Autoionization can be described as the transition from a ZEKE Ryd-
berg state of the higher ionization potential (IP) to the ionization
continuum of the lower IP [21,22]. For the ZEKE states (represented
by m) and the ionization continuum (represented by k), using the
Markoff approximation [23], Eq. (2.1) becomes

dqmm

dt
¼ �WmqmmðtÞ � cmqmmðtÞ ð2:2Þ

where Ĥ0 is the interaction responsible for the autoionization,
cm ¼ Cmm

mm represents the radiative rate constant, and

Wm ¼
2

�h2

X
k

jH0kmj
2DðxmkÞ ð2:3Þ

denotes the autoionization rate constant and D(xmk) denotes the
Lorentzian

DðxmkÞ ¼
1
p

cm=2

x2
mk þ ðcm=2Þ2

ð2:4Þ

Although usually the population components are observed,
using short excitation laser-pulse, the quantum beat can also be
observed in ZEKE spectroscopy [24].

Using the inverse Born–Oppenheimer approximation (IBOA)
[16–18], the molecular Hamiltonian can be expressed as

Ĥ ¼ Ĥion þ T̂e ð2:5Þ

where Ĥion is the ionic Hamiltonian and T̂e denotes the kinetic en-
ergy operator of the Rydberg electron. We first neglect the T̂e term,
and solve the ionic Schrödinger equation

ĤionHað~R;~rc;~rÞ ¼ Uað~rÞHað~R;~rc;~rÞ ð2:6Þ

where Ha and Ua represent the wavefunction and ion energy of the
parent ion at state a, respectively. Here ~R and~rc denote the nuclear
coordinate and the coordinates of the core electrons, respectively,
while~r denotes the coordinate of the Rydberg electron. Notice that
both Ha and Ua depends on the Rydberg electron coordinate~r para-
metrically. The total wavefunction W is expanded in terms of Ha.

W ¼
X

a

Uað~rÞHað~R;~rc;~rÞ ð2:7Þ

Substituting Eq. (2.7) into the Schrödinger equation, multiplying H�b
on the equation, integrating over the ionic coordinates, and neglect-
ing the terms involving Ĥ0IBO, we obtain

ðT̂e þ UbÞUbm ¼ EbmUbm ð2:8Þ

and

Wbm ¼ UbmHb ð2:9Þ
Here m denotes the quantum numbers to specify the Rydberg elec-
tronic state. We shall denote the ionic wavefunction in the core
electronic state c and rovibrational state w as Hcw; i.e., b = cw,
and represent the corresponding Rydberg electronic wavefunction
by Ucwm. From Eqs. (2.6) and (2.8), we can see that the eigenvalue
Ub of ionic Schrödinger equation serves as the potential energy of
the electronic Schrödinger equation. It can also be interpreted that
the Rydberg electron is moving on the potential energy surface pro-
vided by the ion core in the rovibronic state cw.

Consider a molecule containing n � 1 electrons in the core and
one electron in the high Rydberg state (denoted as the electron n).
The ionic Hamiltonian can be expressed as

Ĥion ¼ �
�h2

2me

Xn�1

i¼1

r2
i þ T̂N þ V ð2:10Þ

where T̂N is the kinetic energy operator of the nuclei. Next, we can
separate the interactions containing the electron n from V

V ¼ Vion þ
Xn�1

i¼1

e2

rn;i
�
X

a

Zae2

rn;a
� Vion þ V 0 ð2:11Þ

where i represents the i-th electron in the ion core, and a refers to
ath nucleus. V0 can be approximated by the multipole expansion.

V 0 ¼ �e2

rn
þ
Xn�1

i¼1

e2ð~rn �~riÞ
r3

n
�
X

a

Zae2ð~rn �~RaÞ
r3

n

" #

þ
Xn�1

i¼1

e2

2
3ð~rn �~riÞ2

r5
n

� r2
i

r3
n

" #
�
X

a

Zae2

2
3ð~rn �~RaÞ2

r5
n

�R2
a

r3
n

" #( )
þ���

��e2

rn
þV 0dþV 0qþ��� ð2:12Þ

where V 0d denotes the dipole interaction and V 0q the quadrupole
interaction, and so on. Neglecting the higher order interactions,
we obtain the zeroth-order wavefunctions of the ion core and the
Rydberg electron. That is, Eqs. (2.6) and (2.8) can be expressed as

Ĥ0
ionH

0
cwð~R; ~rcÞ ¼ U0

cwH0
cwð~R; ~rcÞ ð2:13Þ

T̂e �
e2

rn

� �
U0

mð~rnÞ ¼ e0
mU0

mð~rnÞ ð2:14Þ

We see that the solution of Eq. (2.13) is the wavefunction of a
bare ion, which can be calculated with the conventional quantum
chemistry methods, while the solution of Eq. (2.14) is the hydrogen
atom wavefunction. Therefore, similar to the conventional hydro-
genic wavefunction [25], the wavefunction U0

nlm ¼ RnlðrÞYlmðh; /Þ
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Fig. 2. The rovibrational autoionization rate constants of H2 with transition ðvþ ¼ 1; Nþ ¼ 0Þ ! ðvþ0 ¼ 0; Nþ
0
¼ 2Þ for l0 = l, l0 = l + 2, and l0 = l � 2. The left panel is for the

continuum-state energy of 100 cm�1; the middle panel is for the continuum-state energy of 500 cm�1, and the right panel is for the energy of 1000 cm�1.
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with the quantum numbers nlm can be used to describe the bound
electron, while klm can be used to describe the free electron.

To solve Eq. (2.13), we can use Born–Oppenheimer approxima-
tion and the ionic wavefunction Hcw can be separated as the core
electronic wavefunction uc and the nuclear wavefunction wcw.
That is,

Ĥ0
ion ¼ Ĥ0

e þ T̂N ð2:15Þ
Ĥ0

eu
0
c ¼ u0

c u
0
c ð2:16Þ

ðT̂N þ u0
c Þw

0
cw ¼ U0

cww0
cw ð2:17Þ

and

H0
cw ¼ u0

c w
0
cw ð2:18Þ

where Ĥ0
e denotes the Hamiltonian of the core electrons after sub-

tracting the nuclear kinetic energy operator T̂N from Ĥ0
ion. In the case

of diatomic molecules, the zeroth-order nuclear wavefunction w0
cw

can be expressed in spherical coordinates ~R ¼ ðR; H; UÞ as

w0
cvþNþMþN

¼ vcvþ ðRÞYNþMþN
ðH; UÞ ð2:19Þ

where vcvþ denotes the vibrational wavefunction and YNþMþN
denotes

the rotational wavefunction with respect to the electronic state c of
the ion core. Here w ¼ vþNþMþ

N denote the vibration and rotation
quantum numbers.
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Fig. 4. The autoionization rate constants for Rydberg state (n = 100, l) of H2 with
transition ðvþ ¼ 1; Nþ ¼ 0Þ ! ðvþ0 ¼ 0; Nþ

0 ¼ 2Þ for l0 = l, based on the quadrupole
interaction. The three panels are for the continuum-state energy of 100, 500, and
1000 cm�1, respectively. The calculated rate constants are marked by symbols for
each n, l and the lines represent the data obtained from the scaling law.
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For a homonuclear diatomic molecule, the first-order energy
correction of the dipole interaction is zero, so we shall perform
the first-order correction of the quadrupole term. It follows that

uð1Þc ¼ u0
c

� ��V 0q u0
c

�� �
ð2:20Þ

Performing the integration with respect to the core electronic
coordinates R

!
c , we can obtain the conventional expression by using

quadrupole moment Q as functions of the nuclear coordinate ~R.

uð1Þc ¼ �e
QcðRÞ

r3

4p
5

X2

�m¼�2

Y2 �mðh; /ÞY�2 �mðH; UÞ
" #

ð2:21Þ

where the first spherical harmonics depends on the coordinate of
the Rydberg electron, and the second one depends on that of the
ion core.

The basic concept of autoionization can be understood by using
the diagram in Fig. 1, In the high Rydberg state, the electron be-
haves like a hydrogenic electron, and the core like a bare ion. The
interaction between them is very week, so we can form two inde-
pendent systems, as shown in the zeroth-order Hamiltonian. The
molecule was first excited to a vibrationally or rotationally excited
state with one electron in the high Rydberg state. Due to the inter-
action within the molecule, the excited core would release its en-
ergy and transfer the energy to the Rydberg electron, thus
yielding ionization. With this understanding, we can calculate
the corresponding transition rate.

To derive the expression of the autoionization rate, we need to
include the neglected term in Eq. (2.8), denoted as Ĥ0IBO; in other
words, the radiationless transition is interpreted as the breakdown
of the IBOA [20]. Therefore, the autoionization rate constant is

W ðcwm!cw0kÞ ¼
2p
�h

Wcw0k Ĥ0IBO

��� ���Wcwm

D E��� ���2qðEkÞ ð2:22Þ

where q(Ek) is the density of states for the ionized electron of en-
ergy Ek and

Wcw0k Ĥ0IBO

��� ���Wcwm

D E
¼ � �h2

2me

 
2hUcw0kjhHcw0 jreHcwi � jreUcwmi

þ Ucw0kh j Hcw0 r2
eHcw

E��� ���Ucwm

D E�
ð2:23Þ

Notice that

hHcvþ0 Nþ0Mþ0N
jrejHcvþNþMþN

i¼
H0

cvþ0 Nþ0Mþ0N
jreV 0qjH

0
cvþNþMþN

D E
U0

cvþNþ �U0
cvþ0 Nþ0

¼�e
vcvþ0
� ��Q c vcvþ

�� �
U0

cvþNþ �U0
cvþ0 Nþ0

� 4p
5

X2

�m¼�2

YNþ
0
MþN

0

D ���Y�2 �m YNþMþN

��� E
re

Y2 �mðh;/Þ
r3

� 	( )

ð2:24Þ

hHcvþ0Nþ0Mþ0N
jr2

e jHcvþNþMþN
i ¼
hH0

cvþ0Nþ0Mþ0N
jr2

e V 0qjH
0
cvþNþMþN

i

U0
cvþNþ � U0

cvþ0Nþ0
¼ 0

Here w0 ¼ vþ0Nþ0Mþ0
N , k = kl0m0, w ¼ vþNþMþ

N and m = nlm, respec-
tively. The second term is vanishing because the electronic part of
the quadrupole interaction V 0q is a solution of the Laplace equation.
Finally we obtain

hkl0vþ0Nþ
0
JMJ

���Ĥ0IBOA nlvþNþJMJ

�� �
¼ � �h2

me

ð�eÞ
U0

cvþNþ � U0
cvþ0Nþ0

hvcvþ0 jQ cðRÞjvcvþ i

� Dl0 ; lhRkl0 jr�5jRnli � 3hRkl0 jr�4j dRnl

dr
>

� 	

� gðl0; Nþ
0
; J0; M0

J; l; Nþ; J; MJÞ ð2:25Þ

where nl and kl0 represent the quantum numbers of discrete states
and that of continuum states of the ZEKE electron, respectively, and
Dl;l ¼ 3; Dlþ2;l ¼ �2l, and Dl�2;l ¼ 2ðlþ 1Þ (see Appendix). The angu-
lar matrix element g is given in [26–27].

In Eq. (2.25), there are three matrix elements to be calculated.
The first matrix element contains the quadrupole moment of the
ion core, which is a function of internuclear distance R. It is
responsible for the vibrational transition. As the propensity rule
of vibrational autoionization, the magnitude of the corresponding
transition rate would decrease rapidly as Dv increases [28,29].
The second one is the radial integral of the Rydberg electron, and
it describes the transition from an electronic bound state to the
continuum. In this section, we employed the recursion relation of
associated Laguerre polynomial and performed the numerical
integration to obtain the value of this matrix element. The last
one involves the angular momentum for both electronic and nucle-
ar rotation motions. Due to the symmetry of spherical harmonics,
the allowed transitions should obey Dl = 0,±2 and DN+ = 0,±2. In
addition, the projection quantum numbers m and Mþ

N are summed
for the coupling between the electronic orbital angular momentum
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Fig. 5. The rotational autoionization rate constants of N2 with transition fnl; vþ ¼ 0; Nþ ¼ 10; J ¼ 10MJg ! fkl; vþ0 ¼ 0; N0
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l and the core rotational angular momentum N+. Then, we have the
total angular momentum J and its projection quantum number MJ.
Due to the Kronecker delta, J and MJ are constant upon the transi-
tion. The selection rules and propensity rule of this formulation are
in agreement with the previous studies of autoionization based on
the multipole interaction [27] and the multichannel quantum
defect theory [30,31].
3. Results and discussion

Here we calculate the autoionization rate of H2 for the transi-
tion among different rotational and vibrational states with transi-
tion fnl; vþNþ; JMJg ! fkl0; vþ0Nþ

0
; JMJg. In the following, we will

consider the transitions for different n, l and energy of the unbound
state; the related transition for vibrational and rotational states is
ðvþ ¼ 1; Nþ ¼ 0Þ ! ðvþ0 ¼ 0; Nþ

0 ¼ 2Þ. As shown in Fig. 1, there is
an energy restriction for autoionization. Nevertheless, in order to
conveniently analyze the relation between the transition rate and
the corresponding quantum numbers, as well as the energy depen-
dence, we first release this restriction. The actual observations, of
course, correspond to specific data points satisfying the energy
conservation restriction.

The numerical results calculated using Eq. (2.25) for H2 are gi-
ven in Fig. 2. If we specify the quantum numbers n and k, there
are three possibilities of the final l’ which obey the selection rule.
First, in the case of l0 = l, we can see that the rate decreases rapidly
with increasing l. For example, the corresponding rates of n = 100
can range from 103 to 109 s�1. This behavior can be understood
by the property of the hydrogenic wavefunction [25]. That is, the
states at low l would have larger core penetration as well as stron-
ger interaction, and thus the rate would decrease as l increases.
Likewise, the related rate would decrease as n increases due to
the weak interaction between the Rydberg electron and ion core.
As for the k dependence, we found that the transition rates for
low-l states are relatively invariant to the influence of k. However,
those of high-l states have stronger energy dependence as the en-
ergy increases.

Compared with the transitions of l0 = l, those of l0 = l + 2 and
l0 = l � 2 are relatively slow. However, for the energy of
1000 cm�1, the transitions of l0 = l + 2 would compete with those
of l0 = l at larger l (l > 8). Besides, from Fig. 2, we can see that there
is no obvious tendency for these two cases. For l0 = l � 2, the rate
would decrease with increasing l. On the other hand, for l0 = l + 2,
we can find a dip for a specific l in each plot. For both cases, the
magnitudes of the autoionization rates are more sensitive to the
energy than l0 = l. To further study the irregular l dependence, we
separate the angular and radial dependent parts in Eq. (2.25),
where the angular part distribution is given by jgðl0; Nþ

0
; J0;
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M0
J; l; Nþ; J; MJÞj2 which is dimensionless, and the radial part is the

rest contribution. We see in Fig. 3 that the l dependence of the
transition rate mainly comes from the radial part. The subtle inter-
play of the radial wavefunctions yields irregular integrands and
subsequently the irregular l dependence.

From Fig. 2, it is clear that the transition of l0 = l shows a regular
power law dependence of l. Using a nonlinear modelling, we obtain
the scaling law for the autoionization rate as

rate ¼ 3:61� 1015n�3l�5:3s�1 ð3:1Þ

The n3 law is consistent with that obtained from the asymptotic
wavefunction of high Rydberg state [27–31]. The comparison be-
tween the calculated data and the fitting curves is shown in Fig. 4.

In Fig. 4, we can see the numerical results agree well with the
estimation of the scaling law for the low energy case. In Eq. (3.1),
the scaling law is independent of the energy of the continuum
state, but it still works well for the low-l transitions when the en-
ergy is relatively high. For instance, it can effectively predict the
rate up to l = 5 for the energy of 1000 cm�1. On the other hand,
for the transitions l0 = l ± 2, we cannot derive a scaling law of the
transition rate due to the irregular dependence on l. Nevertheless,
for most cases, l0 = l is the most probable transition, so we can
neglect the contribution of l0 = l ± 2 transitions. In this sense, this
scaling law is quite useful to gain an approximate magnitude of
the autoionization rate.
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Next, we consider the rotational autoionization of N2. The bond
length (2.175 au) and the quadrupole momentum (1.974 au) of Nþ2
were calculated by the Gaussian package [32] suite with the
UCCSD/aug-cc-pVDZ level of theory. Here we consider the
transition fnl; vþ ¼ 0; Nþ ¼ 10; J ¼ 10MJg ! fkl; vþ0 ¼ 0; N0

þ ¼ 8;
J ¼ 10MJg. The resulting autoionization rates are shown in Fig. 5.
We can see that the magnitude of the autoionization rate decreases
significantly with increases in l. Also, the rates of l0 = l + 2 and
l0 = l � 2 are much slower than those of l0 = l. Using the nonlinear
regression, we find that the transition of l0 = l follows a regular
power law dependence of l. The scaling law is

rate ¼ 6:50� 1015n�3l�5:3 � 0:9ðN
þ�2Þs�1 ð3:2Þ

For heteronuclear diatomic molecules, the dipole interaction
has to be considered. For example, here we consider the rotational
autoionization of HCl molecule. The bond length (2.514 au) and the
dipole momentum (0.669 au) of HCl+ were calculated by the
Gaussian package [32] suite with the UCCSD/aug-cc-pVDZ level
of theory. The transition we consider is fnl; vþ ¼ 0; Nþ ¼ 0g !
fkl� 1; vþ0 ¼ 0; N0

þ ¼ 1g. The autoionization rates are shown in
Fig. 6. It is found that the magnitude of the autoionization of
l0 = l + 1 is larger than that of l0 = l � 1, and almost independent
on l and E. The autoionization of l0 = l � 1 also shows same ten-
dency, but dependence on l0 is roughly proportional to l0

�0:7
. The

n3 law is consistent with the previous autoionization results of
Eqs. (3.1) and (3.2). The almost l independency of the l0 = l + 1 tran-
sition deserves further analysis. First, the main contribution in Eq.
(2.25) comes from the radial part, which contains two terms. We
thus study the l dependence from the two terms separately. In
Fig. 7 we show the results. We see clearly that it is due to the can-
cellation of the delicate interplay of the two radial terms that the
final transition rates become almost l independent. Notice that
similar trends have been observed before [33].

In order to see the difference of the autoionization rates of HCl
and N2 we divide autoionization rates into the angular and radial
dependent parts. In Fig. 8 magnitudes of angular and radial depen-
dent parts of the autoionization rates are plotted. Here we use
E = 30 cm�1 and n = 100 for both molecules HCl and N2, and
consider the same transitions as they have appeared in this section,
HCl fnl; vþ ¼ 0; Nþ ¼ 0g ! fklþ 1; vþ0 ¼ 0; N0

þ ¼ 1g and N2fnl;
vþ ¼ 0; Nþ ¼ 10; J ¼ 10MJg ! fkl; vþ0 ¼ 0; N0

þ ¼ 8; J ¼ 10MJg.
From this figure we find that the angular parts for both molecules
are almost flat and independent on l. The l dependence of the radial
part of HCl is also very week, however the radial part of N2 mole-
cule decreases rapidly with increasing l. It is considered that l
dependence of the angular parts of the dipole and quadrupole mo-
ments are not very different, on the other hand l dependence of the
radial parts of them show a large difference. We conclude that
whole tendency of l dependence of the autoionization rates are
determined from the radial parts of diatomic molecules.

Finally, the influence of Stark-mixing due to the stray field has
been found to be crucial and needs to be included in our discussion
of autoionization rates. Chupka has proposed that the optically
accessible populations in low-l states would transfer to high-l
states, resulting in reduction of core penetration [34], and in previ-
ous studies we have numerically demonstrated this [17,18]. That
is, the low-l states contributing significantly near the ion core
experience a stronger interaction with the core. Hence, electrons
in low-l states would quickly disappear through various relaxation
processes such as autoionization. From the scaling laws we obtain
in the present work, we can see that the transition rate decreases
significantly as l increases for both rotational and vibrational autoi-
onizations. Consequently, after a long period of delay time, only the
states with higher l would survive and be observed in ZEKE exper-
iments. In the case of l = 3, the lifetime of rotational autoionization
from high Rydberg state is about 1 microsecond, and that of vibra-
tional autoionization is about one order of magnitude smaller. The
autoionization in this range might be observed in the ZEKE exper-
iments with comparable delay time.

4. Conclusion

In this paper we have derived the master equation for autoion-
ization dynamics, which is the main radiationless process involved
in ZEKE spectroscopy. The inverse Born–Oppenheimer approxima-
tion (IBOA) has been employed to establish a proper basis set for
high Rydberg states. With this scheme autoionization is inter-
preted as the breakdown of the IBOA and the rate constants can
be systematically calculated. We apply this formulation to
calculate the vibrational autoionization rate constants of H2 and
rotational autoionization rate constants of N2 and HCl. These calcu-
lated data can be summarized as the scaling laws with respect to
the quantum numbers and can be very useful for quantitatively
studying the intricate dynamics in ZEKE spectroscopy.
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Appendix A. Derivation of the angular matrix elements

Yl1 ;m1

@Yl2 ;m2

@h

����
���� @Yl3 ;m3

@h


 �
þ Yl1 ;m1

1
sin h

@Yl2 ;m2

@/

����
���� 1
sin h

@Yl3 ;m3

@/


 �

¼ � Yl1 ;m1
r̂ � L̂Yl2 ;m2

��� ���r̂ � L̂Yl3 ;m3

D E
¼ � Yl1 ;m1

L̂Yl2 ;m2

��� ���L̂Yl3 ;m3

D E
¼ �1
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D E
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Yl1 ;m1 L̂�Yl2 ;m2

��� ���L̂þYl3 ;m3

D E
�m2m3 Yl1 ;m1

Yl2 ;m2

�� ��Yl3 ;m3

� �
¼ �1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 �m2Þðl2 þm2 þ 1Þðl3 þm3Þðl3 �m3 þ 1Þ

q�
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Yl2 ;m2�1

�� ��Yl3 ;m3þ1
� �

þ 2m2m3 Yl1 ;m1
Yl2 ;m2

�� ��Yl3 ;m3

� �
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Using the 3-j symbol, we have

½l1ðl1þ1Þ� l2ðl2þ1Þ� l3ðl3þ1Þ�2m2m3��
l1 l2 l3

m1 m2 m3

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2�m2Þðl2þm2þ1Þðl3þm3Þðl3�m3þ1Þ

q
� l1 l2 l3

m1 m2þ1 m3�1

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2þm2Þðl2�m2þ1Þðl3�m3Þðl3þm3þ1Þ

q
l1 l2 l3

m1 m2�1 m3þ1

� �

Thus we obtain

Yl1 ;m1

@Yl2 ;m2

@h

����
���� @Yl3 ;m3

@h
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þ Yl1 ;m1

1
sin h

@Yl2 ;m2

@/

����
���� 1
sin h

@Yl3 ;m3

@/


 �

¼ �1
2

l1ðl1 þ 1Þ � l2ðl2 þ 1Þ � l3ðl3 þ 1Þ½ � Yl1 ;m1 Yl2 ;m2

�� ��Yl3 ;m3

� �
For the quadrupole interaction, l2 = 2, and we obtain Dl,l = 3,
Dl+2,l = �2l, Dl-2,l = 2(l + 1).
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