A Finiteness Theorem for Maximal Independent Sets

Min-Jen Jou ${ }^{1 *}$, Gerard J. Chang ${ }^{1}$, Chiang Lin ${ }^{2}$, and Tze-Heng Ma ${ }^{3}$
${ }^{1}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan. e-mail: gjchang@math.nctu.edu.tw
${ }^{2}$ Department of Mathematics, National Central University, Chungli 32054, Taiwan
${ }^{3}$ Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan

Abstract. Denote by $m i(G)$ the number of maximal independent sets of G. This paper studies the set $S(k)$ of all graphs G with $m i(G)=k$ and without isolated vertices (except $G \cong K_{1}$) or duplicated vertices. We determine $S(1), S(2)$, and $S(3)$ and prove that $|V(G)| \leq 2^{k-1}+k-2$ for any G in $S(k)$ and $k \geq 2$; consequently, $S(k)$ is finite for any k.

1. Introduction

All graphs in this paper are simple, i.e., finite, undirected, loopless, and without multiple edges. In graph G, an independent set is a subset of $V(G)$ in which every two distinct vertices are nonadjacent. A maximal independent set is an independent set which is not a proper subset of any other independent set. A clique is a subset of vertices in which every two distinct vertices are adjacent. A maximal clique is a clique which is not a proper subset of any other clique. Let $M I(G)$ denote the set of all maximal independent sets of G and $m i(G)$ the size of $M I(G)$.

Erdös and Moser raised the problem of determining the maximum number $f(p)$ of maximal independent sets possible in a graph with p vertices and that of determining which graphs have this many maximal independent sets. Later, Moon and Moser [7] gave a complete answer to this problem, which is that for $p \geq 2$,

$$
f(p)= \begin{cases}3^{t}, & \text { if } p=3 t \text { for } t \geq 1, \\ 4 \cdot 3^{t-1}, & \text { if } p=3 t+1 \text { for } t \geq 1, \\ 2 \cdot 3^{t}, & \text { if } p=3 t+2 \text { for } t \geq 0,\end{cases}
$$

and $m i(G)=f(p)$ if and only if

$$
G \cong \begin{cases}t K_{3}, & \text { if } p=3 t \\ (t-1) K_{3} \cup K_{4} \text { or }(t-1) K_{3} \cup 2 K_{2}, & \text { if } p=3 t+1 \\ t K_{3} \cup K_{2}, & \text { if } p=3 t+2\end{cases}
$$

[^0]Erdös and Moser actually raised their problem in terms of maximal cliques, which are maximal independent sets in complement graphs. About two decades later, a number of authors studied the same problem for trees [4,6,8-10], connected graphs [1, 2], triangle-free graphs [3], and bipartite graphs [5].

Instead of determining an upper bound for $m i(G)$, this paper studies $m i(G)$ from another point of view. For a fixed positive integer k, our problem is to determine all graphs G satisfying $m i(G)=k$. In a graph G, the neighborhood of a vertex x is

$$
N_{G}(x)=\{y \in V(G): x \text { is adjacent to } y \text { in } G\} .
$$

A vertex x is isolated if $N_{G}(x)=\varnothing$. Two vertices x and y are duplicated if $N_{G}(z)=$ $N_{G}(y)$. The following lemmas are trivial.

Lemma 1.1. If x is an isolated vertex in G, then $m i(G-x)=m i(G)$.
Lemma 1.2. If x and y are duplicated vertices in G, then $m i(G-x)=m i(G)$.
Proof. The lemma follows from the fact that for any $A \in M I(G), x \in A$ if and only if $y \in A$.

By Lemmas 1.1 and 1.2, deleting an isolated vertex or a duplicated vertex from graph G does not change $m i(G)$, so we shall consider only those graphs without isolated or duplicated vertices. Denote by $S(k)$ the set of all graphs G with $m i(G)=$ k and without isolated vertices (except $G \cong K_{1}$) or duplicated vertices. In this paper, we determine $S(1), S(2)$, and $S(3)$. We also prove that $|V(G)| \leq 2^{k-1}+k-2$ for any G in $S(k)$ and $k \geq 2$; consequently, $S(k)$ is finite for any k.

2. Graphs G with $m i(G)=k$

In this section we first determine $S(1), S(2)$, and $S(3)$. The following idea is useful in this paper: For an independent set B of G there exists at least one $A \in M I(G)$ such that $B \subseteq A$.

Lemma 2.1. If G is an induced subgraph of H, then $m i(G) \leq m i(H)$.
Proof. For any $B \in M I(G), B$ is an independent set of H and so there exists at least one $A \in M I(H)$ such that $B \subseteq A$. Therefore, there exists a function f from $M I(G)$ to $M I(H)$ such that $f(B) \in M I(H)$ and $B \subseteq f(B)$ for any $B \in M I(G)$. Since B is a maximal independent set of G and $B \subseteq f(B)$,

$$
\begin{equation*}
B=f(B) \cap V(G) . \tag{2.1}
\end{equation*}
$$

Consequently, f is a one-to-one function and so $m i(G) \leq m i(H)$.
Lemma 2.2. For any two disjoint graphs G and $H, m i(G \cup H)=m i(G) m i(H)$.
It is straightforward to check that $m i\left(K_{n}\right)=n$ for any $n \geq 1, m i\left(P_{2}\right)=m i\left(P_{3}\right)=$ $2, m i\left(P_{4}\right)=3, m i\left(P_{5}\right)=4, m i\left(C_{3}\right)=3, m i\left(C_{4}\right)=2$, and $m i\left(C_{5}\right)=5$. For the values of $m i\left(P_{n}\right)$ and $m i\left(C_{n}\right)$ for general n, see [1].

Lemma 2.3. Suppose G is a graph without duplicated vertices. If G has a cycle of length ≥ 4, then $m i(G) \geq 4$. If G has a cycle of length ≥ 3, then $m i(G) \geq 3$.

Proof. We first consider the case where $G=(V, E)$ has a cycle of length ≥ 4. Choose such a cycle of minimum length n. For the case of $n \geq 5$, by the minimality of n, the cycle has no chord, i.e., C_{n} is an induced subgraph of G. If $n=5$, then $m i(G) \geq$ $m i\left(C_{s}\right)=5>4$. If $n \geq 6$, then $m i(G) \geq m i\left(C_{n}\right) \geq m i\left(P_{5}\right)=4$. Thus we may assume that G has a 4-cycle $C: v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Now consider the following three cases.

Case 1. C has two chords $v_{1} v_{3}$ and $v_{2} v_{4}$. In this case, $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a clique and so $m i(G) \geq m i\left(K_{4}\right) \geq 4$.

Case 2. C has exactly one chord, say $v_{1} v_{3} \notin E$ and $v_{2} v_{4} \in E$. Since G has no duplicated vertices, there exists a vertex y not in C that is adjacent to exactly one vertex of $\left\{v_{1}, v_{3}\right\}$, say $v_{1} y \in E$ and $v_{3} y \notin E$. Choose four maximal independent sets A_{1}, A_{2}, A_{3}, and A_{4} of G that include $\left\{v_{2}\right\},\left\{v_{4}\right\},\left\{v_{3}, v_{1}\right\}$, and $\left\{v_{3}, y\right\}$, respectively. Since $\left\{v_{2}, v_{3}, v_{4}\right\}$ is a clique and v_{1} is adjacent to y, these four maximal independent sets are distinct. Thus $m i(G) \geq 4$.

Case 3." C has no chord, i.e., $v_{1} v_{3} \notin E$ and $v_{2} v_{4} \notin E$. Since G has no duplicated vertices, there exist vertices y and z not in C that are adjacent to exactly one vertex of $\left\{v_{1}, v_{3}\right\}$ and $\left\{v_{2}, v_{4}\right\}$, respectively, say, $v_{1} y \in E, v_{3} y \notin E, v_{2} z \in E$, and $v_{4} z \notin E$. Choose four maximal independent sets A_{1}, A_{2}, A_{3}, and A_{4} of G that include $\left\{v_{3}, v_{1}\right\},\left\{v_{3}, y\right\},\left\{v_{4}, v_{2}\right\}$, and $\left\{v_{4}, z\right\}$, respectively. Since v_{3} is adjacent to v_{4}, v_{1} is adjacent to y, and v_{2} is adjacent to z, these four maximal independent sets are distinct. Thus $m i(G) \geq 4$.

Finally, for the case where G has a cycle of length $3, m i(G) \geq m i\left(C_{3}\right)=3$.
Since any graph G with at least one edge has $m i(G) \geq 2, S(1)=\left\{K_{1}\right\}$.
Theorem 2.4. $S(2)=\left\{P_{2}\right\}$.
Proof. It is clear that $m i\left(P_{2}\right)=2$ and P_{2} has no isolated or duplicated vertices. On the other hand, suppose G is in $S(2)$. By Lemma 2.2 and the assumption that G has no isolated vertices, G is connected. If G has a cycle, then $m i(G) \geq 3$ by Lemma 2.3, which is impossible. Since $m i\left(P_{4}\right)=3$, the maximum distance between two vertices of G is at most two. Therefore G is a star and so in fact is P_{2}, as G has no duplicated vertices.

Besides P_{4} and K_{3}, the two graphs G_{1} and G_{2} in Fig. 2.1 are such that $m i(G)=3$.

Fig. 2.1. $m i\left(G_{1}\right)=m i\left(G_{2}\right)=3$.

Theorem 2.5. $S(3)=\left\{P_{4}, K_{3}, G_{1}, G_{2}\right\}$.
Proof. First of all, $m i\left(P_{4}\right)=m i\left(K_{3}\right)=m i\left(G_{1}\right)=m i\left(G_{2}\right)=3$ and P_{4}, K_{3}, G_{1}, and G_{2} have no isolated or duplicated vertices. On the other hand, suppose G is in $S(3)$. By Lemma 2.2 and the assumption that G has no isolated vertices, G is connected.

First, G has at most one block B which is not K_{2} and all other blocks intersect B; otherwise, G contains $2 K_{2}$ as an induced subgraph, which implies $m i(G) \geq$ $m i\left(2 K_{2}\right)=4>3$, a contradiction. Second, B has 2 or 3 vertices, otherwise G has a cycle of length ≥ 4, which implies $m i(G) \geq 4>3$ by Lemma 2.3, again a contradiction. For the case where B is K_{2}, there are exactly two other blocks which are K_{2} and intersect B at different vertices. This gives P_{4}. For the case where B is K_{3}, there are exactly 0,1 , or 2 blocks which are K_{2} and intersect B at different vertices. This gives K_{3}, G_{1}, and G_{2}.

To generalize the graphs in Theorems 2.4 and 2.5 , we consider split graphs. A graph G is split if its vertex set can be partitioned into a clique $C \equiv\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and an independent set $I \equiv\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. For the case of $\bigcup_{1 \leq i \leq m} N\left(u_{i}\right) \neq C$, $m i(G)=k$ and the maximal independent sets are $\left\{v_{i}\right\} \cup\left(I-N\left(v_{i}\right)\right), 1 \leq i \leq k$. For the case of $\bigcup_{1 \leq i \leq m} N\left(u_{i}\right)=C, m i(G)=k+1$ and besides the above k maximal independent sets, I is the $(k+1)$ th maximal independent set. Note that the graphs P_{2}, P_{4}, K_{3}, G_{1}, and G_{2} are all of this form.

For $k \geq 4$, it becomes hard to determine $S(k)$. However, we can prove that $|V(G)| \leq 2^{k-1}+k-2$ for any G in $S(k)$; consequently, $S(k)$ is finite for any k.

Theorem 2.6. If $k \geq 2$ and $G \in S(k)$, then $|V(G)| \leq 2^{k-1}+k-2$.
Proof. Without loss of generality, we may assume that G is in $S(k)$ and has as many vertices as possible. Let $M I(G)=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and

$$
B(v)=\left\{i: v \in A_{i} \in M I(G)\right\}
$$

for all $v \in V(G)$. It is clear that each $B(v) \neq \varnothing$. Also, $B(v) \neq\{1,2, \ldots, k\}$ since G has no isolated vertices. For any $u \neq v, N(u) \neq N(v)$ since G has no duplicated vertices. Assume that there exists some vertex $x \in N(u)-N(v)$. Then $\{x, v\} \subseteq A_{j}$ for some $A_{j} \in M I(G)$. Thus $j \in B(v)-B(u)$. This proves that $B(u) \neq B(v)$ whenever $u \neq v$. Denote by $\mathscr{P}=\{B(v): v \in V(G)\}$. Then $|V(G)|=|\mathscr{P}|$.

For any $i \in\{1,2, \ldots, k\}$, we claim that $\{i\} \in \mathscr{P}$. Otherwise, suppose $\{i\} \notin \mathscr{P}$ and consider the graph G^{*} obtained from G by adding a new vertex v^{*}, which is adjacent to all vertices in $V(G)-A_{i}$. Note that $M I\left(G^{*}\right)$ is the same as $M I(G)$ except that A_{i} is replaced by $A_{i} \cup\left\{v^{*}\right\}$. Also, G^{*} is without isolated or duplicated vertices, a contradiction to the choice of G. Thus $\{i\} \in \mathscr{P}$ for all $1 \leq i \leq k$. We may assume that

$$
V(G)=\left\{v_{1}, \ldots, v_{k}, \ldots, v_{m}\right\} \text { and } B\left(v_{i}\right)=\{i\} \text { for } 1 \leq i \leq k
$$

If $v_{i} v_{j} \in E(G)$, then v_{i} and v_{j} are not both in the same independent set; i.e., $B\left(v_{i}\right) \cap B\left(v_{j}\right)=\varnothing$. On the other hand, suppose $v_{i} v_{j} \neq E(G)$. Then $\left\{v_{i}, v_{j}\right\}$ is an independent set and so is a subset of some $A_{r} \in M I(G)$; i.e., $r \in B\left(v_{i}\right) \cap B\left(v_{j}\right)$. In conclusion, $v_{i} v_{j} \in E(G)$ if and only if $B\left(v_{i}\right) \cap B\left(v_{j}\right)=\varnothing$.

Now, choose a maximal chain $C: B\left(v_{r_{1}}\right) \supset B\left(v_{r_{2}}\right) \supset \cdots \supset B\left(v_{r_{s}}\right)$ in the poset defined on \mathscr{P} under set inclusion. Note that $B\left(v_{r_{s}}\right)=\left\{r_{s}\right\}$ and $s \leq k-1$. Partition $2^{\{1,2, \ldots, k\}}-\left\{B\left(v_{r_{s}}\right), \varnothing\right\}$ into $C_{1}, C_{2}, \ldots, C_{s}$, where C_{i} is the set of all subsets S such that $S-B\left(v_{r_{i}}\right) \neq \varnothing$ but $S \subseteq B\left(v_{r_{i-1}}\right)$, where $B\left(v_{r_{0}}\right)=\{1,2, \ldots, k\}$. For each $1 \leq$ $i \leq s$, partition C_{i} into pairs $\left\{S_{j}, T_{j}\right\}$ such that $S_{j}-B\left(v_{r_{i}}\right)=T_{j}-B\left(v_{r_{i}}\right) \neq \varnothing$ and $B\left(v_{r_{s}}\right)$ is the disjoint union of $B_{j} \cap B\left(v_{r_{i}}\right)$ and $T_{j} \cap B\left(v_{r_{i}}\right)$. Consider the following cases:

Case 1. $S_{j} \cap B\left(v_{r_{i}}\right) \neq \varnothing$ and $T_{j} \cap B\left(v_{r_{i}}\right) \neq \varnothing$.
Suppose $S_{j} \in \mathscr{P}$ and $T_{j} \in \mathscr{P}$, say, $S_{j}=B(x)$ and $T_{j}=B(y)$. Note that $B(x), B(y)$, $B\left(v_{r_{i}}\right)$ are pairwise non-disjoint. Then $\left\{x, y, v_{r_{i}}\right\} \subseteq A_{q}$ for some $1 \leq q \leq k$. By the definition, $q \in B(x) \cap B(y) \cap B\left(v_{r_{i}}\right)=\varnothing$, a contradiction. Thus either S_{j} or T_{j} is not in \mathscr{P}.

Case 2. $S_{j} \cap B\left(v_{r_{i}}\right)=\varnothing$ or $T_{j} \cap B\left(v_{r_{i}}\right)=\varnothing$, say, $S_{j} \cap B\left(v_{r_{i}}\right)=B\left(v_{r_{i}}\right)$ and $T_{j} \cap B\left(v_{r_{i}}\right)=$ \varnothing.

In this case, $S_{j} \subseteq B\left(v_{r_{i-1}}\right)$. If S_{j} is a proper subset of $B\left(v_{r_{1-1}}\right)$, by the choice of the chain C, S_{j} is not in \mathscr{P}. If $S_{j}=B\left(v_{r_{i-1}}\right)$ and $i=1$, then $S_{j}=\{1,2, \ldots, k\}$ is not in \mathscr{P}. If $S_{j}=B\left(v_{r_{i-1}}\right)$ and $2 \leq i \leq s$, then S_{j} and T_{j} may be both in \mathscr{P}.

From the discussions in Cases 1 and $2,2^{\{1,2, \ldots, k\}}-\left\{B\left(v_{r}\right), \varnothing\right\}$ can be partitioned into $2^{k-1}-1$ pairs $\left\{S_{j}, T_{j}\right\}$ such that at least one in $\left\{S_{j}, T_{j}\right\}$, except possibly $s-1$ pairs, is not in \mathscr{P}. Thus

$$
|V(G)|=|\mathscr{P}| \leq 1+\left(2^{k-1}-1\right)+s-1 \leq 2^{k-1}+k-2 .
$$

The upper bound in Theorem 2.6 is sharp as the following example shows. Consider the split graph G^{*} whose vertex set $V\left(G^{*}\right)$ is partitioned into a clique $C=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and an independent set $I=\left\{u_{s}: \varnothing \neq S \subset\{1,2, \ldots, k-1\}\right\}$ such that $v_{i} u_{s} \in E\left(G^{*}\right)$ if and only if $i \in S$. It is clear that $G^{*} \in S(k)$ and $\left|V\left(G^{*}\right)\right|=$ $2^{k-1}+k-2$. Note that Theorem 2.4 is also a consequence of Theorem 2.6.

References

1. Füredi, Z.: The number of maximal independent sets in connected graphs. J. Graph Theory 11, 463-470 (1987)
2. Griggs, J.R., Grinstead, C.M., Guichard, D.R.: The number of maximal independent sets in a connected graph. Discrete Math. 68, 211-220 (1988)
3. Hujter, M., Tuza, Z.: The number of maximal independent sets in triangle-free graphs. SIAM J. Disc. Math. 6, 284-288 (1993)
4. Jou, M.-J.: The Number of Maximal Independent Sets in Graphs, Master's thesis, Dept. of Math., National Central Univ., Taiwan (1991)
5. Liu, J.: Maximal independent sets in bipartite graphs. J. Graph Theory 17, 495-507 (1993)
6. Meir, A., Moon, J.W.: On maximal independent sets of nodes in trees. J. Graph Theory 12, 265-283 (1988)
7. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23-28 (1965)
8. Sagan, B.E.: A note on independent sets in trees. SIAM J. Disc. Math. 1, 105-108 (1988)
9. Wilf, H.S.: The number of maximal independent sets in a tree. SIAM J. Alg. Disc. Meth. 7, 125-130 (1986)
10. Zito, J.: The structure and maximum number of maximum independent sets in trees. J. Graph Theory 15, 207-211 (1991)

Received: October 5, 1994
Revised: August 21, 1995

[^0]: * Supported in part by the National Science Council under grant NSC 83-0208-M009-050

