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Abstract. Denote by mi(G) the number of maximal independent sets of G. This paper studies 
the set S(k) of all graphs G with mi(G) = k and without isolated vertices (except G ~ K1) or 
duplicated vertices. We determine S(1), S(2), and S(3) and prove that IV(G)[ < 2 ~-1 + k - 2 
for any G in S(k) and k > 2; consequently, S(k) is finite for any k. 

1. Introduction 

All graphs in this paper are simple, i.e., finite, undirected, loopless, and without 
multiple edges. In graph G, an independent set is a subset of V(G) in which every 
two distinct vertices are nonadjacent. A maximal independent set is an independent 
set which is not a proper subset of any other independent set. A clique is a subset 
of vertices in which every two distinct vertices are adjacent. A maximal clique is a 
clique which is not a proper subset of any other clique. Let MI(G) denote the set of 
all maximal independent sets of G and mi(G) the size of MI(G). 

Erd~Ss and Moser raised the problem of determining the maximum number f(p) 
of maximal independent sets possible in a graph with p vertices and that of deter- 
mining which graphs have this many maximal independent sets. Later, Moon and 
Moser I7] gave a complete answer to this problem, which is that for p > 2, 

f Y, ifp = 3t for t > 1, 

f (p )= 4 4 . y - 1 ,  i f p = 3 t + l f o r t > l ,  
/ 
L2 .3 ' ,  i f p = 3 t + 2 f o r t > O ,  

and mi(G) = f(p) if and only if 

~ tK3, 

G -  ~ ( t -  1)K 3 U K 4 o r ( t -  1)K 3U2K 2, 
/ 
LtK3 U K2, 

ifp = 3t, 

ifp = 3t + 1, 

i f p =  3 t + 2 .  
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ErdSs and Moser actually raised their problem in terms of maximal cliques, which 
are maximal independent sets in complement graphs. About two decades later, a 
number of authors studied the same problem for trees [4, 6, 8-I0] ,  connected 
graphs [1, 2], triangle-free graphs [3], and bipartite graphs [5]. 

Instead of determining an upper bound for mi(G), this paper studies mi(G) from 
another point of view. For a fixed positive integer k, our problem is to determine 
all graphs G satisfying mi(G) = k. In a graph G, the neighborhood of a vertex x is 

N~(x) = {y ~ V(G) : x is adjacent to y in G}. 

A vertex x is isolated if NG(x) = ~. Two vertices x and y are duplicated if N~(z) = 
Na(y). The following lemmas are trivial. 

Lemma 1.1. I f  x is an isolated vertex in G, then mi(G - x) = mi(G). 

Lemma 1.2. I f  x and y are duplicated vertices in G, then mi(G - x) = mi(G). 

Proof. The lemma follows from the fact that for any A ~ MI(G), x ~ A if and only 
if y ~ A. [] 

By Lemmas 1.1 and 1.2, deleting an isolated vertex or a duplicated vertex from 
graph G does not change mi(G), so we shall consider only those graphs without 
isolated or duplicated vertices. Denote by S(k) the set of all graphs G with mi(G) = 
k and without isolated vertices (except G-~ K1) or duplicated vertices. In this 
paper, we determine S(1), S(2), and S(3). We also prove that I V(G)I _< 2 k-1 + k - 2 
for any G in S(k) and k _ 2; consequently, S(k) is finite for any k. 

2. Graphs G with mi(G) = k 

In this section we first determine S(1), S(2), and S(3). The following idea is useful in 
this paper: For an independent set B of G there exists at least one A ~ MI(G) such 
that B _~ A. 

Lemma 2.1. I f  G is an induced subgraph of H, then mi(G) <_ mi(H). 

Proof. For any B ~ MI(G), B is an independent set of H and so there exists at 
least one A ~ MI(H) such that B ~ A. Therefore, there exists a function f from 
MI(G) to MI(H) such that f(B) ~ MI(H) and B ~_ f(B) for any B ~ MI(G). Since B 
is a maximal independent set of G and B c_ f(B), 

B = f(B) f7 V(G). (2.1) 

Consequently, f is a one-to-one function and so mi(G) < mi(H). [] 

Lemma 2.2. For any two disjoint graphs G and H, mi(G U H) = mi(G)mi(H). 

It is straightforward to check that mi(Kn) = n for any n >_ 1, mi(P2) = mi(P3) = 
2, mi(P4) = 3, mi(P s) = 4, mi(Ca) = 3, mi(C4) = 2, and mi(Cs) = 5. For the values of 
mi(Pn) and mi(Cn) for general n, see [1]. 
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Lemma 2.3. Suppose G is a graph without duplicated vertices. I f  G has a cycle of 
length >4, then mi(G) >_ 4. I f  G has a cycle of length ___3, then mi(G) -> 3. 

Proof. We first consider the case where G = (V, E) has a cycle of length _>4. Choose 
such a cycle of minimum length n. For the case of n >_ 5, by the minimality of n, the 
cycle has no chord, i.e., C, is an induced subgraph of G. If n = 5, then mi(G) -> 
mi(C~) = 5 > 4. If n -> 6, then mi(G) -> mi(C,) -> mi(Ps) = 4. Thus we may assume 
that G has a 4-cycle C: v 1, v 2, v a, v 4, v 1 . Now consider the following three cases. 

Case 1. C has two chords vl v3 and v2v4. In this case, {vl, v2, va, v4} is a clique and 
so mi(G) -> rni(K4) >_ 4. 

Case 2o C has exactly one chord, say vlv 3 ~ E and v2v4eE.  Since G has no 
duplicated vertices, there exists a vertex y not in C that is adjacent to exactly one 
vertex of (vl, v3}, say vly ~ E and ray ¢ E. Choose four maximal independent sets 
Az, A2, A3, and A4 of G that include {02}, {v4}, {v3,vl}, and {va,y}, respectively. 
Since {v 2, v3, v4} is a clique and vl is adjacent to y, these four maximal independent 
sets are distinct. Thus mi(G) -> 4. 

Case 3o'C has no chord, i.e., vlv 3 ~ E and v2v ~ ~ E. Since G has no duplicated 
vertices, there exist vertices y and z not in C that are adjacent to exactly one vertex 
of {vl,v3} and {v2,v4}, respectively, say, vly ~ E, v3y q~ E, v2z ~ E, and v,,z ~ E. 
Choose four maximal independent sets Al, A2, A3, and A4 of G that include 
{v3,vl}, (v3,y}, {v4,v2}, and {v,,z}, respectively. Since v3 is adjacent to v4, vl is 
adjacent to y, and v2 is adjacent to z, these four maximal independent sets are 
distinct. Thus mi(G) > 4. 

Finally, for the case where G has a cycle of length 3, mi(G) > mi(C3) = 3. [] 

Since any graph G with at least one edge has mi(G) > 2, S(1) = {K1}. 

Theorem 2.4. S(2) = {P2). 

Proof. It is clear that mi(Pz) = 2 and P2 has no isolated or duplicated vertices. On 
the other hand, suppose G is in S(2). By Lemma 2.2 and the assumption that G has 
no isolated vertices, G is connected. If G has a cycle, then mi(G) >_ 3 by Lemma 2.3, 
which is impossible. Since mi(P4) -- 3, the maximum distance between two vertices 
of G is at most two. Therefore G is a star and so in fact is P2, as G has no duplicated 
vertices. [] 

Besides P4 and K 3, the two graphs G 1 and G 2 in Fig. 2.1 are such that 
rni(G) = 3. 

G1 G2 

Fig. 2.1. mi(G1) = mi(G2) = 3. 
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Theorem 2.5. S(3) = {P4, K3, G1, G2 }. 

Proof. First of all, mi(P¢) = mi(K3) = mi(G1) = mi(G2) = 3 and P4, Ka, G1, and G 2 
have no isolated or duplicated vertices. On the other hand, suppose G is in S(3). By 
Lemma 2.2 and the assumption that G has no isolated vertices, G is connected. 

First, G has at most one block B which is not K2 and all other blocks intersect 
B; otherwise, G contains 2K 2 as an induced subgraph, which implies mi(G)> 
mi(2K2) = 4 > 3, a contradiction. Second, B has 2 or 3 vertices, otherwise G has a 
cycle of length > 4, which implies mi(G) > 4 > 3 by Lemma 2.3, again a contradic- 
tion. For the case where B is K2, there are exactly two other blocks which are K 2 
and intersect B at different vertices. This gives/'4. For the case where B is K 3, there 
are exactly 0, 1, or 2 blocks which are K2 and intersect B at different vertices. This 
gives K3, GI, and G 2. [] 

To generalize the graphs in Theorems 2.4 and 2.5, we consider split graphs. A 
graph G is split if its vertex set can be partitioned into a clique C = {el, v2,. . . ,  vk} 
and an independent set I =-{ul ,u 2 . . . .  ,urn}. For the case of [.) N ( u i ) ~  C, 

l < i ~ m  

mi(G) = k and the maximal independent sets are {vi} U (I - N ( v i ) ) ,  1 < i <_ k. For 
the case of U N(ut) = C, mi(G) = k + 1 and besides the above k maximal inde- 

l ~ i ~ m  

pendent sets, I is the (k + 1)th maximal independent set. Note that the graphs P2, 
P4, K3, G1, and G2 are all of this form. 

For k > 4, it becomes hard to determine S(k). However, we can prove that 
I V(G)I < 2 k-~ + k - 2 for any G in S(k); consequently, S(k) is finite for any k. 

Theorem 2.6. I f  k > 2 and G ~ S(k), then ! V(G)I < 2 k-t + k - 2. 

Proof. Without loss of generality, we may assume that G is in S(k) and has as many 
vertices as possible. Let MI(G) = {A1, A2 . . . . .  Ak} and 

B(v) = {i: v ~ Ai ~ MI(G)} 

for all v ~ V(G). It is clear that each B(v) # Z.  Also, B(v) v~ i l , 2  . . . . .  k} since G has 
no isolated vertices. For any u # v, N(u) ~ N(v) since G has no duplicated vertices. 
Assume that there exists some vertex x ~ N(u) - N(v). Then { x, v} c_ Aj for some 
A~ ~ MI(G). Thus j ~ B ( v ) -  B(u). This proves that B(u) # B(v) whenever u ¢ v. 
Denote by ~ = {B(v): v ~ V(G)}. Then ] V(G)[ = [~[. 

For any i ~ {1,2,... ,k}, we claim that {i} ~ ~. Otherwise, suppose {i} ~ ~ and 
consider the graph G* obtained from G by adding a new vertex v*, which is 
adjacent to all vertices in V(G)- Ai. Note that MI(G*) is the same as MI(G) 
except that A~ is replaced by A~ U iv*}. Also, G* is without isolated or duplicated 
vertices, a contradiction to the choice of G. Thus {i} ~ ~ for all 1 < i < k. We may 
assume that 

V(G) = {v~ . . . . .  Ok,..., Vm} and B(v,) = {i} for 1 < i < k. 

If viv i ~ E(G), then v~ and vj are not both in the same independent set; i.e., 
B(vi) fl B(vj) = E~. On the other hand, suppose rio j ~ E(G). Then ivy, vj} is an inde- 
pendent set and so is a subset of some A~ ~ MI(G); i.e., r ~ B(v~) N B(vj). In conclu- 
sion, viv j ~ E(G) if and only if B(vi) fl B(vj) = ;g. 
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Now, choose a maximal  chain C: B(Vr,)D B(v,:)= " " =  B(vr) in the poset 
defined on ~ under  set inclusion. Note  that  B(v~,) = {r~} and s < k - i. Par t i t ion 
2i~.2 ..... k} _ {B(v,,), ~} into C~, C2 . . . . .  Cs, where C~ is the set of all subsets S such 
that  S - B(v,,) # ~ but  S _ B(v,,_,), where B(Vro) = {1,2 . . . .  ,k}. Fo r  each 1 < 
i < s, part i t ion C~ into pairs {Sj, Tj} such that  Sj - B(v,,) = Tj - B(v,,) # ;~ and 
B(v,~) is the disjoint union of BIN B(v,,) and TiN B(v,,). Consider  the following 
cases: 

Case I. S i fq B(vr, ) # ;g and T i n B(v~,) # Z~. 

Suppose Si ~ ~ and Tj ~ ~,  say, S i = B(x) and Tj = B(y). Note  that  B(x), B(y), 
B(v,,) are pairwise non-disjoint.  Then  {x,y, Vr,} -- Aq for some 1 < q < k. By the 
definition, q ~ B(x) N B(y) f3 B(v,,) = ~,  a contradiction. Thus either Sj or T~ is not  
in ~. 

Case 2. S~nB(v,,) = ~ or T~NB(vr,)= ~ ,  say, S~NB(v,,) = B(v,,) and TjNB(vr) = 

In this case, S~ _ B(v,,_,). If S i is a proper  subset of B(v,,_l ), by the choice of  the 
chain C, Sj is not  in ~. IfSj = B(v,,_,) and i = 1, then S i = {1,2 . . . . .  k} is not  in ~. If 
S i = B(v,,_,) and 2 < i < s, then Sj and T~ may be both  in N. 

F r o m  the discussions in Cases 1 and 2, 2 ~ 2  ..... k} _ {B(v,,),N} can be parti-  
t ioned into 2 k-~ - 1 pairs {Sj, T~} such that at least one in {S~, Tj}, except possibly 
s - 1 pairs, is not  in ¢~. Thus  

I V ( G ) [ = t ~ [ < I + ( 2  k - l - 1 ) + s - 1 < 2  k - l + k - 2 .  [ ]  

The upper bound  in Theorem 2.6 is sharp as the following example shows. 
Consider  the split graph G* whose vertex set V(G*) is part i t ioned into a clique 
C = {vl, v2,. . . ,  Vk} and an independent  set I = {Us: fg # S ~ {1, 2 , . . . ,  k - 1}} such 
that ViUs ~ E(G*) if and only if i e S. It is clear that  G* ~ S(k) and [V(G*)t = 
2 k-1 + k - 2. No te  that  Theorem 2.4 is also a consequence of Theorem 2.6. 
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