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Digital forensics, which identifies the characteristics and origin of a digital device, has become a new field of
research. If digital content will serve as evidence in court, similar to its non-digital counterparts, digital fo-
rensics can play a crucial role in identifying the sourcemodel or device. To achieve this goal, the relationship
between an image and its camera model will be explored. Various image-related and hardware-related fea-
tures are utilized in the proposed model by a support vector machine approach along with decision fusion
techniques. Furthermore, the optimum feature subset to achieve the highest accuracy rate is also explored.
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1. Introduction

The Internet has changed the way people acquire and utilize infor-
mation, especially in the realm of digital images. For everyday use,
digital cameras have replaced their film-based counterparts — a
large part of their popularity can be attributed to a dramatic drop-
off in prices. These digital cameras do not sacrifice quality for value:
they still capture high quality images, are easy to use, have various
image displaying formats. However, a digital image is a vulnerable
image — it is susceptible to replication or modification because of
the convenient availability of so many powerful image editing soft-
ware packages. If a digital image still wants to serve as evidence in
court like its traditional counterpart, verifying the authenticity of a
digital image, detecting forged regions, and identifying the digital
source need to be addressed. Digital forensics can be defined as the
collection of scientific techniques for the preservation, validation,
identification, analysis, interpretation, documentation, and presenta-
tion of digital evidence derived from digital sources for the purpose
of facilitating or furthering the reconstruction of events, usually of a
criminal nature. Although representing information in a digital form
has many compelling technical and economic advantages, it has led
to new issues and significant challenges when performing forensic
analysis of digital evidence. Therefore, we need the cooperation of in-
formation technology and forensic science [30] to overcome such
new challenges. The former provides a platform of basic knowledge
406; fax: +1 886 3 572 3792.
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and skill; the latter offers the consistent and well-defined forensic
procedures which must be employed in the court [34] for processing
digital evidence. Incorporation of the two ensures validity and credi-
bility of the digital evidence and makes this evidence admissible in
court. Hence, a pioneer standardized forensic procedure to identify
source device will be provided in this study. When digital evidence
is necessarily required in the court, for example, voyeuristic photos
are found, the procedures will be executed to extract features from
the photo and identify its source device. On the other hand, we fully
understand that current techniques cannot achieve 100% accuracy
as matters of legality demand infallible methods. However, this
study provides a stepping-stone to developing more scrupulous tech-
niques, which can only be reached by continuous research, catalyzing
a scientific revolution, and eventually arriving at the best results.

Studies on watermarks have helped determine whether an image
has been altered [14]. However, watermarks need to be inserted dur-
ing the creation of an image. This increases the production cost of dig-
ital cameras and complicates the design of the internal circuitry. This
makes it difficult to clarify the source of the images, let alone the
brand or model. The file header of most images taken by digital cam-
eras will truly contain camera model/brand and photograph informa-
tion but this information can be easily falsified. Because of this, such
ease of alteration disqualifies the photograph from being used as ev-
idence in court.

Since “Methods for identification of images acquired with digital
cameras” by [19] addressed the problem of identifying the camera
source from an image, several papers (summarized in Table 1) have
proposed to tackle this issue by using features on intrinsic hardware
artifacts caused by imperfections or on software-related fingerprints
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Table 1
Research papers on the topic of identifying camera source.

Research Approach Artifacts used Claimed
average
accuracy
rate

No of
cameras
used

Camera
type

[19] H Sensor imperfections * * N
[24] S Color features, image

quality metrics, wavelet
domain statistics

88.02% 5 N

[3]
[4] S Traces of CFA

interpolation
95.93% 3 N

[11] H Lens aberration 91.46% 3 N
[26] H Sensor pattern noise ** 9 N
[25] B Quadratic pixel

Correlation of CFA
interpolation

98.25% 4 N

[36] S Coefficients of CFA
interpolation

85.89% 19 N

[40] S Color features, image
quality metrics, wavelet
domain statistics

98.35% 6 N,C

[44] H Chromatic aberration 92.22% 4 C
[5] B+FS Coefficients of CFA

interpolation sensor
pattern noise

84.8% 5 N

[7] S+FS Binary similarity
measures, high-order
wavelet statistics, image
quality metrics

95.1% 16 N,C

[16] H Sensor dust ** 8 S
[18] H Sensor pattern noise 90.8% 17 N
[42] & this
study

B+FS Color features, image
quality metrics, wavelet
domain statistics PRNU

91.66% 26 N

Note:
1. H, S, and B denote intrinsic (H)ardware artifacts, (S)oftware-related patterns, or (B)
oth techniques, whereas FS denotes whether a feature-selection algorithm is used.
2. N, C, S denotes a (N)ormal digital camera, (C)ell-phone camera, or a (S)ingle lens
reflex camera.
3. * denotes no exact information is provided for that item.
4. ** denotes another evaluation method is used.

293M.-J. Tsai et al. / Computer Standards & Interfaces 34 (2012) 292–304
left during the image formation. When the method of detecting in-
trinsic hardware artifacts is adopted, artifacts such as pattern noise
[18,21,22,26], lens radial distortion [11], chromatic aberration [44]
or sensor dust [16] are used as the fingerprint or biometric to identify
either the brand/model source or device source.

Other than using hardware imperfections, there have been
researches that explore software-related fingerprints such as
image-related features or artifacts introduced by color filter array
(CFA) interpolation. Based on the work of [32], [3,4] argued that
most proprietary interpolation algorithms will exhibit a rather
linear characteristic when they are applied in smooth image parts,
and therefore, can be used to classify images. [25] proposed the
quadratic pixel correlationmodelwith the assumption that demosaiced
images should demonstrate spatially periodic inter-pixel correlation.
In the research of [36,37], a nonintrusive component forensic model
is devised to estimate the interpolative coefficients and an efficient
camera identifier is constructed to determine the source brand and
model of an image. From a different standpoint, [24] believed that an
output image is affected by CFA configuration/demosaicing algorithm
and color processing/transformation. Therefore, based on the stegana-
lysis research of [2], they proposed to use color-related features and
Image Quality Metrics (IQM) to extract the characteristics of an image
and then utilize a SVM-based classifier to identify the camera source
brand or model of the image. Their study has been adopted in [39,40]
and further modified to identify not only digital cameras but also the
digital cameras found in cell phones. In [6,7], the authors applied a
feature-selection algorithm to the feature set, which includes not only
IQM, but also binary similarity measures and higher-order wavelet
statistics for identification of the source cell-phone model.

Before we further analyze other techniques of digital camera
source model identification, previous research findings in [40] that
are interesting should be mentioned here. In that paper, the experi-
mental results show that camera source model identification is not
based on image content. Four different cameras are identified based
on the same or similar scenes, and [40] obtained a 100% accuracy
rate. These results prove that camera source model identification is
not related with the function of image contents. Since such controlled
experiments are rarely applied, this study will focus on camera source
model identification with varied image content since such an applica-
tion is more general in practice.

Although themodel based on IQM features to classify camera source
model achieves good results, [20] points out that device identification is
generally not possible by only using IQM-based features. Hence, other
than IQM-based features, a photo-response non-uniformity noise
(PRNU)-based feature set will be investigated in this study. To achieve
higher accuracy rates, the recent research in [5,38] proposed combining
hardware artifacts and software-related fingerprints, whereas utilizes a
feature-selection algorithm to choose the important features from the
feature set of binary similarity measures, image quality metrics, and
high-order wavelet statistics. Although SFFS (Sequential Forward Float-
ing Search) [33] is used in [7] to reduce the number of features,what the
chosen features are and why they are selected are not given in that
paper. Moreover, [41] proposed using a set of feature selection algo-
rithms and the major voting rule to identify themost 20 important fea-
tures among 34 features proposed in [24] and achieved 5% more
accuracy rate than the rate gained using the method proposed by [24].
To verify the 34 software features in [24] and the 9 PRNU-related hard-
ware artifacts, which are categorized as pattern noise in [18], [42] lever-
aged the feature selection model in their previous study of [41] to
explore out the most 18 important features among 43 features and
gained 94.95% accuracy rate when 20 camera models are used. Com-
paredwith the research in [42], this study systematically details and ex-
plainswhat the chosen features are andwhy they are selectedwhile the
number of camera used is increased to 25. However, it is noted that
identifying the camera source model in this paper means that only the
camera model other than the device actually taking an image is pre-
dicted by the proposed research method. Even though the proposed
method investigated has successfully identified the samemodel by dif-
ferent cameras, we fully understand that identifying the source device
utilizes more detailed device specific information other than source
model or brand identification. Nevertheless, we expect to leverage our
findings by exploring those topics in future research applications.

This paper is organized as follows: the details of the theoretical
approach will be explained in Section 2. Section 3 will document
the experiments and discuss the experimental results and the conclu-
sion is in Section 4.

2. The literature review and research method

2.1. The image formation process

Although the color image formation process is different among
different manufacturers, the output image is greatly influenced by
the following:

1. The Color Filter Array (CFA) configuration and demosaicing algorithm.
2. The color processing and transformation.

As illustrated in Fig. 1(a), light from a scene passes through a lens
and different optical filters, and that light is subsequently captured by
an array of sensors. Most digital cameras adopt a CFA as shown in
Fig. 1(b) to sample real-world scenes due to cost considerations
[1,19]. A CFA with the Bayer pattern is one of the most popular CFA
patterns. The Bayer pattern is when the green element is twice as
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present as the corresponding red and blue cells. The higher rate of
sampling for green allows for a better capture of the luminance
component of light and subsequently, also allows for better image
quality. After the CFA stage, several image processing procedures
are sequentially applied, such as color interpolation (also termed
“demosaicing”), auto white balance, color correction, edge enhance-
ment, and compression which results in different image characteris-
tics between images from different cameras.

2.2. The PRNU-based method

Photo-response non-uniformity noise (PRNU), which is one com-
ponent of pattern noise in digital cameras, is mainly caused by the dif-
fering sensitivity of sensors to light due to process variation.
Generally, this sensitivity is influenced by a variation among pixels
in their spectral response, detector size or some other imperfections
involved during fabrication. Because PRNU cannot be easily removed
from digital cameras due to costs, [9,26] argued that PRNU is the ideal
biometric for digital cameras.

Based on a simplified model proposed by [23], [9] formulates the
output image, I, of a digital camera as the sum of the noiseless original
image, I(0), PRNU noise, and other random noises, Θ. Because PRNU
noise is multiplicative noise of the original image, it can be expressed
as I(0) K, where K is the PRNU factor. Then, the output image I can be
formulated by the equation I=I(0)+I(0) K+Θ.

To estimate the PRNU factor K, a wavelet-based denoising tech-
nique [17,31] is used to reject the host signal and get the denoised
image, ID of I. By subtracting ID from I, we get the noise residual
W=I(0)+I(0) K+Θ− ID=IK+I(0)− ID+(I(0)− I)K+Θ. If we use
the symbol Ξ to represent the last three terms of W, the equation
can be rewritten as W=IK+Ξ. To derive K from N images of Ik,
k=1,…, N, the following log-likelihood function can be used if
the sequence Ξ1,…, ΞN is modeled as white Gaussian noise with
variance σ2.

L Kð Þ ¼ −N
2

XN
k¼1

log 2πσ2
.

Ikð Þ2
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XN
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Fig. 1. (a) The digital color image formation in a pipeline order o
According to the theory of maximum likelihood estimation, K can
be estimated by taking the first-order partial derivative of Eq. (1).
Hence, the ML estimator of K will be:

K̂ ¼
P
k¼1NWkIk

�
Pk ¼ 1N Ikð Þ2: ð2Þ

[18] used formula (2) as the “fingerprint” of a camera to form 4
feature sets. They used statistical moments for each color channel,
cross-correlation between the color channels, the first 4 principal
components of block covariance, and a linear-pattern correlation.
Then, they used a RBF-based SVM classifier to identify the camera
source based on 28 features from 4 feature sets. The average identifi-
cation accuracy rate of the experiment was 90.8%, using 17 camera
models of 8 different brands. Because PRNU can serve well as a classi-
fying feature even on tampered images, to enrich the feature set used
in [39–41], we will adopt the 9 PRNU-related features of the first, sec-
ond, and third central statistical moments of the Ks estimation for
each color channel in this study. Because it was difficult to obtain
many cameras per model during our experiment, our proposed ap-
proach is based on the estimated noise of a single image. That is, the
formula K̂ ¼ Wk=Ik is used to compute PRNU-related features.

2.3. The image feature-based method

This method assumes certain properties or patterns will be em-
bedded in the image when the camera's image is processed within
the camera itself, regardless of the original contents of the image.
Such action is similar to the operation of the active warden, who
can alter the cover image content for steganography [2]. In [24], 34
image features are proposed to identify camera source, and they can
be categorized into three types: color features, quality features, and
image characteristics in a frequency domain.

2.3.1. Color features
Color features refer to image-color-related characteristics that have

not been processed through signal conversion. Under the gray-world
assumption, the colored image can be represented by three primary
Color Filter Array Image Processing

White Point Correction

f the digital camera. (b) Color filter array sensor illustration.
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lights, all of which have the same energy [1]. By applying statistical
techniques such as mean, pair correlation, and pair energy ratio, color
features can be computed. Therefore, regardless of the original image
content, certain properties or patterns will be embedded in the image
when the digital contents in RGB space are processed and each image
is affected through the whole image processing chain [27].

2.3.2. Quality features
Besides color features, the photographing qualities of different

cameras are also different. We employ Image Quality Metrics (IQM),
proposed by [2], to describe these visual differences. In image system
evaluation or coding, image quality is an important index. A good
image quality index must be able to reflect the distortion as a result
of image processing. Most frequently used indices include Mean
Square Error (MSE) and Signal to Noise Ratio (SNR). They, however,
do not meet all the requirements of an observer's visual sense. For
some multimedia images of low bit rate, a set of image characteristic
indices have been developed. Based on the physical senses of a
human, the pixel difference-based, correlation-based and spectral-
based indexes are adopted here as our image forensic indices.

2.3.3. Image characteristics in a frequency domain
In the spatial domain, which is the most frequent representation

in the computer world, an image is comprised of many pixels and
can easily be stored by a 2D matrix. In addition to representation in
the spatial domain, an image can also be represented in the frequency
domain. While the Fourier transformation is the most famous method
to convert to the frequency domain, wavelet transformation [15,28],
another transformation to frequency domain, is gaining popularity
because of its superior performance in compression, denoising, and
edge detection etc. In this study, the wavelet transformation is uti-
lized to get a representation of an image in the frequency domain.
To obtain such wavelet representation, we used two Matlab func-
tions, wavedec2 and appcoef2, along with the “Daubechies 8” filter
[29] to hierarchically break up frequencies of an image to several fre-
quency sub-bands and colors.

However, as more features are used, the processing time will also
increase to classify the camera source model. To reduce the comput-
ing time and complexity, we applied the feature-selection technique
to the problem of camera model identification in [41] by using algo-
rithms such as Plus-m-minus-r [35] and SFFS [33]. In [41], we consid-
ered an individual feature-selection algorithm as an expert and used
decision fusion techniques to form an important feature subset
through the consensus of experts. To fortify the decision, we expand-
ed the algorithm set in this study by adding the Sequential Backward
Floating Search (SBFS) algorithm [33]. Moreover, since people often
take pictures with figures or scenery centered in the entire image,
and as the resolution of digital cameras are getting higher as technol-
ogy improves, we used not only a fixed pixel area, but also a centered
percentage area in this study to extract features to include the most
information for processing.

2.4. Data mining by using Support Vector Machines (SVM)

Data mining refers to the extraction of meaningful information or
characteristics from a large amount of data in order to establish effec-
tive models and principles. Based on predefined statistical models or
computer algorithms, the automatic data mining method determines
patterns, trends, classification, clustering, and relationships. In this
study, building an SVM [13] classifier is the most important step in
the process to identify a digital camera model from its images. The
most significant advantage of an SVM approach is creating a way to
build a non-linear classifier by replacing the dot product in a linear
transformation with a non-linear kernel function. Among the 3 kernel
functions discussed in [45], we chose the RBF-based kernel function
to build the classifier for our study.
2.5. Decision fusion

By integrating selection algorithms, which perform like the ex-
perts as described in Sec. 2.3.3 and the SVM classifier in Sec. 2.4,
several feature subsets are found. Therefore, we need to fuse
these subsets into the final feature subset. In general, the problem
of decision fusion is how to aggregate the opinions of the finite expert
set for the finite alternatives set. There are three kinds of aggregators
to which fusing mechanisms can be applied.

1. Count-based aggregation

After reviewing all alternatives, the experts will give the best n
alternatives by recommending a label where n will be predefined
before aggregation. Then, the alternative having the most label
counts will be selected as the final solution.

2. Rank-based aggregation

During aggregation, the experts will present the preference order
of all alternatives as assessment results. Aggregating functions such as
the Borda count or the Resolution Process of GDM (RPGDM) with
fuzzy preference relation [10] can be used to fuse the preferences of
each expert into the final preference order. The alternative ranked
first in preference order will be chosen as the final solution.

3. Confidence-based aggregation

This kind of aggregation is similar to count-based aggregation,
except the value assigned for each alternative by each expert is not
label-based. The value represents the confidence level of which an
expert conceives the corresponding alternative as the best alterna-
tive. To get the final confidence level of each alternative, we can uti-
lize aggregating functions like sum, multiply, minimum, maximum,
median, or an Ordered Weighted Average (OWA) [46] to compute
values.

In this paper, we consider feature selection algorithms as experts
and feature sets as alternatives. Because features in an optimal subset
by selection algorithms are generated in a series of inclusion and ex-
clusion steps, it is difficult to give each feature the ranking order or
confidence level in the final subset. Therefore, we selected count-
based aggregation as the algorithm of decision fusion. Whenever a
feature is chosen into the optimal subset by a selecting algorithm,
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that feature will get a recommending label. Thus, based on majority
vote, the features with the most labels are selected into the final op-
timal subset.
2.6. The research model

Based on our previous research [41], we extend the feature set of
the proposed model as shown in Fig. 2 to combine 9 PRNU-related
features in Section 2.2 with 34 images-related features in
Section 2.3. Because it is proven effectively to identify a camera
source device in [26], PRNU-related features are added to explore its
contribution to accuracy rate when identifying a camera source
model in this study. Although the pairwise comparisons used in [26]
are modeled by Gaussian distribution [21], this model will no longer
follow such a distribution when all images photographed by different
cameras are pooled together for a test, which is a more realistic iden-
tification scenario. Therefore in this study, we only take PRNU-related
features as one possible fingerprint from a camera, and then use IQM
as the basis for other fingerprints to enhance feature sets.

The first step of our proposed model is to implement feature-
selection algorithms. A decision fusion algorithm based on the times
of selection is used to aggregate the feature subsets. In the final fea-
ture subset, the algorithm will select the top λ features from 43 fea-
tures in order to get the highest identification rate. Suppose that the
highest rate is achieved when λ features are selected. Subsequently,
the SVM trained model will be built by using the top λ features
from the training images. Finally, test images will be fed into the
trained model to predict the camera source model. The prediction re-
sults of using PRNU-related features will be compared with the re-
sults of the method in [41].

When image-quality related features are computed, the extracted
area to compute image quality are either fixed to a central
1200×1200, 1600×1600, or 1920×1920 pixel area or adaptively
sized to a central 75%, 90% or 100% area of an image. Such adaptation
of an extracted area is designed to explore how it contributes to the
identification accuracy rate of the proposed method due to higher
resolutions on the latest camera models. Since there is no information
about image size from [18], PRNU-related features were obtained in
this study by computing the central 1200×1200 pixel area of an
image, which is the smallest fixed area used to compute image-
quality related features. The complete flow chart of our research ap-
proach is shown in Fig. 2. Through the help of the tool “grid.py”
Table 2
Camera models, number of images, and image resolutions used in this study.

Camera model Images used Image resolution

Canon_350D(1) 194 2496×1664
Canon_A700 150 2816×2112
Canon_350D(2) 152 2304×3456
Canon_IXUS65 155 2816×2112
Canon_IXUS800 150 1600×1200

Canon_IXUS850 300 1536×2048
Canon_IXUSi5 166 1200×1600

Casio_EXZ500 175 1920×2560

Fuji_F10 174 1944×2592
Fuji_F30 153 2136×2848 2016×3024
Konica_KD400Z 162 1600×1200
Nikon_D80 489 1296×1936
Nikon_P2 150 1536×2048
from [8], the optimum penalty and gamma settings of SVM for the
proposed method are found to be 32 and 1.

3. Experiments and discussion

Before we discuss the experimental settings, we must first decide
upon the sample and test image size. [24] applied 60 images for train-
ing and 90 images for test. [44] used 30 images for training and 60 im-
ages for test. Both [5] and [7] took 100 images for training and 100
images for test. [18] utilized 45 images for training and 56 to 605 im-
ages for test. Since every technique had differing requirements to
achieve the best accuracy with low false positive rates, we have
adopted the setting of [24] due to the modest sample size and low
false positive rate.

As for identifying the source cameras from the modified images,
we assume that the images used for source identification are the di-
rect output of the devices in this study. The reasons can be catego-
rized from three aspects:

• Although the image may be forged or modified in reality, the issue
of image authentication which also involves the detection of the
modified area is an important image integrity research which is
worth further study but it is beyond the scope of this subject.

• People recently often upload the images of the phone camera (for
example: iPhone) for immediate online sharing. Therefore, there
is generally no need and no time to modify the images during
such a short period. In addition, this study also checked many orig-
inal images from Flicker website and found that the images are in-
tact since the original setting is remained. Both evidences
represent the fact that the uploaded images are generally original
for most of the applications.

• Moreover, in the previous researches of [26] and [7], the issue of
source camera identification from the modified or manipulated im-
ages result the contradicted conclusion. The former research con-
cludes that point-wise operations such as gamma correction and
JPEG compression with a quality factor 90 or less have little influ-
ence on the reliability of identification method. However, the result
of latter one suffers heavily under manipulation, especially geomet-
rical attacks, such as rotation and downsampling if the original
“unmanipulated” images only are used to train the classifier.
Hence, the robustness of the source classification for modified im-
ages is an important topic and should be further evaluated. This
will be explored as the future study.
Camera model Images used Image resolution

Nikon_P5200 173 1944×2592
Nikon_S3 203 2112×2816
Olympus_C5050Z 188 1920×2560
Olympus_C700UZ 257 1600×1200
Panasonic_DMCL1 213 1080×1920

1920×2560
1760×3136
2352×3136

Panasonic_F1 153 1200×1600
Panasonic_FX01 292 1728×2304

1920×2560
1728×3072

Panasonic_LX2 178 1712×2560
1078×3072

Pentax_A10 184 3264×2448
Pentax_K100D 269 3008×2000
Sony_N1 168 2448×3264
Sony_P10 152 1944×2592
Sony_T30 300 1536×2048

2592×1944
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Four experiments are conducted in this study to verify the pro-
posed method as described in Sec. 2.6. In all experiments, 60 images
from a camera will be randomly selected to train the SVM classifier,
whereas at least another 90 images randomly taken from the same
image data set are tested during the identification of the camera
source model. We collected images from friends, students, or col-
leagues who voluntarily provided their digital photos. For the exper-
iments, the images had to be extracted from the digital camera itself
without further image editing or processing. In order to simulate a
realistic scenario, we did not limit the compression setting during
collection. Therefore, image resolution had no influence during our
investigation. The content of those camera images are scenes with
wide variety in JPEG format with various compression settings
a

b

Fig. 3. Diagram of accuracy rate versus number of features. 3(a) is for a total of 34 i
which are not predefined. A total of about 5300 images were col-
lected for this study. The Java library, LibSVM, developed by [8] is
used as the core SVM engine in this study. Camera models, number
of images, and image resolutions used in this study are tabulated in
Table 2.

3.1. Experiment I

To search for the most important features and reduce the evalua-
tion time without a loss of accuracy, the adaptive feature selection al-
gorithm is implemented. According to [33,35], we implemented five
feature selection algorithms in Java: SFFS, SBFS, plus-2-minus-1
(P2M1), plus-3-minus-2 (P3M2), and plus-4-minus-3(P4M3). The
mage features (without PRNU) and 3(b) is for 43 image features (with PRNU).



Table 3
The 20 most important features with and without PRNU-related features.

Symbol Features description Symbol Features description

C1 RGB mean values—red W1 Mean of wavelet statistics—red/vertical
C2 RGB mean values—green W2 Mean of wavelet statistics—red/horizontal
C3⁎ RGB pair correlations—green W3 Mean of wavelet statistics—red/diagonal
C4⁎ RGB pair energy ratio—red/green W4 Mean of wavelet statistics—green/vertical
Q1 Mean Square Error W5 Mean of wavelet statistics—green/horizontal
Q2 Mean Absolute Error W6 Mean of wavelet statistics—green/diagonal
Q3 Image Fidelity W7 Mean of wavelet statistics—blue/vertical
Q4 Normalized cross-correlation W8 Mean of wavelet statistics— blue/horizontal
Q5 Spectral phase-magnitude error W9 Mean of wavelet statistics—blue/diagonal
Q6 Block spectral magnitude error P1⁎⁎ 1st central statistical moment of blue
Q7 Block spectral phase-magnitude error P2⁎⁎ 3 rd central statistical moment of green

Note: An asterisk (*) represents selections without PRNU-related features (C3, C4). The double asterisks (**) represent selections when PRNU-related features are considered for the
20 most important features.
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number of chosen features is decided based on the accuracy rate for
both 43 image features (with PRNU) and 34 features (without
PRNU). The steps of experiment I are listed as follows:

1. 10 sets of images from 26 camera sources are randomly generated.
In each set, there are 60 images which are selected from each cam-
era as training data and another 90 images for test data. The 34
non-PRNU-related features among 43 features will be calculated
by using the central 90% area of each image, where 9 PRNU-
related features will be computed using the central 1200×1200
pixel area of an image.

2. The feature selection algorithm is executed by adding or removing
a feature one at a time to find the optimum identification rate. The
selection order during execution will be recorded to choose the
most important features.

3. Repeat step 2 for 10 different image sets.
4. The diagram of accuracy rate versus number of features is plotted

to decide the cut off number for the most important features. As
Fig. 3(a) and (b) shows, the accuracy rate for different feature
sets is topped at near 20 features. Hence, the cut off number is
set to 20 for both 43 image features (with PRNU) and 34 features
(without PRNU).

5. Using the recorded feature-selection order, the counter-based de-
cision fusion algorithm is used to decide the final top 20 selected
features as tabulated in Table 3 from the results of 10 tests.

The most important 20 features chosen with PRNU features in this
experiment are labeled as GN20, whereas the 20 features selected
without PRNU features are labeled as GO20. The detailed formulas
of GN20 and GO20 used to compute features are listed in Appendix A.

The accuracy rates of the best 19, 20, and 21 features among the 43
features when using the feature-selection algorithm are shown in
Table 4. According to this table, the optimum feature subset from 5
feature-selection algorithms by decision fusion achieves a higher
Table 4
The accuracy rate among 5 different feature-selection algorithms.

Feature-selection
algorithm

19 features
selected

20 features
selected

21 features
selected

P2M1 89.11 89.39 89.33
P3M2 89.27 89.72 89.77
P4M3 89.28 89.26 89.61
SFFS 88.86 88.88 89.61
SBFS 89.47 89.69 89.83
Fusion 90.07 90.13 89.89
No feature-selection 87.80 88.12 87.65
accuracy rate than any other selection scheme. It can also be noted
that the accuracy rate of an optimum feature subset tops one without
using feature selection by about 3%.

3.2. Experiment II

We conducted this experiment by using images from Canon and
Nikon cameras to verify the effectiveness of the 20 most important
features on the cameras of the same brand but different model. All
images have widely varied scenes. The steps to execute the experi-
ment are as follows:

1. All 43 features and 34 image-related features are calculated by
using the central 90% area of each image to form data sets, which
are labeled as All43 and I34, respectively. According to Table 3,
the GN20 data set is created from the All43 data set, whereas the
GO20 data set is created from the I34 data set. Each image is also
given a sequence number starting from 1 for the purpose of
randomization.

2. The 60 sequence numbers for training and the 90 sequence num-
bers for test data are randomly generated. Both the 60 and 90 cor-
responding images from each camera in the data sets created in
step 1 are then selected to form All43, I34, GN20, and GO20 train-
ing and test data subsets. The original camera source of each test
image is recorded to compute the identification accuracy rate.

3. Use the SVM engine to build the 4 prediction models by All43, I34,
GN20, and GO20 training image subsets.

4. Feed All43, I34, GN20, and GO20 test image subsets to the corre-
sponding model trained in step 3 and predict the camera source.

5. Compare predicted source in step 4 with its original source to get
the identification accuracy rate.

6. Repeat steps 2 through 5 ten times to obtain a confusion matrix.

As shown in Table 5, the accuracy rate of using the GN20 feature
set which includes the PRNU-related features is 0.8% higher than
the GO20 feature set. Moreover, the average accuracy rate of GN20,
optimized by the proposed method, increases 2.3% to 96.28% —

more accurate than the results using all 43 features. It is worth noting
that the two Canon cameras of the same model (labeled as Canon
350D (1) and (2)) used in this experiment report an average of
97.19% model identification rate. Despite these preliminary results,
the high average accuracy rate justifies the effectiveness of our pro-
posed method to identify the camera source model when the opti-
mum feature subset is used.

3.3. Experiment III

Theoretically, as the number of cameras used for testing increases,
the obtained accuracy rate decreases. Therefore in this experiment,



Table 5
The confusion matrix of Experiment II by using (a) GN20, (b) GO20, (c) All43, and (d) I34 feature sets.

(a) The confusion matrix of the experiment II by using GN20 feature set.

Total average accuracy rate=96.28% Predicted (%)

A B C D E F G H I J

Actual Canon_350D (1) A 94.89 * * * * * * * * *
Canon_A700 B 1.45 96.56 * * * * * * * *
Canon_350D (2) C * * 99.34 * * * * * * *
Canon_IXUS65 D * * * 97.67 * * * * 1.56 *
Canon_IXUS800 E * * 1.27 * 91.27 2.07 1.73 1.38 1.38 *
Canon_IXUSi5 F * * * * * 99.12 * * * *
Nikon_D80 G * * * * 1.78 * 96.56 * * *
Nikon_P2 H * * * * 1.56 1.34 * 97 * *
Nikon_P5200 I * 1 * 2.12 * * * * 94.45 *
Nikon_S3 J 1.23 * * * * * * * 1.34 95.89
False positive rate (%) 0.48 0.26 0.16 0.48 0.64 0.37 0.24 0.24 0.55 0.71

(b) The confusion matrix of the experiment II by using GO20 feature set.

Total average accuracy rate=95.49% Predicted (%)

A B C D E F G H I J

Actual Canon_350D (1) A 94.34 1.12 * * * * * * * 3.45
Canon_A700 B 1.23 96.23 * * * * * * * 1.12
Canon_350D (2) C * * 98.78 * * * * * * *
Canon_IXUS65 D * * * 95.23 * * * * 2 1.67
Canon_IXUS800 E * * 1.04 * 90.81 2.99 1.96 * 1.27 *
Canon_IXUSi5 F * * * * * 99.67 * * * *
Nikon_D80 G * * * * 1.67 * 96.34 * * *
Nikon_P2 H * * * * 1 1 * 97.89 * *
Nikon_P5200 I * 1.23 * 2.34 * * * * 94.89 1
Nikon_S3 J 1.23 * * 5.23 * * * * 1.89 90.67
False positive rate (%) 0.48 0.38 0.16 1.04 0.49 0.48 0.3 0.07 0.69 0.89

(c) The confusion matrix of the experiment II by using All43 feature set.

Total average accuracy rate=93.98% Predicted (%)

A B C D E F G H I J

Actual Canon_350D (1) A 93.23 1.12 1 * * * * * 1 2.89
Canon_A700 B 2 95.78 * 1.23 * * * * * *
Canon_350D (2) C * * 97 1 * * * * * *
Canon_IXUS65 D * * * 95.78 * * * * 1.89 1.12
Canon_IXUS800 E * * 1.38 * 89.32 3.68 1.61 1.96 * 1.04
Canon_IXUSi5 F * * * * 1.67 96 * 2.34 * *
Nikon_D80 G * * * * 2.45 1.12 93.12 * * *
Nikon_P2 H * * * 1.34 1.12 2.56 * 94 * *
Nikon_P5200 I * 1.12 * 1.45 * * 1.45 * 92.78 1.67
Nikon_S3 J 1.12 * * 1.34 1 * 1.23 * 1.78 92.78
False positive rate (%) 0.61 0.35 0.36 0.78 0.86 0.84 0.61 0.61 0.64 1.02

(d) The confusion matrix of the experiment II by using I34 feature set.

Total average accuracy rate=94.28% Predicted (%)

A B C D E F G H I J

Actual Canon_350D (1) A 93.12 1.34 * * * * * * * 3.56
Canon_A700 B 1.78 95.89 * 1.12 * * * * * 1
Canon_350D (2) C * * 97.78 * * * * * * *
Canon_IXUS65 D * * * 95.78 * * * * 1.78 1.56
Canon_IXUS800 E * * 1.5 * 89.43 4.14 1.73 1.04 * *
Canon_IXUSi5 F * * * * 1.89 97.67 * * * *
Nikon_D80 G * * * 1.23 2.12 * 94.45 * * *
Nikon_P2 H * * * * 1.89 1.12 * 95.89 * *
Nikon_P5200 I * 1.12 * 1.89 * * 1.34 * 92.56 2.12
Nikon_S3 J 1.45 * * 4.56 * * 1.12 * 2 90.23
False positive rate (%) 0.64 0.35 0.32 1.2 0.77 0.66 0.58 0.17 0.62 1.03
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we increased the number of cameras to 26 to substantiate our pro-
posed approach on larger camera sets to observe the fluctuation on
the average accuracy rate. Additionally, different image areas will be
utilized to assess the accuracy rate. The steps to conduct this experi-
ment are similar to the steps in Experiment II, whereas feature extrac-
tion is based on the central 1200×1200, 1600×1600, 1920×1920
and 75%, 90%, and 100% of the image area. Due to the numerous tables
produced and for demonstration purposes, we only tabulated the best
results in Table 8 for GN20 with a centered 90% image area. The com-
plete comparison is summarized in Table 6.

As shown in Table 6, the average accuracy rate of using the GN20
feature set that includes the PRNU-related feature outperforms the



Table 6
The accuracy rate for different feature set and image area.

Image area used All34 All43 GO20 GN20

1200×1200 74.69 75.96 75.50 78.16
1600×1600 81.17 81.83 82.06 84.34
1920×1920 82.95 83.63 84.44 85.90
75%×75% 85.85 86.41 86.64 88.04
90%×90% 89.04 88.55 90.4 91.66
Full image 86.95 87.28 87.91 88.94
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other feature sets by at least 1%. It is also interesting to note that
when the centered 90% image area is used, the average accuracy
rate is the highest (the confusion matrix is detailed in Table 8).

Conceptually, when a larger area contains more figures or scenery,
the more information an image can provide. However, most current
digital cameras use an anti-aliasing filter before CFA in order to
avoid color aliasing, which increases the blurring effect of an image.
In general, the design of the optical lens will make the quality within
the image center sharp, but introduce aberrations around the edge or
boundary of the image. This optical aberration is generally catego-
rized as either chromatic or monochromatic aberration. Chromatic
aberration often appears on the edge of an image, whereas mono-
chromatic aberration is distortion often shown on the boundary of
an image. Both aberrations make the blurring effect more significant
and [36,37] states that information on the boundaries of the image
is not trustworthy. Therefore for these experiments, it is preferred
to use the central percentage area of an image rather than the
whole image.

3.4. Experiment IV

In this experiment, we will verify how the proposed method per-
forms when identifying the source brand of an image by using the 20
most important features. All experimental settings are the same as in
Experiment III except that the camera brand is predicted. The confu-
sion matrix is shown in Table 7.

The identification accuracy rate on average is 86.77% which is 5%
lower than the result from Experiment III. Software and hardware
components may be the reason for the lower accuracy rate [39]. For
example, many manufacturers either build using the OEM model or
purchase modules from key component suppliers. As it turns out,
several brands may share the same critical components, which in
turn influence the identification results. On the other hand, because
dissimilar demosaicing or color processing algorithms may be used
for the different camera models of the same brand, it can't guarantee
those features as the unique fingerprints to identify camera source
brand. Whether such a unique character or feature for certain cam-
era brands exists, this could be a potential topic for future research.
Table 7
The confusion matrix for identifying the source brand of camera from an image by GN20.

Total average accuracy rate=86.77% Predicted (%)

A B C

Actual Canon A 93.08 * *
Casio B 1.12 84.34 5
Fuji C 4.84 1.84 88.23
Konica D 16.23 * *
Nikon E 6.25 * 3.45
Olympus F 3.95 * 3.34
Panasonic G * * *
Pentax H 14.34 * 2.62
Sony I 3.82 * *
False positive rate
(%)

5.33 0.33 1.47
3.5. Discussion

In Experiment I, we selected the 20 most important features as
shown in Table 3 by five feature selection algorithms. After reviewing
these chosen features, three findings can be summarized as follows:

1. Green is the primary color in three of the four color-related features
(C1, C2, C3, C4).

A digital image is created through a color-processing pipeline
within a digital camera in which a CFA is used to detect light of differ-
ent frequencies. Because the human eye is more sensitive to green
light than both red and blue light, most cameras adopt a Bayer-
pattern CFA, alternating rows of red-green and green-blue filters [1].
Moreover, redundancy of the green filters results in an image having
less noise and finer detail. That is to say, the addition of a green-
related feature will improve the classification accuracy rate. It should
not be surprising that green is chosen by feature selection algorithms
since the Bayer-pattern CFA is widely used in digital cameras.

2. Selected quality features with properties similar to active warden
steganography.

[2] uses IQM to detect the stego-images where the still images con-
tain the hidden messages. ANOVA tests are applied in that paper to
identify specific quality measures which are useful in steganalysis. The
statistical evidence of steganography is the major focus in [2], and we
found 5 image quality features (seen in Table 3): mean square error,
mean absolute error, image fidelity, normalized cross correlation, and
spectral phase-magnitude error. These 5 image quality features can be
categorized as active warden steganography. It is possible to apply ste-
ganalysis in digital forensics since a digital image is created through the
color-processing pipeline within a digital camera. Through this proces-
sing, a robust, invisiblewatermark is embedded in the image, acting as a
hiddenmessage. This action is similar to the operation of the activewar-
den, who can alter the cover image content for steganography.

3. All wavelet-related features (W1–W9) are selected.

In [27], the authors discovered that a message can be embedded
into digital images, and these manipulations can fundamentally
alter the underlying statistics of an image. Since they successfully ap-
plied wavelet-related decomposition to build higher-order statistical
models of natural images, their results inspired [24]'s authors to in-
clude wavelet features into the realms of digital forensics to identify
the camera source model. By applying wavelet features for feature
optimization, the results of our experiments indicate consistent per-
formance with [24,27,40].

In summary, various experiments were performed to analyze
whether the proposed approach can be an effective technique in ac-
curate identification of the camera source model. The optimum fea-
ture subset including the PRNU features chosen in this study has
enhanced the accuracy rate to 91.66% when 25 camera models of 9
D E F G H I

1.47 1.93 * * * 1.39
* 7.23 * * * 1.78
* 2.39 1.28 * 1.17 *
83.34 * * * * *
* 87.67 * 1.06 * *
* 0.56 86.84 3.95 * *
* * * 92.59 * 4.73
* 1.06 * 2.45 75.23 3.23
* * * 4.41 1.52 89.6
0.48 1.47 0.71 1.55 0.51 1.64



Table 8
The confusion matrix for experiment III by using the GN20 feature set extracted from a centered 90% image area.

Total average accuracy rate
91.66%

Predicted (%) (Note: the cell marked with an asterisk symbol means its value is less than 1%)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Actual Canon_350D (1) A 93.2 * * * * * * * * * * * * * 3 * * * * * * * * * * *
Canon_A700 B * 96.4 * * * * * * * * * * * * * * * * * * * * * * * *
Canon_350D (2) C * * 98.8 * * * * * * * * * * * * * * * * * * * * * * *
Canon_IXUS65 D * * * 97.4 * * * * * * * * * * * * * * * * * * * * * *
Canon_IXUS800 E * * 1.2 * 88.9 * 1.7 * * * 1.8 1.7 1.3 * * * * * * * * * * * * *
Canon_IXUS850 F * * * * * 98.9 * * * * * * * * * * * * * * * * * * * *
Canon_IXUSi5 G * * * * 1 * 87.2 * * * 8.5 * * * * * 2.9 * * * * * * * * *
Casio_EXZ500 H * * * * * * * 88.8 6.7 * * * * 1.8 * * * * * * * * * * * *
Fuji_F10 I * * * 2.8 * * * 1.7 88.2 2.5 * * * 4.2 * * * * * * * * * * * *
Fuji_F30 J * * * 2 * * * 1.5 8.9 79.9 * * * 2.8 * 2.3 * * * * * * * * * *
Konica_KD400Z K * * * * 4.2 * 9.3 * * * 86.4 * * * * * * * * * * * * * * *
Nikon_D80 L * * * * 1.4 * * * * * * 95.9 * * * * * * * * * * * * * *
Nikon_P2 M * * * * * * 1.9 * * 1 * * 93.7 * * 1.8 * * * * * * * * * *
Nikon_P5200 N * 1.4 * 1.3 * * * * 6.7 * * * * 84.7 * * * * * * * * * * * *
Nikon_S3 O * * * 1 * * * 1.2 * * * * * * 93.7 * * * * * * * * * * *
Olympus_C5050Z P * * * * * * * * * 1.6 * * 1.9 * * 96 * * * * * * * * * *
Olympus_C700UZ Q * * * * * * 3.5 * * * 1 * * * * * 91.2 * 3.3 * * * * * * *
Panasonic_DMCL1 R * * * * * * * * * * * * * * * * * 94.4 * 1 * 1.6 * * * *
Panasonic_F1 S * * * * * * * * * * * * * * * * 1.8 * 96.2 * * * * * * *
Panasonic_FX01 T * * * * * * * * * 2.4 * * * * * * * * * 92.3 1.6 * 1.7 * * *
Panasonic_LX2 U * * * * * * * 1 * * * * * * * * * 1.4 * 1.7 90.5 * * 2.7 * *
Pentax_A10 V * * * 1.4 * * * 2.2 * 3.2 * * * * * 1.5 * 1.8 * * * 82.6 * 4.9 * *
Pentax_K100D W * * * * * * * 1.2 * * * * * 1.2 * * * * * * * * 94.7 * * *
Sony_N1 X * * * * * * * * * * * * * * 1.3 * * 2.3 * * 1 2.5 * 88.7 * *
Sony_P10 Y 1.3 * * * * * * * * * * * * * * * * * * * * * * 1 95.2 1.3
Sony_T30 Z * * 1.9 * * * * * 2.6 * * * * * * * * * * * * * * * 1.4 90
False Positive Rate (%) 0.25 0.14 0.2 0.39 0.36 0.01 0.72 0.51 1.11 0.58 0.5 0.17 0.23 0.58 0.41 0.25 0.21 0.32 0.18 0.21 0.23 0.25 0.24 0.4 0.08 0.2
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Fig. 4. Diagram of accuracy rate versus times of experiment execution.
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different brands have to be identified. The average classifying accu-
rate rate in [18] is 90.8% for 17 camera models of 8 different brands.
While the number of camera models used in this study is 1 or 2, the
number of camera models used in [18] is between 101 and 650.

Moreover, we utilize our proposed researchmodel in this paperwith
the feature set including 45wavelet-related features proposed in [43] to
identify source color laser printer. The 45 features are computed from
HH, LH and HL sub-bands after DWT on scanned images by using statis-
tical measures like standard deviation, skewness, kurtosis, RGB pairs
correlation and RGB pairs covariance. During this experiment, 19 of 45
features are chosen, by using feature selection algorithm, as the most
important 19 features labeled as LG19, whereas the 39 features pro-
posed in [12] are symbolized as LC39. The experimental result shown
in Fig. 4 and Table 9 is 92.4% versus 91.2% when the most important
19 features selected by the proposedmodel compared to all 45 features,
which are represented as LAll45, are used. The 92.4% accuracy rate is also
better than 86.9% accuracy rate when the researchmethod in [12] is ap-
plied. From the experimental results, our approach has proved a high
identification ratio and indicates that ourmethod can effectively identify
not only the source camera model of an image but also the model of
source color laser printer.
Table 9
The average prediction accuracy rates among different data sets.

Symbol Feature number Accuracy rate (%)

(1) LC39 39 86.9
(2) LAll45 45 91.2
(3) LG19 19 92.4

Note:
(1) Means the method of [12] by using all 39 features proposed in the research. (LC39)
(2) Means the proposed method using 45 features. (LAll45).
(3) Means the proposed method using 19 features after feature selection algorithms.
(LG19).
4. Conclusion and future research

This study focused on analyzing the relationship between digital
cameras and their photographs through the help of support vector
machines and decision fusion. The proposed approach utilizes feature
selection algorithms to choose the top λ (λ=20 based on the exper-
imental results) important features, selected by these algorithms
from 43 image features. We found the best results were obtained
when we used the central 90% of the image area to extract features.
Due to the influence of optical aberrations within the boundary
area, fixed size areas were avoided. Based on the SVM's ability to dis-
tinguish cameras of different brands, this study also examines wheth-
er the method can differentiate cameras of the same brand with
different models, or even the same brand with the same model.
From the experiments, the identification accuracy rate can achieve
91.66% when 26 cameras are examined. By integrating these parame-
ters, the data shows a high camera source identification rate with our
approach, proving the efficacy of its forensic application.

For future research, wewill adopt the procedures of [18] to verify the
performance of our approach on device identification. Additionally, we
will not only exploremore features to enrich our feature set and improve
the identification accuracy rate but also examine the influence on the per-
formance of the proposed model when modified images are used with
original images. [7] shows promise by using Binary Similarity Measures
(BSM)-based features with IQM and HOWS (higher order wavelet statis-
tics) to achieve about a 98% accuracy rate if decision fusion is used. Hence,
BSM features and interpolation-based features in [36,37] will be our next
research topic. Because it was difficult to obtainmany cameras permodel
during the experimental setup, one camera for each model was used in
the experiment, except for the Canon 350D, whichmay present intermo-
del variation. Therefore, to investigate the effect of intermodel variation
with our approach, we will collect as many cameras as possible per
model for a future research topic.
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Appendix A. Formulas of gn20 and go20 features

Brief descriptions of the formulas for GN20 and GO20 used for feature optimization are shown below. We denote multi-spectral components
of an image at the pixel position i, j as C(i, j). A color image, C, is composed by red (R), green (G), and blue (B) bands, respectively. The carat
quantity Ĉ i; jð Þ is the distorted version of an image C(i, j). While m, n represents the height and width of an image, N that is equal to m×n is
the total number of pixels of an image.
Feature type Image quality measures Formula

Color features RGB mean values
C1 (red band)
C2 (green band)

C1 ¼
Pm;n

i;j¼1

R i;jð Þ

N ; C2 ¼
Pm;n

i;j¼1

G i;jð Þ

N

RGB pair correlations
C3 C3 ¼

1
N

Pm;n

i;j¼0

G i;jð Þ−G i;jð Þð Þ B i;jð Þ−B i;jð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pm;n

i;j¼0

G i;jð Þ−G i;jð Þð Þ2
r

•

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pm;n

i;j¼0

B i;jð Þ−B i;jð Þð Þ2
r

RGB pair energy ratio
C4 C4 ¼

Pm;n

i;j¼1

R i;jð Þ2ð Þ
Pm;n

i;j¼1

G i;jð Þ2ð Þ

Quality features Mean Square Error (MSE) Q1

Q1 ¼ 1
3

Xm;n

i;j¼1

R i; jð Þ−R̂ i; jð Þ
� �2

N
þ

Xm;n

i;j¼1

G i; jð Þ−Ĝ i; jð Þ
� �2

N
þ

Xm;n

i;j¼1

B i; jð Þ−B̂ i; jð Þ
� �2

N

0
BBBB@

1
CCCCA

where Ĉ i; jð Þ is the convolution of C(i, j) and Gaussian low-pass filter whose mask is as follows:

mask ¼
0:0113 0:0838 0:0113
0:0838 0:6193 0:0838
0:0113 0:0838 0:0113

2
4

3
5:

Mean Absolute Error (MAE) Q2 The definition of Ĉ i; jð Þ is the same as one of Q1.

Q2 ¼ 1
3

Xm;n

i;j¼1

R i; jð Þ−R̂ i; jð Þ
			 			

N
þ

Xm;n

i;j¼1

G i; jð Þ−Ĝ i; jð Þ
			 			

N
þ

Xm;n

i;j¼1

B i; jð Þ−B̂ i; jð Þ
			 			

N

0
BBBB@

1
CCCCA

Image fidelity Q3 The definition of Ĉ i; jð Þ is the same as one of Q1.

Q3 ¼ 1−

Xm;n

i;j¼1

R i; jð Þ−R̂ i; jð Þ
� �2
Xm;n

i;j¼1

R i; jð Þ2
þ

Xm;n

i;j¼1

G i; jð Þ−Ĝ i; jð Þ
� �2
Xm;n

i;j¼1

G i; jð Þ2

þ

Xm;n

i;j¼1

B i; jð Þ−B̂ i; jð Þ
� �2
Xm;n

i;j¼1

B i; jð Þ2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

Normalized cross-correlation Q4

Q4 ¼ 1
3

Xm;n

i;j¼1

R i; jð ÞR̂ i; jð Þ

Xm;n

i;j¼1

R̂ i; jð Þ2
þ

Xm;n

i;j¼1

G i; jð ÞĜ i; jð Þ

Xm;n

i;j¼1

Ĝ i; jð Þ2
þ

Xm;n

i;j¼1

B i; jð ÞB̂ i; jð Þ

Xm;n

i;j¼1

B̂ i; jð Þ2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

The definition of Ĉ i; jð Þ is the same as one of Q1.

Spectral phase-magnitude error Q5 FC and FĈare the discrete Fourier transform (DFT) of C and Ĉ , implemented by the
fast Fourier transform (FFT) algorithm. PC and PĈ are the phase angles of FC and FĈ .
The definition of Ĉ i; jð Þ is the same as one of Q1.

JC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm;n

i;j¼1
FC i; jð Þj j− FĈ i; jð Þ

			 			� �2 !vuut
α=2.4916×10−5

Q5 ¼ 1
3 α⋅ JRþ JGþ JBð Þ þ 1−αð Þ⋅ ARþ AGþ ABð Þ½ �

Block spectral magnitude error Q6 The images Cand Ĉare divided into B blocks of size 64×64.
The definition of Ĉ i; jð Þ is the same as one of Q1.
JR, JB, JG of a block are computed by using the equations in Q5.
Q6 ¼ median

b¼1…B

1
3 JRb þ JGb þ JBb
� �

Block spectral phase-magnitude error Q7 α=2.4916×10−5

Q7 ¼ median
b¼1…B

Jb

Jb ¼ α•Q6þ 1−αð Þ•median
b¼1…B

1
3

ARb þ AGb þ ABb
� �



Appendix A (continued)

Feature type Image quality measures Formula

Frequency
feature

Wavelet domain statistics of red band
W1 (vertical)
W2 (horizontal)
W3 (diagonal)

W1 ¼
Pm=2;n=2

i;j¼1

RV i;jð Þ

N=4 ; W2 ¼
Pm=2;n=2

i;j¼1

RH i;jð Þ

N=4 ; W3 ¼
Pm=2;n=2

i;j¼1

RD i;jð Þ

N=4

Wavelet domain statistics of green band
W4 (vertical)
W5 (horizontal)
W6 (diagonal)

W4 ¼
Pm=2;n=2

i;j¼1

GV i;jð Þ

N=4 ; W5 ¼
Pm=2;n=2

i;j¼1

GH i;jð Þ

N=4 ;W6 ¼
Pm=2;n=2

i;j¼1

GD i;jð Þ

N=4

Wavelet domain statistics of blue band
W7 (vertical)
W8 (horizontal)
W9 (diagonal)

W7 ¼
Pm=2;n=2

i;j¼1

BV i;jð Þ

N=4 ;W8 ¼
Pm=2;n=2

i;j¼1

BH i;jð Þ

N=4 ; W9 ¼
Pm=2;n=2

i;j¼1

BD i;jð Þ

N=4

PRNU feature 1st central statistical moment of blue P1 K̂ is defined in formula (2.2). E is the expected value.

P1 ¼ E B i; jð Þ−K̂ B i; jð Þ
� �h i

3rd central statistical moment of green
P2

K̂ is defined in formula (2.2). E is the expected value.

P2 ¼ E G i; jð Þ−K̂ G i; jð Þ
� �3
 �
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