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Diode-Triggered Silicon-Controlled Rectifier
With Reduced Voltage Overshoot

for CDM ESD Protection
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Abstract—Diode-triggered silicon-controlled rectifiers (DTSCRs)
are used for on-chip electrostatic discharge protection. The role
of the trigger diode string in determining the transient voltage
overshoot is investigated using a very fast transmission line pulse.
A DTSCR containing only poly-bound trigger diodes has a voltage
overshoot of just 1.5 V at 7 A, which is significantly less than what
is found with STI-bound diodes. A DTSCR with only STI-bound
trigger diodes has a lower leakage current. Therefore, DTSCRs
with different trigger diode configurations may be suitable for
different applications, e.g., high speed or low power.

Index Terms—Charge device model (CDM), electrostatic
discharge (ESD), silicon-controlled rectifier (SCR).

I. INTRODUCTION

S ILICON-CONTROLLED RECTIFIER (SCR) devices
safely handle high current densities, making them attrac-

tive for electrostatic discharge (ESD) protection [1]. Various
designs have been proposed to further improve the ESD protec-
tion efficiency of SCR. For example, the structure in [2] utilizes
a dummy-gate structure to improve the turn-on speed of the
SCR device. Among the various SCR-based ESD protection de-
signs, the diode-triggered SCR (DTSCR) prevails in advanced
CMOS technologies due to its design simplicity [3], [4]. When
SCR-based protection devices are subject to nanosecond-scale
discharges, such as charged device model (CDM) ESD, they
are often unable to clamp the pad voltage below the breakdown
voltage of thin gate oxides, particularly in sub-100-nm CMOS
technologies [5]–[10]. Although the holding voltage of a typical
SCR is about 1.5 V, the device cannot be switched instantly
from off to on; if the applied ESD pulse has a subnanosecond
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TABLE I
TEST STRUCTURES STUDIED IN THIS WORK

rise time, a transient voltage overshoot is observed [11], and it
requires that the SCR be augmented by an additional protection
element [12], [13]. Before the SCR fully turns on, the voltage
across its terminals is determined by the trigger circuit [14].
This observation suggests that one should employ a trigger
circuit that turns on quickly to provide good voltage clamping.

At high frequencies, diodes exhibit inductive characteristics
as a result of conductivity modulation [15]. This indicates that
the diode string trigger circuit of a DTSCR will itself display
some transient voltage overshoot [14]. In a given technology
node, poly-bound diodes [16] have smaller voltage overshoot
than do STI-bound diodes, a result of the shorter base region
[17]. It follows that a DTSCR built using poly-bound diodes
should provide better voltage clamping than would one built
using STI-bound diodes. This work evaluates that conjecture by
means of experiments performed on DTSCR devices fabricated
in a 65-nm low-power CMOS technology.

II. EXPERIMENT

The test structures used in this work are listed in Table I. The
DTSCRs all contain three external p+/n-well diodes, labeled
as D2, D3, and D4 in Fig. 1(a). D2, D3, and D4 each have a p-n
junction perimeter of 200 μm. In test structure A (STI-DTSCR),
these are STI-bound diodes with a p+-to-n+ spacing of 360 nm.
Test structure B (Diode-String) is similar to A, except that the
n+ cathode of the SCR has been removed, disabling the SCR
and allowing one to observe the characteristics of just the diode
string. In test structure C (Mix-DTSCR), D2, D3, and D4 are
poly-bound diodes with a p+-to-n+ spacing (gate width) of
65 nm. Test structure D (Poly-DTSCR) is similar to C, except
that D1, the trigger diode integrated within the SCR, has been
changed from STI-bound to poly-bound. The cross section of a
Poly-DTSCR is shown in Fig. 1(b).

In all cases, the SCR has an effective width of 50 μm;
this also means that D1 has a 50-μm perimeter. The SCR
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Fig. 1. (a) Schematic representation of the DTSCRs used in this work and
(b) cross section of a Poly-DTSCR.

anode-to-cathode spacing (Sac) was fixed at the minimum
value allowed by the layout design rules, which is 0.36 μm,
so as to minimize the intrinsic turn-on delay of the SCR [4].

A very-fast transmission line pulse (vf-TLP) system is used
to generate pulses with a pulse width of 5 ns and a rise time of
100 ps [18], [19]. These pulses are applied to the DTSCRs, and
the device response is recorded using a 12-GHz oscilloscope.

III. VF-TLP RESULTS AND DISCUSSION

A single quasi-static I–V point is obtained from the vf-TLP
data by averaging the current and voltage over a 500-ps interval,
starting 3 ns after the pulse rising edge (see Fig. 3). The result-
ing I–V curves are shown in Fig. 2(a). There are three regions
in the quasi-static I–V curve: (I) SCR is off, and VDUT < Vt1,
where Vt1 is the on-voltage of the diode string; (II) SCR is on;
and (III) SCR is on, and the diode string is also on, because
VDUT > Vt1. In regions I and II, the three DTSCRs have
nearly identical quasi-static I–V characteristics. In region III,
where the SCR and the diode string provide parallel paths for
the ESD current, the Poly-DTSCR has lower on-resistance than
the other two DTSCRs because the poly-bound diodes have a
smaller static Ron than the STI-bound diodes.

In Fig. 2(b), the current is instead plotted as a function of
the peak voltage appearing across the device under test (DUT).
The STI-DTSCR and the Diode-String have nearly identical
I–V characteristics, at least for Vpeak < 13 V, highlighting
that Vpeak is determined by the trigger circuit, not the SCR.
Changing the SCR-based structure from STI-DTSCR to Poly-
DTSCR dramatically reduces the amount of voltage overshoot
(VOV), not only because the poly-bound diodes have a lower
static Ron than STI-bound diodes but also because they display
less inductive behavior.

Fig. 2. (a) Quasi-static I–V characteristics and (b) peak overshoot voltage
versus quasi-static current for the different test structures. Data extracted from
vf-TLP.

Two additional observations are made in regard to the data
in Fig. 2(b). First, the Mix-DTSCR provides only marginally
better voltage clamping than does the STI-DTSCR. Defining
VOV = Vpeak − VDUT, the Mix-DTSCR provides only about
a 2-V reduction in VOV at 7 A. This result indicates that, in
the Mix-DTSCR, the STI-bound diode D1 dominates the total
impedance of the current path from D1 to D4, at least on the
subnanosecond time scale.

Second, the I–V curve for the Mix-DTSCR shows a gradual
slope change starting at around 12 V, which is the n-well/
p-well junction breakdown voltage; this is attributed to
avalanche-generated electrons flooding the n-well of D1 and
reducing its on-resistance. This effect is not seen in the I–V
curves of the STI-DTSCR and the Diode-String because their
on-resistances are dominated by the STI-bound diodes D2, D3,
and D4; in contrast, the I–V curves for these devices undergo
a sudden slope change at about 13.5 V. This has been attributed
to n-well/p-well junction breakdown followed by the triggering
of the parasitic SCR between the p+ of D1 and the n+ of D4,
which provides an additional current path in parallel with the
trigger circuit [14]; the parasitic SCR is triggered at a volt-
age higher than the 12-V junction breakdown voltage because
each diode in the DTSCR is surrounded by a p+ guard ring
[see Fig. 1(b)] [20]. The Diode-String’s quasi-static I–V curve
[Fig. 2(a)] similarly undergoes a slope change at 13.5 V.

In Fig. 3, VDUT(t) for all three DTSCRs is plotted for
pulses with IDUT = 2 A. The voltage across the Poly-DTSCR
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Fig. 3. VF-TLP. Measured voltage waveforms for different DTSCRs.

Fig. 4. Simulated transient waveforms for STI-DTSCR and Poly-DTSCR.

is clamped to 6 V, whereas it nearly reaches 10 V in the
Mix-DTSCR and exceeds 11 V in the STI-DTSCR. However,
the Poly-DTSCR reaches its steady-state voltage more slowly,
with VDUT(t) showing a shoulder rather than collapsing rapidly
toward its final value. In fact, between 0.5 and 0.9 ns, the
voltage across the Poly-DTSCR is higher than that across the
STI-DTSCR or the Mix-DTSCR. To understand this result,
the transient responses of STI-DTSCR and Poly-DTSCR were
simulated using Cadence Virtuoso Spectre. The trigger diodes
are modeled using the same approach presented in [21]. The
SCRs are modeled as cross-coupled n-p-n and p-n-p transistors;
model parameters are provided by the foundry based on the
Gummel–Poon BJT model. The simulation results are shown in
Fig. 4; the simulated VDUT(t) looks quite similar to VDUT(t)
obtained from vf-TLP measurement. The simulated current
in D4 (i.e., through the diode string), ID, is also plotted in
Fig. 4. ID for the STI-DTSCR has a slower rise time than
that for the Poly-DTSCR, and ID continues to flow at later
time points in the STI-DTSCR. ID augments current flow
through the SCR, thereby helping to reduce the voltage at the
anode; a faster turnoff of ID removes the supplemental current
path. In the Poly-DTSCR, once the diode string turns off, the
decay of the anode voltage is determined solely by the intrinsic
SCR and is a relatively slow process. Despite the shoulder
in its VDUT(t), the Poly-DTSCR is still the best CDM ESD
protection device among the investigated DTSCRs due to its
substantially reduced peak voltage.

Fig. 5. Quasi-static I–V characteristics of different DTSCRs, extracted from
100-ns TLP.

TABLE II
MEASUREMENT RESULTS OF DIFFERENT DTSCRS

IV. ADDITIONAL PERFORMANCE METRICS

Quasi-static I–V characteristics obtained from 100-ns TLP
[22] measurements are shown in Fig. 5. Because all DTSCRs
have the same anode-to-cathode spacing, all three DTSCRs
have the same holding voltage of 1.5 V. The trigger voltage
and current Vt1 and It1 are obtained from the data shown in
the figure inset. The failure current (Ifail) is defined as the TLP
current which causes the leakage (measured at 1 V) to increase
by more than 10%. The test structure layout did not permit
for measurement of the device S-parameters, which would
allow for accurate measurement of the capacitance with the
bondpads and other parasitics de-embedded. However, using an
LCR meter to measure the total capacitance of each structure,
one can easily observe the incremental increase in capacitance
as the trigger diodes are changed from STI-bound to poly-
bound. The values of VOV, Vt1, It1, Ifail, and C are listed in
Table II. The Poly-DTSCR has slightly reduced Ifail, slightly
increased capacitance, and greatly increased leakage (5×) rela-
tive to the STI-DTSCR.

The dc I–V characteristics of stand-alone diodes are shown
in Fig. 6. Below 0.6 V, the gate leakage current dominates the
junction leakage current, and the poly-bound diode conducts
more current than the STI-bound diode. The large leakage
current of poly-bound diodes explains why the Poly-DTSCR
has higher leakage current than the STI-DTSCR. The poly-
bound diodes used in this work each have their gate tied to
their anode, i.e., the p+ side. The measurement results in
Fig. 6 suggest that the leakage current of a Poly-DTSCR can
likely be reduced below the value shown in Table II simply by
changing the gate connection from the anode to the cathode
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Fig. 6. DC I–V characteristics of a single STI-bound diode and a single poly-
bound diode with varying gate connections. Both diodes have the same p-n
junction perimeter of 200 μm.

(p+ to n+). Measurement results indicate that such a change
also reduces the capacitance of the diode and does not affect
its ESD performance, results confirmed by the data in [23]
and [24].

V. CONCLUSION

The trigger circuit used with an SCR-based ESD protection
device determines the magnitude of the voltage overshoot that
occurs before the SCR fully turns on. Poly-bound diodes exhibit
reduced voltage overshoot relative to STI-bound diodes; this
work demonstrates that, when poly-bound diodes are integrated
into a DTSCR, the resulting structure provides very good
voltage clamping (an experimental finding recently confirmed
by others [25]). All the diodes in the trigger circuit, including
the diode intrinsic to the SCR, must be poly-bound to obtain the
benefit.

Depending on whether low power or high speed is the design
objective, either an STI-DTSCR or a Poly-DTSCR may be
the better selection. The STI-DTSCR has significantly lower
leakage current and can be augmented by a secondary protec-
tion circuit in order to provide CDM ESD protection. How-
ever, the secondary protection will reduce the performance of
radio-frequency or high-speed input/output circuits. The Poly-
DTSCR reduces the need for a secondary protection at the cost
of increased leakage current.
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