
A Flexible Binding Mechanism for ZigBee Sensors
Yueh-Feng Lee, Hsin-Sheng Liu, Ming-Shyan Wei, and Chun-Hao Peng

Department of Internet Embedded System (X100)
Information & Communications Research Labs

Industrial Technology Research Institute, Hsinchu, Taiwan
yuehfeng_lee@itri.org.tw

Abstract—A unique feature of sensor networks is the

capability of performing actions in response to events detected by
sensors. Such a feature requires a mechanism to create an
association between the sensor and the actuator, and the
resulting association is called a binding. The ZigBee specification
defines default binding mechanism called end-device binding.
However, this binding mechanism allows only a restricted range
of combinations between sensors and actuators. Event filters
cannot be defined using this mechanism as well. This paper
proposes a flexible binding mechanism for ZigBee sensors called
event-action binding, where sensors and actuators can be
associated without the constraints imposed by the end-device
binding. An event-action binding associates a specific event
generated by a sensor with a specific action provided by an
actuator. The mechanism supports event filters and multiple
event filters can be combined as a composite filter. The binding
mechanism was implemented for ZigBee sensors conforming to
the specifications of ZigBee home automation and ZigBee cluster
library. The implementation is based on YAML descriptions and
provides an event matching engine and a browser-based user
interface.

I. INTRODUCTION
Sensors and actuators are the most important types of nodes

in a sensor network. A crucial feature of sensor networks is
that an actuator is able to perform an action in response to a
specific event detected by a sensor. In a typical sensor
network, such a relationship between a sensor and an actuator
is called a binding and can be created by a binding mechanism.
When a specific sensor condition is detected, following the
binding relationship, the sensor is able to find the target
actuator and invokes the correct action. Without binding an
actuator could not perform the desired task when interested
sensor conditions are detected.

The ZigBee specification [1] defines a default binding
mechanism called end-device binding. When establishing an
end-device binding, the ZigBee coordinator [1] compares the
cluster identifiers [2] supported by the target sensor and the
cluster identifiers supported by the target actuator. A binding
can be created only when the sensor implements one side (e.g.
client side) of one cluster and the actuator implements the
other side (e.g. server side) of the same cluster. This binding
criterion is not flexible because if the sensor and the actuator
do not implement complement sides of the same cluster, a
binding can never be created. In addition, event filters [14]
cannot be defined using the end-device binding because when
an event is detected at the sensor side, a predefined action is
always invoked at the actuator side.

The binding flexibility issue of ZigBee can be addressed by
two approaches. The first approach is to add the

publish/subscribe layer [5]-[8] on top of the ZigBee network
layer but below the ZigBee application layer. In the
publish/subscribe setting, a sensor acts as a publisher and an
actuator acts as a subscriber. An actuator can freely subscribe
data published by a sensor, so the flexibility issue does not
exist. Event filters can be defined when the notion of content-
based publish/subscribe [5], [6] is used. Since the additional
publish/subscribe layer changes the existing ZigBee stack, the
binding mechanism adopts this approach is no longer
compatible with existing ZigBee sensors and actuators.

The second approach is to develop a rule-based system [15]
on top of the ZigBee stack. In the rule-based setting, a binding
can be considered as a rule, where the condition to be detected
constitutes the left-hand-side of the rule and the actions to be
performed constitutes the right-hand-side. Event filters can be
defined as part of the left-hand-side. Since this approach needs
not modify the protocol stack, the binding mechanism adopts
this approach is still compatible with existing ZigBee sensors
and actuators. Rule-based system for sensor networks had
been addressed by a few researches [9], [10]. However, none
of them dealt with the constraints of real and standardized
sensor networks, especially ZigBee, and provided a concrete
implementation.

In this paper, we propose a binding mechanism for ZigBee
sensors, addressing both the flexibility and event filter issues.
The mechanism is motivated by the rule-based approach as
described. The core concept of the mechanism is called
event-action binding, where an arbitrary event generated by an
arbitrary sensor can be bound to an arbitrary action supported
by an arbitrary actuator. Since the combinations of an event
and an action are arbitrary, the flexibility problem is solved.
Event filters can be easily inserted between the sensor and the
actuator because event detection is processed by a centralized
entity such as the data sink. We define event-action binding
using markup language syntax instead of programming
language syntax. Markup syntax could be more acceptable by
typical sensor users because most of them are not experienced
programmers. The system also provides a step-by-step user
interface that allows the user to create bindings without
writing binding specifications.

The proposed binding mechanism was implemented for
ZigBee sensors and actuators that conforms to the ZigBee
home automation specification [3] and the ZigBee cluster
library specification [2]. Since the implementation reuses the
information defined in these two specifications rather than
changing the specifications, the mechanism is interoperable
with existing ZigBee sensors and actuators. The
implementation is running on a ZigBee gateway which had

978-1-4244-3518-0/09/$25.00 © 2009 IEEE ISSNIP 2009273

been deployed on a sensor experimental platform [12] in
National Tsing Hua University, Taiwan.

The remainder of the paper is organized as follows. Section
II introduces sensor binding in general and event-action
binding. Section III presents information formats needed in
event-action binding, including device descriptions, binding
specifications, and sensor data. In Section IV, we describe the
implementation of the event-action binding mechanism.
Finally, in Section V, the conclusions and the future work are
given.

II. CONCEPTS OF BINDING

A. Sensor Binding in General
As stated earlier, a binding is an association between a

sensor and an actuator. When creating a binding, three major
roles are involved: sensor, actuator, and binder, as shown in
Fig. 1. The binder, usually the base station of the sensor
network, is responsible of determining whether a binding can
be created between a sensor and an actuator. When making
the decision, the binder requires two types of information:
device capability and binding criteria. Device capability
describes the functions provided by the sensor and the
actuator. A binding criterion uses the device capability to
determine whether a binding can be created or not. For the
same device capability given, different binding criteria may
produce different binding results. When intension of binding
is approved by the binder, the information about the binding is
stored in a data structure called binding table. The binding
table can be located either at the base station or at each sensor.
When event occurs, the sensor could look up the binding table
to find out the actuator to be manipulated.

Note that sensor binding can also be viewed from the
perspective of distributed event-based or publish/subscribe
systems [5], [14]. A sensor can be viewed as a publisher and
an actuator can be viewed as a subscriber. A major difference
from typical publish/subscribe systems is that the events
generated by sensors are not directly sent to the actuators.
Instead, they should be translated into actions, and then
received and executed by the actuators.

B. ZigBee End-Device Binding
ZigBee is probably the wireless sensor network standard

providing the most well-defined procedure for creating
bindings and such a procedure is called end-device binding. In
ZigBee end-device binding, the coordinator of the network
acts as the binder. To initiate the binding procedure, the user
presses the binding button installed on the sensor. After the
button is pressed, the device capability of the sensor is sent to
the coordinator. The device capability of the actuator is also
sent to the coordinator when the user presses the binding
button installed on the actuator. The device capability contains
all the cluster identifiers supported by a sensor or by an
actuator. After receiving device capability from the both sides,
the coordinator compares their supported cluster identifiers.
As stated earlier, a binding is valid if the sensor and the
actuator implement the complement sides of the same cluster.
That is, either the sensor implements the client side and the
actuator implements the server side, or the sensor implements
the server side and the actuator implements the client side.
When the binding request is validated by the coordinator, the
coordinator writes the binding information as a binding entry
in the binding table. The binding table is located at each
sensor and each binding entry is essentially a pair that consists
of a cluster identifier and the address of the actuator. When an
event occurs at the sensor, the sensor looks up its binding
table to find the address of the actuator and then invokes the
action command on the actuator.

The inflexibility of ZigBee end device binding can be
illustrated by the motion sensor and the on/off light. A ZigBee
motion sensor should implement the Intruder Alarm System
(IAS) Zone cluster and a ZigBee on/off light should
implement the on/off cluster. Since these two devices do not
implement the complement sides of the same cluster, a
binding can never be created between these two devices, even
such kind of combination is quite usual in home security and
building automation applications.

The other drawback of ZigBee end-device binding is that
event filters cannot be defined as part of a binding. When a
binding is established, according to the ZigBee cluster library
specification [2], each event is assigned a predefined action.
Whenever an event is detected, the assigned action is always
invoked by the sensor. There is no mechanism for sensors to
apply event filters before invoking the actions.

Binding Table

Binder

Sensor Actuator

Binding Criteria

Device
Capability

Device
Capability

Fig. 1. Major roles of binding.

Binder

S1 S2 SM A1 A2 AN… …

Sensor ActuatorEvent Action
… …… …
… …… …
…

Events Actions

Binding Table

Sensors Actuators

… … …

Fig. 2. Event-action binding

274

ProfileId: 0x0104
DeviceId: 0x0100
DeviceName: On/Off Light
NumberOfCluster: 1
ClusterList:

ProfileId: 0x0104
DeviceId: 0x0106
DeviceName: Light Sensor
NumberOfCluster: 1
ClusterList:
- ClusterName: Illuminance Measurement
 ClusterId: 0x0400
 NumberOfAttribute: 2
 AttributeList:
 - AttributeName: LightSensorType
 AttributeId: 0x0004
 AttributeDataType: ENUM8
 AvailableAttributeValue:0x00,0x01
 AvailableAttributeAlias:Photodiode,CMOS
 - AttributeName: MeasuredValue
 AttributeId: 0x0000

- ClusterName: On/Off
 ClusterId: 0x0006
 NumberOfCommand: 3
 CommandList:
 - CommandId: 0x00
 CommandLength: 0
 CommandPayload: NULL
 CommandName: Off
 - CommandId: 0x01
 CommandLength: 0
 CommandPayload: NULL
 CommandName: On

 AttributeDataType: UINT16

Fig. 3. Device description of light sensor.

 - CommandId: 0x02
 CommandLength: 0
 CommandPayload: NULL
 CommandName: Toggle

C. Event-Action Binding
In this section we propose event-action binding, a simple

yet powerful model that can describe the behavior of most
sensors and actuators and lays the foundation of our work. In
the event-action binding model, each sensor is capable of
generating a set of distinct events and each actuator supports a
set of distinct actions. An event-action binding is defined as a
relationship that associates a specific event from the set of
events provided by a sensor with a specific action from the set
of actions supported by an actuator. The structure of event-
action binding is shown in Fig. 2. The model does not restrict
which event can be associated with which action. Instead, the
decision is left to the user or can be made further by the
system. For example, suppose that a motion sensor can
generate detected and not-detected events and a light supports
on and off actions. We can implement a simple lighting
control mechanism by creating two event-action bindings.
One associates the detected event with the on action and the
other associates the not-detected event with the off action.
Event-action binding differs from ZigBee end-device binding
in that each type of sensor does not prescribe which types of
actuator to be associated.

III. DEVICE DESCRIPTION AND BINDING SPECIFICATION
The event-action binding mechanism requires three types of

supporting information: device description, binding
specification, and sensor data. All these information are
defined using the YAML language [11]. YAML is a
key/value-based markup language that is simpler than XML
but is more human readable and easier to be processed by
machines. We will briefly introduce ZigBee cluster library
specification, which is the device descriptions based, and then
describes three types of information format in turn.

A. ZigBee Cluster Library
ZigBee cluster library [2] defines clusters that can be

reused in profile specifications such ZigBee home automation
profile specification [3]. Each profile defines a set of devices
and specifies which set of clusters should be implemented by
which device. For example, the home automation profile
specifies that an on/off light device should implement the
on/off cluster. The ZigBee cluster library specifies the set of
commands and attributes supported by a cluster. Basically, an
actuator implements the server side of commands and a sensor
implements the client side of commands. Thus, a sensor could
invoke commands supported by the actuator. The attributes
provide information about the status of sensors and are
primarily used by a data sink. A data sink can either query the
status of attributes or receive the status of attributes sent by a
sensor.

Fig. 4. Device description of on/off light.

B. Device Description
A device description describes the types of events

generated by a sensor or the types of actions supported by an
actuator. A ZigBee-based device description describes clusters,
commands, and attributes of a ZigBee device in an organized
structure. Since the structure does not violate the home
automation and cluster library specifications, the proposed
binding mechanism can interoperate with the existing ZigBee
sensors and actuators. The device description of a ZigBee
light sensor and a ZigBee on/off light are shown in Fig. 3 and
Fig. 4, respectively. For example, the motion sensor shown in
Fig. 3 defines LightSensorType and MeasuredValue attributes,
and the on/off light shown in Fig. 4 defines on, off, and toggle
commands. From the viewpoint of binding specification
which will be introduced later, any attribute supported by a
sensor is considered as an event and any command supported
by an actuator is considered as an action.

275

C. Binding Specification
As described earlier, an event-action binding associates an

event generated by a sensor and an action supported by an
actuator. Thus, the contents of an event-action binding
specification for ZigBee devices depend on the attributes and
commands defined in device descriptions. A binding
specification consists of two major parts: event filter part and
action part. The event filter part specifies the event to be
detected with the event filter to be applied. The action part
specifies the action to be performed when the event with
condition specified by the event filter is satisfied. Fig. 5 shows
a binding specification that invokes the on command of the
on/off light when the sensed MeasuredValue attribute is less
than 500 Lux.

D. Event Filter Model
When defining a binding specification, instead of invoking

the action each time whenever an event is received, we can
apply an event filter to filter out the uninterested conditions.
The binding specification supports two types of event filters:
primitive filter and composite filter. A primitive event filter is
conceptually expressed as a 5-tuple (sensor address, sensor
type, attribute name, relation, value). For example, if we wish
to invoke an action when the illuminance measured by the
light sensor of address 143E is less than 500 Lux, the resulting
event filter is expressed as (143E, light sensor, illuminance, <,
500). The binding specification shown in Fig. 5 consists of
such a primitive event filter. The ZigBee extended address is
0x7352B32100888888, the sensor type is light sensor, the
attribute name is MeasuredValue, the relation is LessThan,
and the value is 0x01F4.

In our event filter model, multiple primitive event filters
can be combined to form a composite event filter. A
composite event filter can detect more than one attributes,
either from a single sensor or from multiple sensors.
Primitive event filters can be combined using Boolean
operators, e.g. AND, OR, and NOT. The binding specification
shown in Fig. 6 contains a composite filter which detects a
composite condition when the motion sensor detects the
presence of human and the measured illuminance is less than
500 Lux.

In addition to composite filters, the proposed binding
specification also supports composite actions, where more
than one action can be invoked when a single event is detected.

EventFilterList:
 RootFilter: CompositeFilter1
 PrimitiveFilter1:
 DeviceName: Light Sensor
 DeviceID: 0x0106
 ExtendedAddress: 0x7352B32100888888
 EndPoint: 0x14
 ClusterName: Illuminance Measurement
 ClusterID: 0x0400
 AttributeName: MeasuredValue
 AttributeID: 0x0000
 AttributeDataTypeName: UINT16
 AttributeDataTypeID: 0x21
 FilterOperator: LessThan
 FilterValue: 0x01F4
 PrimitiveFilter2:
 DeviceName: Motion Sensor
 DeviceID: 0x0402
 ExtendedAddress: 0x00137A00000001CA
 EndPoint: 0x0B
 ClusterName: IAS Zone
 ClusterID: 0x0500
 AttributeName: ZoneStatus
 AttributeID: 0x0002
 AttributeDataTypeName: BMAP16
 AttributeDataTypeID: 0x19
 FilterOperator: EqualTo
 FilterValue: 0x0002
 CompositeFilter1:
 Operator: AND
 Operand1: PrimitiveFilter1
 Operand2: PrimitiveFilter2
ActionList:
 - DeviceName: On/Off Light
 DeviceID: 0x0100
 ExtendedAddress: 0xCC243000000000AB
 EndPoint: 0x2F
 ClusterName: On/Off
 ClusterID: 0x0006
 CommandName: On
 CommandID: 0x01
 CommandPayloadLength: 0
 - DeviceName: On/Off Light
 DeviceID: 0x0100
 ExtendedAddress: 0xCC243100000000A9
 EndPoint: 0x2F
 ClusterName: On/Off
 ClusterID: 0x0006
 CommandName: On
 CommandID: 0x01
 CommandPayloadLength: 0

Fig. 6. Binding with composite filter and composite action.

EventFilterList:
 RootFilter: PrimitiveFilter1
 PrimitiveFilter1:
 - DeviceName: Light Sensor
 DeviceID: 0x0106
 ExtendedAddress: 0x7352B32100888888
 EndPoint: 0x14
 ClusterName: Illuminance Measurement
 ClusterID: 0x0400
 AttributeName: MeasuredValue
 AttributeID: 0x0000
 AttributeDataTypeName: UINT16
 AttributeDataTypeID: 0x21
 FilterOperator: LessThan
 FilterValue: 0x01F4
ActionList:
 - DeviceName: On/Off Light
 DeviceID: 0x0100
 ExtendedAddress: 0xCC243000000000AB
 EndPoint: 0x2F
 ClusterName: On/Off
 ClusterID: 0x0006
 CommandName: On
 CommandID: 0x01
 CommandPayloadLength: 0

Fig. 5. Binding specification for light sensor and on/off light.

276

The action part of the binding specification shown in Fig. 6
defines a composite action that invokes two actions. One is on
the sensor of address 0xCC243100000000A9 and the other is
on the sensor of address 0xCC243000000000AB.

SensorData:
 - DeviceName: Light Sensor
 DeviceID: 0x0106
 ExtendedAddress: 0x7352B32100888888
 EndPoint: 0x14
 ClusterName: Illuminance Measurement
 ClusterID: 0x0400
 AttributeName: MeasuredValue
 AttributeID: 0x0000
 AttributeDataTypeName: UINT16
 Value: 0x017B

Fig. 7. Sensor data item generated by light sensor.

E. Sensor Data Format
Once a binding specification is specified, the system should

match incoming sensor data against the binding description.
Thus, the format of sensor data should be addressable by the
binding specification. Conceptually, a sensor data item
consists of four basic elements: address, sensor type, name of
data, and value. A sensor data item generated by light sensor
is shown Fig.7, where the sensor type is light sensor, the name
of data is MeasuredValue, and the value is 0x017B.

IV. IMPLEMENTATION
In this section, we introduce the implementation

architecture and platform first and then we describe a step-by-
step binding interface that aids the user in creating event-
action bindings.

A. Architecture and Platform
The event-action binding system consists of two major

software components: binder and event matching engine. The
interaction between the two software components and the
three types of information described in the previous section is
shown in Fig. 8. The binder provides a browser-based
interface for creating bindings and the details are described
later. It reads device descriptions and produce binding
specifications. The event matching engine matches incoming
sensor data against binding specifications and sends action
commands when interested events are detected. The current
event matching engine is an efficient implementation of the
Rete algorithm [13].

The implementation is based on the ZigBee sensor and
gateway platform developed by Industrial Technology
Research Institute, Taiwan. The gateway is currently an Asus
Eee PC or Eee Box with a ZigBee dongle plugged in, which
acts as the coordinator of the ZigBee network. All the sensors
and actuators are equipped with a CC2430 [4] ZigBee
processor made by TI. The current implementation supports
five types of sensors and three types of actuators: motion
sensor, light sensor, temperature sensor, humidity sensor, and
glass-break sensor, on/off light, alarm, and outlet.

B. Step-by-Step Binding Interface
Basically, the user could create a binding by directly

writing YAML-based binding specification according to the
device descriptions of existing sensors and actuators. In order
to reduce the efforts of writing binding descriptions, we also
implement a browser-based, step-by-step binding interface.
The overall procedure is shown in Fig. 9, and the
corresponding snapshots are shown in Fig. 10. The procedure
is briefly described as follows. First, the user selects the
sensor to be detected. Next, the user chooses the event of the
selected sensor and determines the operation and the value of
the event filter. If composite filters are needed, the user can
select the Boolean operator between the filters and then
follows the sensor and filter selection procedure again. After
all the sensors and filters are determined, the user selects
actuators and the corresponding action commands in a similar
way. Finally, the binding interface automatically generates a
binding specification and then injects the binding specification
into the event matching engine.

BinderEvent Matching
Engine

Event-Action Binding System

Browser

Sensor Data

Action Commands

Binding
Specifications

Device
Descriptions

Fig. 8. System architecture.

Start

Select Sensor

Select Event

Select Operator Select Actuator

Set Value Select Action

More Events More
Actions

Select
Composite

Filter Operator

Yes

No No

Yes

End

Fig. 9. Step-by-step binding procedure.

277

In this paper, a flexible binding mechanism for ZigBee is
proposed. Due to the reuse of definitions specified in ZigBee
specifications, the implementation is still compatible with
existing ZigBee sensors and actuators. A major limitation of
the current work is that the event detection should be carried
out on a centralized machine, which may consume more
network bandwidth. Although distributed event detection in
ZigBee is still possible, the solution should modify the code
on sensors and actuators and thus is not incompatible with the
existing ZigBee devices.

Another feature not considered in the current work is the
automation of event-action binding, in which the user only has
to select a target sensor and a target actuator, the rest of the
work such as paring the events and actions can be
automatically performed by the binding system. Automatic
event-action binding can be achieved in two directions. One is
exploiting the existing capability information such as the
ZigBee cluster library. The other is to build a completely new
binding model. Our ongoing work is to develop an automatic
event-action binding mechanism by reusing the existing
capability information as much as possible.

[2] ZigBee Alliance, “ZigBee cluster library specification,” Oct. 2007.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Snapshots of binding interface. (a) Sensor selection. (b) Event selection. (c) Event filter configuration. (d) Decision for composite event (e)
Composite filter operator. (f) Actuator selection. (g) Action selection. (h) Decision for composite action.

[3] ZigBee Alliance, “ZigBee home automation public application
profile,” version 1.0, Oct. 2007.

[4] Texas Instruments, “CC2430 Data Sheet”, revision 2.1, May, 2007.
[5] P. TH. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

Many Faces of Publish/Subscribe,” ACM Computing Surveys, vol.35,
pp. 114–131, June. 2003.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and
Evaluation of a Wide-Area Event Notification Service,” ACM
Transactions on Computer Systems, vol.19, No.3, pp. 332–383, Aug.
2001.

[7] E. Souto, G. Guimaraes, and G. Vasconcelos, “A Message-Oriented
Middleware for Sensor Networks”, in Proc. of Int. Workshop on
Middleware for Pervasive and Ad-Hoc Computing (MPAC), 2004.

[8] P. Costa, G. P. Picco, and S. Rossetto, “Publish-Subscribe on Sensor
Networks: A Semi-probabilistic Approach,” in Proc. of IEEE Int. Conf.
on Mobile Ad-hoc and Sensor Systems (MASS05), 2005.

[9] K. Terfloth, G. Wittenburg; and J.Schiller, “FACTS - A Rule-Based
Middleware Architecture for Wireless Sensor Networks”, in Proc. of
IEEE Int. Conf. on Communication System Software and Middleware
(COMSWARE), 2006.

[10] X. Fei and E. H. Magill, “Rule execution and event distribution
middleware for PROSEN-WSN”, in Proc. of Int. Conf. on Sensor
Technologies and Applications (SENSORCOMM), 2008

[11] O. Ben-Kiki, C. Evans, and I. döt Net,
“YAML Ain’t Markup Language (YAML) Version 1.1,” Jan. 2005.

[12] S.-P. Kuo, C.-Y. Lin, Y.-F. Lee, H.-W. Fang, Y.-W. Hong, H.-C. Lin,
Y.-C. Tseng, C.-T. King, C.-L. Wang, “The NTP Experimental
Platform for Heterogeneous Wireless Sensor Networks”, in Proc. of Int.
Conf. on Testbeds and Research Infrastructures for the Development of
Networks & Communities (TRIDENTCOM), 2008.

ACKNOWLEDGMENT
The author would like to thank the anonymous reviewers

for their valuable suggestions. This work was supported by the
Ministry of Economic Affairs of Taiwan, R.O.C., under Grant
98-EC-17-A-02-01-0617.

[13] C. Forgy, "Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem", Artificial Intelligence, vol. 19, pp 17–37,
1982.

[14] G. Muhl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems.
Berlin, Heidelberg: Springer-Verlag, 2006.

REFERENCES

[15] P. Jackson, Introduction to Expert Systems. Reading, Mass: Addison-
Wesley, 1999.

[1] ZigBee Alliance, “ZigBee specifications,” version r13, Dec. 2006.
V. CONCLUSION

278

