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Abstract--In this paper, we present a self-integrating knowledge-based expert system for brain tumor 
diagnosis. The system we propose comprises knowledge building, knowledge inference and knowledge 
refinement. During knowlege building, an automatic knowledge-integration process, based on Darwin's 
theory of  natural selection, integrates knowledge derived from knowledge-acquisition tools and machine- 
learning methods to construct an initial knowledge base, thus eliminating a major bottleneck in 
developing a brain tumor diagnostic system. During the knowledge inference process, an inference 
engine exploits rules in the knowledge base to help diagnosticians determine brain tumor etiologies 
according to computer tomography pictures. And, a simple knowledge refinement method is proposed to 
modify the existing knowledge base during inference, which dramatically improves the accuracy of the 
derived rules. The performance of  the brain tumor diagnostic system has been evaluated on actual brain 
tumor cases. Copyright © 1996 Elsevier Science Ltd 

1. INTRODUCTION 

RECENTLY, EXPERT SYSTEMS h a v e  been successfully 
applied to many fields and have shown excellent 
performance. Expert systems provide sound expertise in 
the form of diagnosis, instruction, prediction, consulta- 
tion and so on. They can also be used as training tools to 
help new personnel interpret data and monitor observa- 
tions (Waterman, 1986). Developing a successful expert 
system requires, however, effectively integrating knowl- 
edge from a variety of sources, such as that from domain 
experts, historical documentary evidence, or current 
records, to construct a complete, consistent and unambi- 
guous knowledge base (Baral, 1991; Gragun, 1987). For 
large-scale expert systems that generally cannot rely on a 
single knowledge source, the use of multiple knowledge 
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inputs from many knowledge sources is especially 
important to ensure comprehensive coverage. Thus, 
integrating multiple knowledge sources plays a critical 
role in building successful expert systems. In this paper, 
we present a brain tumor diagnostic system that can 
integrate multiple knowledge sources to quickly build a 
prototype knowledge base. This prototype knowledge 
base then adapts itself according to inference results 
from the expert system, consequently improving the 
accuracy of the rules it derives. 

The brain tumor diagnostic system (BTDS) consists of 
three main functional units: knowledge building, knowl- 
edge inference and knowledge refinement (Wang & 
Tseng, 1995). The knowledge-building unit includes 
three modules: machine learning, knowledge acquisition 
and knowledge integration. The machine-learning mod- 
ule maintains a variety of machine-learning strategies 
(Cendowska, 1987; Michalski, 1980; Mitchell, 1982; 
Quinlan, 1986) to induce knowledge from actual 
instances. The knowledge-acquisition module maintains 
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different knowledge-acquisition tools that allow knowl- 
edge engineers to acquire domain knowledge from 
various experts (Kelly, 1955; Hwang & Tseng, 1990). 
The knowledge-integration module uses evolutionary 
theory to automatically integrate knowledge from 
multiple sources (which may be derived by knowledge- 
acquisition tools or machine-learning methods) into the 
initial knowledge base. The inference unit helps diag- 
nosticians determine brain tumor etiologies according to 
computer axial tomography pictures. The knowledge- 
refinement unit uses a proposed knowledge-refinement 
method to modify the existing knowledge base during 
the inference process. 

The remainder of this paper is organized as follows. 
The problem domain is introduced in Section 2. The 
architecture of the brain tumor diagnostic system is 
presented in Section 3. A knowlege-building unit is 
proposed in Section 4. A knowledge-inference unit is 
introduced in Section 5.  A knowledge-refinement 
method is proposed in Section 6. The implementation of 
the brain tumor diagnostic system is presented in Section 
7. Conclusions are given in Section 8. 

2. THE PROBLEM DOMAIN 

The field of brain tumor diagnosis is quite interesting and 
full of challenge since the brain is very complex and 
many causes of brain tumors are still unclear (Wills, 
1982). Computer tomography (CT) is generally con- 
sidered the most reliable diagnostic technique for 
locating and characterizing brain tumors. Nearly all 
intracranial lesions are detected using CT. The usual 
examination involves scanning the neurocranium in a 
series of parallel transverse "slices". The head is bent 
forward so that the sectional plane lies at an angle of 12 ° 
to the orbitomeatal lines (Fig. 1). 

Each slice is 8 nun thick, so that 8-15 slices are 
usually sufficient to visualize the intracranial structures 
to be examined. A patient with a meningiomal tumor is 
shown in Fig. 2. 

Normally, several stages are necessary for doctors to 

FIGURE 1. Positions of six standard CT scans. 

FIGURE 2. An example of a CT picture. 

diagnose brain tumors. First, CT pictures of a patient's 
brain are analyzed and compared to determine the 
location and the density of the lesion. Next, the CT 
pictures are further analyzed to obtain data on calcifica- 
tion, degree of edema, shape of edema, degree of 
enhancement, type of enhancement, general appearance, 
size of mass, mass effect and bone change. After that, 
some possible brain tumors could be concluded. 

The brain tumor diagnosis is still difficult for inexperi- 
enced doctors due to the inherent complexity of brain 
tumors. Thus, combining multiple knowledge sources 
including knowledge from domain experts, historical 
documentary information and current records of actual 
instances, to develop a successful brain tumor diagnostic 
system is very important. From data supplied by 
Veterans' General Hospital (VGH) in Taipei, Taiwan, 12 
parameters presently used in describing pictures derived 
by computerized axial tomography (CAT) scanning are 
shown in Table 1. 

One of six possible classes of brain tumors including 
pituitary adenoma, meningioma, medulloblastoma, glio- 
blastoma, astrocytoma and anaplastic protoplasmic 
astrocytoma (which are frequently found in Taiwan), 
must be identified. 348 actual cases of brain tumors from 
Veterans' General Hospital were used to evaluate the 
proposed system's performance. Table 2 shows an actual 
case expressed in terms of 12 features derived by 
computerized axial tomography (CAT) scanning, and a 
pathology report. 

3. SYSTEM ARCHITECTURE 

The brain tumor diagnostic system proposed here 
consists of three main units: knowledge building, 
knowledge inference and knowledge refinement. These 
three units respectively generate, use and alter the rules 
in the knowledge base (Fig. 3). 

The knowledge building unit includes three modules: 
machine learning, knowledge acquisition and knowledge 
integration. The machine-learning module maintains a 
variety of learning methods (Michalski, 1980; Mitchell, 
1982; Quinlan, 1986; Cendrowska, 1987) to induce 
various knowledge sources from different instance sets. 
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The knowledge-acquisition module maintains various 
knowledge acquisition tools (Kelly, 1955; Hwang & 
Tseng, 1990) that allow domain experts to input 
knowledge. Knowledge might then be directly obtained 
by various human experts using different knowledge- 
acquisition tools, or derived from different 
machine-learning methods. The knowledge-integration 
module rapidly combines multiple knowledge derived by 
the machine-learning module or the knowlege-acquisi- 
tion module to build a prototype knowledge base. The 
knowledge-integration approach is an adaptive search 
method, thus eliminating a major difficulty in knowledge 

integration. 
The knowledge inference component includes several 

modules: user interface, working memory, inference 
engine and explanation facility. The user interface helps 
users communicate easily with the expert system. The 
working memory stores facts that willbe used during the 
course of a consultation. The inference engine generates 
new facts based on the rules and facts currently known. 
The explanation facility, when requested, explains the 
system's reasoning to the user. 

A knowledge base integrated from multiple knowl- 
edge sources is often only a prototype, with 

TABLE 1 
Twelve Brain Tumor Attributes and their Possible Values 

1. LOCATION: 
(1) Brain parenchyma 

a. frontal b. temporal c. parietal d. occipital e. thalamus f. basal ganglia g. corpus callosum 
(2) Interior surface of brain 

a. frontal horn b. body of lateral ventricle c. atrium d. occipital horn e. temporal horn f. third ventricle 
(anterior) g. posterior third ventricle h. pineal region 

(3) Brain surface (excluding skull base, vault) 
Convexity: a. frontal b. temporal c. parietal d. occipital 
Parasagitah e. frontal f. parietal g. occipital h. flax i. tentorium 

(4) Skull vault 
(5) Anterior skull base 
(6) Middle cranial fossa (excluding sella) 

a. clivus b. sphenoid ridge c. parasagital skull base 
(7) Sellar 
(8) Sellar and suprasellar 
(9) Suprasellar (including tuberculum sellar) 

(10) ParaseUar 
(11) Cerebellopontine angle, ambiens cisterna 
(12) Brain stem 
(13) Fourth ventricle 
(14] Cerebellum (a. hemisphere b. vermis) 
(15) Cerebellar surface (extra-axial) 
(16) Cisterna magna (extra-axial) 

2. PRECONTRAST: 
(1) Low (2)Iso (3) High (4) Mixed (5)With fat density (6)With air density 

3. CALCIFICATION: 
(1) No (2) Marginal (3) Vascular-like (4) Lumpy, solid, punctate 

4. EDENA: 
(1) No (2) <=2 cm (3) <=1/2 hemisphere (4) >1/2 hemisphere 

5. SHAPEEDEMA: 
(1) No (2) Smooth, regular (3) Digital, irregular 

6. DEGREE_ENHANCEMENT: 
(1) No enhancement (2) Less than vessel :(3) Same as vessel (4) More than vessel 

7. APPEARANCE_ENHANCEMENT: 
(1) Homogeneous (2) Thin regular marginal (3) Moderate regular marginal (4) Thick regular marginal (5) Gyrus- 
like (6) Grossly irregular (7) Mural nodule (8) Homogeneous with lucency inside (9) Thick irregular marginal 

8. GENERAL. APPEARANCE: 
(1) Grossly cystic with fluid inside but no mural nodule (2) Cystic with mural nodule (3) Solid with small cyst/cysts 
(4) Solid with necrosis (5) Solid without necrosis or cyst (6) Mass with hemorrhage (7) Infiltrative lesion 
(8) Gyrus-like involvement (9) Leptomeningeal lesion 

9. BONE__CHANGE: 
(1) No bony change (2) Sellar enlargement (3) Internal auditory meatus enlargement (4) Bony sclerosis 
(5) Bony erosion (6) Bony destruction 

10. SIZE (cm): 
11. MASS_EFFECT: 

(1) No mass effect, infiltrative type (2) With mass effect (3) Ipsilateral enlargement of ambiens cisterna 
12. HYDROCEPHALUS: 

(1) No hydrocephalus, no previous shunting (2) Yes (3) No, but shunted previously 
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TABLE 2 
A Case for Brain Tumor Diagnosis 

Feature Feature value Feature Feature value 

(1) Location sellarandsuprasellar 
(2) Precontrast high 
(3) Calcification marginal 
(4) Edema no 
(5) Shape edema smooth and regular 
(6) Size 1.2 cm 

(7) Enhancement degree 
(8) Enhancement appearance 
(9) General appearance 

(10) Bone change 
(11) Mass effect 
(12) Hydrocephalus 

less than vessel 
homogeneous with lucency 
solid with small cyst/cysts 
sellar enlargement 
with mass effect 
no hydrocephalus 

Pathology: pituitary adenoma 

unsatisfactory classification accuracy. Therefore, the 
prototype knowlege base must be refined. The knowl- 
edge-refinement unit automatically modifies the 
knowledge base according to results derived from the 
inference engine. The refinement algorithm also adopts 
an adaptive search method to alter the rules in the 
knowledge base. 

In the following sections, we will concentrate on the 
knowledge-building unit and the knowledge-refinement 
unit since the knowledge-inference engine is similar to 
other widely used types. 

4. KNOWLEDGE-BUILDING UNIT 

Knowledge acquisition and machine learning are cur- 
rently two major techniques for acquiring knowledge 
from experts and data respectively. These two tech- 
niques, however, have their own limitations as Gaines 
pointed out (Gaines, 1989). Knowledge derived from 
machine-learning methods is quite dependent on the 
training data used, which easily makes the induced 
knowledge incomplete. Knowledge acquired from 

experts is often biased toward the experts' opinions 
which can easily make the derived knowledge subjective. 
In order to effectively construct a complete, consistent 
and objective knowledge base for brain tumor diagnosis, 
we were concerned with acquiring knowlege by integra- 
tion of the two techniques. Our aim was to construct an 
integrated brain-tumor diagnostic knowledge base from 
several individual knowledge sources. 

The knowledge-building unit can help knowledge 
engineers effectively acquire and integrate knowledge 
from various types of sources. In the following subsec- 
tion, we introduce the knowledge acquision, machine 
learning and knowlege integration functions. 

4.1. Knowledge-Acquis i t ion  Module 

Recently, much study has been devoted to eliciting 
different types of knowledge by interviewing experts. 
Various knowledge-acquisition tools have been success- 
fully developed. In order to help BTDS easily acquire 
knowlege from various doctors, we included some 
commonly-used knowledge-acquisition tools in the 
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FIGURE 3. Structure of the brain tumor diagnostic system. 
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knowledge-acquisition module. The knowledge-acquisi- 
tion module provides good flexibility and new 
knowledge-acquisition tools can be easily added to it. 
Experts can thus, depending on their preferences, choose 
the tools for knowledge input. The knowledge-acquisi- 
tion module has a knowledge-acquisition-tool manager 
that provides a user-friendly interface for operating 
various knowledge-acquisition toolsl The manager con- 
trols each knowledge-acquisition tool by invoking the 
services as required. Experts can thus easily apply any 
knowlege-acquisition tools to input their domain knowl- 
edge. Presently, two knowledge-acquisition tools, the 
Repertory Grid (Kelly, 1955) and EMCUD (Hwang & 
Tseng, 1990), are associated with the module. These 
tools meet the two general requirements described 
below. 

(1) knowledge-acquisition tools must be domain- 
independent; 

(2) the knowledge derived from tools must be 
easily translatable into the form of rules. 

A brief description of these knowledge-acquisition 
tools is given as follows. 

4.1.1. Knowledge-Acquisition Tool: Repertory Grid. 
Operation of the repertory grid (Kelly, 1955) by a single 
expert can be briefly described as follows: 

Step 1. Elicit all the elements from the expert. At 
least two elements are needed to carry out the 
following procedure. Assume that five ele- 
ments, El, E2, E3, E4 and Es, are provided by 
the expert; we place them across the top of a 
grid. 

Step 2. Elicit constructs (traits and their opposites) 
from the expert. Each time three elements are 
chosen, ask for a construct to distinguish one 
element from the other two. The constructs 
obtained are listed down the side of the grid. 

Step 3. Rate all of the entries (elements, constructs) 
in the grid. Assume the traits C1, C2, C3, C4 
and their opposites C'1, C~, C~, C~, have been 
given by the experts. As an example, the 
following repertory grid may be constructed. 

El E2 Ea E4 E5 

C1 5 1 5 1 1 C~ 
C2 4 4 4 1 4 C~ 
C3 1 4 5 1 4 C~ 
C4 1 1 1 5 1 C~ 

Step 4. Generate production rules from the grids. 

4.1.2. Knowledge-Acquisition Tool: EMCUD. EMCUD 
(Embedded Meanings Capturing and Uncertainty Decid- 

ing) (Hwang & Tseng, 1990) is a table-based knowledge 
acquisition method that can capture embedded meanings 
in given rules, and guide experts to decide certainty 
factors. The EMCUD strategy is briefly described as 
follows: 

Step 1. Apply some repertory grid-oriented method to 
derive the initial knowledge. 

Step 2. Construct an Attribute-Ordering Table that 
records the importance of each attribute to 
each object. 

Step 3. Elicit embedded meanings from the original 
rules and Attribute-Ordering Table. Generate 
embedded rules for each original rule. 

Step 4. Construct the constraint list to flag unwanted 
rules. 

Step 5. Guide experts to decide certainty factors of 
the embedded rules. 

4.2. Machine-Learning Module 

Machine learning is another alternative for acquiring 
knowledge from training dam. Recently, several expert 
systems have been created that use machine-learning 
methods to generate rules from data (Gray 1990). In 
order to help knowledge engineers easily acquire knowl- 
edge from various sources, we include some 
commonly-used machine-learning tools in the machine- 
learning module. Knowledge engineers can, depending 
on training data representation, choose suitable tools for 
knowledge induction. Each machine-learning tool has a 
data store to hold the derived knowledge. If the derived 
knowledge is not expressed in the form of rules, it is then 
translated into the form of rules. Presently, four machine- 
learning tools, including Version Space (Mitchell, 1982), 
1133 (Quinlan, 1986), PRISM (Cendrowska, 1987) and 
AQR (Michalski, 1980), are associated with the module. 

A brief description of these knowledge-acquisition 
tools is given as follows. 

4.2.1. Machine-Learning Tool: Version Space. The Ver- 
sion Space learning strategy is mainly used for learning 
from training instances with only two classes: positive 
and negative (Mitchell, 1982). It attempts to induce 
concepts that include all positive training instances and 
exclude all negative training distances. The term "ver- 
sion space" is used to represent all legal hypotheses 
describable within a given concept-description language 
and consistent with all observed training instances. The 
term "consistenf' means that each hypothesis includes all 
given positive training instances and excludes all given 
negative ones. A version space can then be represented 
by two sets of hypotheses: set S and dual set G, defined 
as"  

S={sls is a hypothesis consistent with observed 
instances. No other hypothesis exists that is 
both more specific than s and also consistent 
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with all observed instances }; 

G={glg is a hypothesis consistent with observed 
instances. No other hypothesis exists which is 
both more general than g and also consistent 
with all observed instances}. 

Sets S and G, together, precisely delimit a version 
space in which each hypothesis is both more general than 
some hypothesis in S and more specific than some 
hypothesis in G. When a new positive training instance is 
presented, set S is generalized to include this training 
instance; when a new negative training instance is 
presented, set G is specialized to exclude this training 
instance. When the Version Space is used to learn 
concepts from the multiple classes training set, one class 
is taken to be positive and all other classes are taken to 
be negative. 

4.2.2. Machine-Learning Tool." ID3. In 1983, Quinlan 
proposed the ID3 learning algorithm that tries to form a 
decision tree from a set of training instances (Quinlan, 
1986). ID3 uses the heuristics of minimizing "entropy" 
in determining which attribute should be selected next in 
the decision tree. If Attribute A has m values (i.e. 
A1,A2 . . . . .  Am) and the training set having attribute 
value Ai can be partitioned into n[ positive training 
instances and n,.- negative training instances, then the 
entropy of choosing A as the next attribute is calculated 
according to the following formula: 

log2 n.+n+n7 ni- E= - n[ ~ '  n [  log2 n;" +n----~-" 
i = 0  

Among all the feasible attributes, the one that entails 
the least entropy will be chosen as the next attribute. The 
same procedure is repeated until each terminal node in 
the decision tree contains only training instances with the 
same class. 

4.2.3. Machine-Learning Tool: PRISM. The PRISM 
learning algorithm maximizes information gain instead 
of minimizing entropy in inducing modular rules (Cen- 
drowska, 1987). Attribute-valued pairs (selectors), in 
terms of information theory, can be thought of as discrete 
messages. Given a message i, the amount of information- 
gain about an event is defined as: 

r probability of event after i is received ] 
I(i)=l°g2[probability of event before i is received]" 

A selector (message) that provides more information- 
gain is then chosen to describe a class with a higher 

priority. The task of the PRISM learning algorithm is to 
find the selector c~ x that contributes the most information- 
gain about a specified classificaton tS,, that is, for which 
1(6,1%) is maximum. The major difference between 
PRISM and ID3 is that PRISM concentrates on finding 
only relevant attribute-value pairs, while ID3 is con- 
cerned with finding only the attribute that is, the most 
relevant overall, even though some values of that 
attribute may be irrelevant. 

4.2.4. Machine-Learning Tool: AQR. AQR is an induc- 
tion algorithm for generating a set of classification rules 
(Michalski, 1980). When building decision rules, AQR 
performs a heuristic search through the hypothesis space 
to find the rules that account for all positive examples 
and no negative examples. AQR processes the training 
examples in stages; each stage generates a single rule, 
and then removes the examples it covers from the 
training set. This step is repeated until enough rules have 
been found to cover all the examples in the chosen 
class. 

4.3. Knowledge-Integration Module 

The knowledge-integration module exploits all the 
available knowledge in the knowledge-acquisition mod- 
ule and the machine-learning module to construct a 
system with good performance. Some benefits of integra- 
ing multiple knowledge sources in developing an expert 
system are described below (Medsker, 1995). 

(1) Knowledge acquired from different sources has 
good validity; 

(2) Domain knowledge is better understood from 
consensus among different knowledge sources; 

(3) Integrated knowledge can deal with more 
complex problems; 

(4) Knowledge integration may improve the per- 
formance of the knowledge base. 

Since opinions of different domain experts are differ- 
ent, the knowledge derived from each expert will be 
different, too. A similar problem also arises when 
separate knowledge sets are generated by individual 
learning methods. These various knowledge sets must be 
merged into a comprehensive knowledge base for the 
system to perform well. However, incompleteness, 
redundancy and inconsistency often arise. Removing 
them in knowledge integration is thus very important in 
developing a good brain tumour diagnostic system. 

The knowledge-integration module uses the genetic 
algorithm (Holland, 1975)as its integration engine to 
effectively integrate knowledge from multiple sources 
and rapidly construct a knowledge base. Here, we 
assume that all knowledge derived from the knowledge- 
acquisition and machine-learning modules are 
represented by rules since almost all knowledge derived 
by knowledge-acquisition tools or induced by machine- 
learning methods may easily be translated into or 
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FIGURE 4. The flow chart of knowledge integration. 
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represented by rules. 
The flow chart for knowledge input and knowledge 

integration is shown in Fig. 4. In the knowledge-input 
stage, knowledge is acquired from various experts or 
induced from different training sets, and is represented as 
rule sets. In the knowledge-integration stage, each rule 
set is encoded into a bit string. The knowledge- 
integration module maintains a population of possible 
rule sets (bit strings) and uses the genetic algorithm to 
automatically search for the best integrated rule set to use 
as the knowledge base (Liao, 1995). 

The knowledge integration consists of three steps: 
encoding, integration and decoding. The encoding step 
transforms each rule set into a bit-string. The integration 
step chooses bit-string rule sets for "mating", gradually 
creating good offspring. The offspring then undergo 
recursive "evolution" until an optimal or a nearly optimal 
individual is found (Fig. 5). The decoding step then 
transforms the optimal or nearly optimal offspring into 
the form of rules. 

Since rule sets generated from different knowledge 
sources may vary in size and rule-set sizes may not be 
known beforehand, using an appropriate data structure to 
encode rule sets is therefore very important. In our 
system, variable-length bit strings are used to represent 
rule sets (De Jong, 1988). An example is given below. 

Example. Assume that two classes {C1, C2} in rule set RS 
are to be distinguished using three features {F1, F2, F3}. 
Assume Feature FI has three possible values {fu,f~z, f13} 
Feature F 2 has four possible values {fEl,fz2,fE3,f24}, and 
Feature F3 had three possible values {f3~,f3:,f33}. Also 
assume that the rule set RS has only two rules: 

R1: If (F1 =fl2) and (F2=f21) then Class is CI; 

R2: If (FI =f11) and (/73 =f32) then Class is C2. 

After encoding, the above rules are respectively repre- 

Initial populatlor Generation 0 Generation k 
P- Chromosocae 

! ] - ~  -------~ C-'hromosome 2 

V - - ~  ------ql Chr°m°s°me 3 

[ - -~-------b C,13romosomel x 

Knowledge encoding 

~l'omo~m© cln'omosom© i 

Chromosome Genetic Operators Cla'°m°~°me2 i The best one 
Chromosome 3 ~ ............... - - - . ~  Chr°mos°me 3 ~ [  Chromosome / - -~Rule  Base [ i 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! 

Knowledge integration Knowledge decod/~g 

FIGURE 5. The knowledge-integration procedure. 
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sented as follows: 

Fi F2 F 3 Class 
RI 010 1000 111 10 
/?2 100 1111 010 01 

Finally, rule set RS is encoded into a chromosome: 

RS 
R/ n2 

/ X /  X 

010100011110 100111101001 
\ ..__/\ .. / 

T T 
R~le-head points 

Four genetic operators, dynamic crossover, mutation, 
fusion and fission, are applied to the rule-set population 
during knowlege integration (Liao, 1995). The dynamic 
crossover operator takes two parent chromosomes and 
swaps parts of their genetic information to produce 
offspring chromosomes. Unlike the conventional cross- 
over operator, the dynamic crossover operator selects 
crossover points that need not be at the same point- 
positions on both parent chromosomes: instead, the 
crossover points are at the positions the same distance 
from rule-head points. The mutation operator randomly 
changes some elements in a selected rule set to help the 
integration process escape from local-optimum "traps". 
The fusion operator checks and eliminates rule redun- 
dancy and subsumption relationships using an "OR" 
operation. If a string resulting from an "'OR" operation on 
two rules is the same as one of the two rules, then a 
redundancy or subsumption relationship exists between 
the two rules. The fission operator selects the "closest" 
near-miss (Winston, 1992) rule to eliminate misclassi- 
fications and contradictions. 

In order to evaluate the fitness of an integrated rule set, 
an evaluation function is defined. The evaluation func- 
tion considers two factors: accuracy and complexity. 
Here, "complexity" is evaluated by the ratio of rule- 
increase in the integrated rule set, and "accuracy" is 
evaluated by the degree to which the integrated rule set 
can correctly classify test instances. Accuracy and 
complexity are then combined to represent the fitness 
value of the rule set. The evaluation results are then fed 
back to the genetic algorithm to control how the solution 
space is searched to promote the quality of rule sets. 

5. KNOWLEDGE-INFERENCE UNIT 

Using the knowledge-integration approach proposed 
above, an integrated set of rules can be formed from 

multiple knowledge sources. These rules comprise a 
knowledge base for brain tumor diagnosis. Some rules in 
the knowledge base are described below: 

rule 1: IF Appearance_of_Enhancement = "Homo- 
geneous" and Location = "Brain Paren- 
chyma, temporal" THEN Pathology is 
Meningioma 

rule 2: IF Appearance_of Enhancement = "Moder- 
ate regular marginal" and Location = 
"Brain parenchyma, temporal" THEN 
Pathology is Astrocytoma 

rule 3: IF Edema < = "1/2 hemisphere" and 
Appearance_of Enhancement= "Mural nod- 
ule" and Location= "Brain parenchyma, 
temporal" THEN Pathology is Anaplastic 
Protoplasmic Astrocytoma 

rule 4: IF Appearance of Enhancement= "Homo- 
geneus with lucency inside" and 
Location = "Brain parenchyma, temporal" 
THEN Pathology is Glioblastoma 

rule 5: IF Appearance_of_Enhancement = "Moder- 
ate regular marginal" and Location = "'Brain 
parenchyma, parietal" THEN Pathology is 
Anaplastic Protoplasmic Astrocytoma 

rule6: IF Appearance_of_Enhancement="Homo- 
geneous with lucency inside" and 
Location = "Brain parenchyma, parietal" 
THEN Pathology is Glioblastoma 

rule 7: IF Precontrast = "Iso" and Location- 
= "Brain parenchyma, occipital" THEN 
Pathology is Meningioma 

rule 8: IF Bone_Change = "Sellar enlargement" and 
Location = "Sellar and suprasellar" THEN 
Pathology is Pituitary Adenoma 

rule 9: IF BoneChange = "Bony erosion'" and 
Location = "Sellar and suprasellar" THEN 
Pathology is Meningioma 

rule 10: IF Precontrast= "Low" and Appearance_of_ 
Enhancement= "Grossly irregular" and 
Location = "Cerebellum, vermis" THEN 
Pathology is Astrocytoma 

rule 11: IF Precontrast = "High" and Appearance_ 
of Enhancement= "Grossly irregular" and 
Location = "Cerebellum, vermis" THEN 
Pathology is Medulloblastoma 

rule 12: IF Appearance_of_Enhancement= "Homo- 
geneous with lucency inside '" and 
Location = "Cerebellum, vermis" THEN 
Pathology is Medulloblastoma 

In the diagnostic process, BTDS can assist doctors in 
determining brain tumor etiologies according to the 
features extracted from computer tomography pictures. 
Doctors first inspect the patient's symptoms and input the 
symptoms as facts into the diagnostic system. The 
inference engine then searches for diagnostic rules that 
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match the patient's symptoms, and suggests a pathol- 
ogy. 

6. KNOWLEDGE-REFINEMENT UNIT 

A knowledge base integrated from multiple knowledge 
sources is often only a prototype, with an unsatisfactory 
classification accuracy. During the inference process, 
rules in a knowledge base must be refined to improve the 
effectiveness of the knowledge-base system. In this 
section, a knowledge-refinement scheme is proposed to 
refine rules during the inference process. 

The knowledge-refinement unit uses the knowledge- 
integration procedure as the basis for refining 
knowledge. A flow chart for the refinement process is 
shown in Fig. 6. During inference, an input event 
wrongly classified by the current knowledge base is 
appended to the set of test instances. It is also encoded as 
a bit string and appended to the current best rule set. The 
new test set, including the wrongly-classified element, is 
then presented to the genetic adaptive search algorithm 
to evaluate rule sets for a new population. The refinement 
process works until the exception events can be correctly 
classified by the knowledge base, making the new 
knowledge base more accurate than the old one. 

7. IMPLEMENTATION 

The brain tumor diagnostic system was implemented in 
C language on a SUN SPARC/2 workstation. Ten initial 
knowledge items (rule sets) were obtained from different 
groups of experts using the knowledge-acquisition 
module, or derived from historical documents or current 
records of actual instances via machine-learning meth- 
ods. The knowedge-integration module automatically 
integrated the ten initial rule sets into a comprehensive 
knowledge base. 348 real brain tumour cases were used 
to evaluate the performance of the knowledge base. After 

2000 execution generations of the genetic algorithm, an 
accuracy rate of 91.42% was obtained, with 92 rules in 
the resulting knowledge base. The knowledge base must 
be continuously refined to improve the accuracy if 
rnisclassification occurs. These rules were then refined 
during the process of inference. Finally, an accuracy of 
95.58% was achieved, with 103 rules in the resulting 
knowledge base. 

8. CONCLUSIONS 

This paper presents the design of a self-integrating 
knowledge-based brain tumor diagnostic system. The 
brain tumor diagnostic system proposed consists of three 
main units: knowledge building, knowledge inference, 
and knowledge refinement. Genetic techniques are also 
shown here to be good tools for knowledge integration 
and knowledge refinement. The system was successfully 
implemented on a Sun/SPARC 2 workstation. 348 real 
brain tumor cases were used to evaluate the performance 
of the brain tumor diagnostic system, with a classifica- 
tion accuracy higher than 95%. We may then conclude 
that the brain tumor diagnostic system is a successful 
medical system. 
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