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Abstract In this paper, a self-organization mining based hy-
brid evolution (SOME) learning algorithm for designing a
TSK-type fuzzy model (TFM) is proposed. In the proposed
SOME, group-based symbiotic evolution (GSE) is adopted
in which each group in the GSE represents a collection of
only one fuzzy rule. The proposed SOME consists of struc-
ture learning and parameter learning. In structure learning,
the proposed SOME uses a two-step self-organization algo-
rithm to decide the suitable number of rules in a TFM. In
parameter learning, the proposed SOME uses the data min-
ing based selection strategy and data mining based crossover
strategy to decide groups and parental groups by the data
mining algorithm that called frequent pattern growth. Illus-
trative examples were conducted to verify the performance
and applicability of the proposed SOME method.

Keywords Genetic algorithm · Fuzzy model · Group-based
symbiotic evolution · Data mining · Identification ·
FP-Growth

1 Introduction

Neural fuzzy networks [1–3] are capable of inferring com-
plex nonlinear relationships between input and output vari-
ables. This property is important when the system to be
modeled is nonlinear. The key advantage of the neural fuzzy
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approach lies in the fact that it does not require a mathemat-
ical description of the system while modeling it. The system
can perform the nonlinear mapping once the system para-
meters are trained based on a sequence of input and desired
response pairs.

The training of the parameters (parameter learning) is an
issue in designing a neural fuzzy system. Backpropagation
(BP) training is widely used for solving this issue. It is a
powerful training technique that can be applied to networks
with feed-forward structure, to transform them into adaptive
systems. Since neural fuzzy systems can be represented as
layered feedforward networks, the same concept of BP can
be applied and be particularly useful in cases where complex
interaction among independent variables necessitates train-
ing for all system parameters. Since steepest descent opti-
mization technique is used in BP training to minimize the er-
ror function, the algorithm may reach the local minima very
fast but never find the global solution. Besides, BP training
performance depends on the initial values of the system pa-
rameters, and for different network topologies one has to de-
rive new mathematical expressions for each network layer.

Considering the aforementioned disadvantages one may
be faced with suboptimal performance even for a suitable
neural fuzzy network topology. Hence, techniques capable
of training the system parameters and finding the global
solution while optimizing the overall structure are needed.
In this respect, recently, several evolutionary algorithms,
such as genetic algorithm (GA) [4], genetic programming
[5], evolutionary programming [6], and evolution strate-
gies [7], have been proposed. They are parallel and global
search techniques. Because they simultaneously evaluate
many points in the search space, they are more likely to con-
verge toward the global solution. Therefore, an evolutionary
method using for training the fuzzy model has become an
important field.
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The evolutionary fuzzy model generates a fuzzy model
automatically by incorporating evolutionary learning proce-
dures [8–18], where the most well-known procedure is the
genetic algorithm (GA). Several genetic fuzzy models have
been proposed in [8–16]. In [8], Karr applied GA to the de-
sign of the membership functions of a fuzzy controller, with
the fuzzy rule set assigned in advance. Since the member-
ship functions and rule sets are co-dependent, simultaneous
design of these two approaches will be a more appropriate
methodology. In [9], a fuzzy controller design method uses a
GA to find the membership functions and the rule sets simul-
taneously. In [8] and [9], the input space was partitioned into
a grid. The number of fuzzy rules (i.e., the length of each
chromosome in the GA) increased exponentially as the di-
mension of the input space increased. In [10], a GA was used
to tune the consequent parameters of TSK-type fuzzy rules
[1] as well as the membership functions in the precondi-
tion parts. Juang [11] proposed a TSK-type recurrent fuzzy
network with a GA for control problems. In [12], Juang
et al. proposed genetic reinforcement learning in designing
fuzzy controllers. In [13], a fuzzy-genetic algorithm used
preprocessing data at the remote terminal unit in a power
system. In [14, 15], Alcalá et al. proposed smartly tuned
fuzzy logic controllers in heating, ventilating, and air condi-
tioning (HVAC) systems. In [16], Kaya and Alhajj used GA
to dynamically adjust and optimize membership functions.

Recently, several improved evolution algorithms have
been proposed [17–21]. In [17], Bandyopadhyay et al. used
the variable-length genetic algorithm (VGA) that allows
the differentia of lengths of chromosomes in a popula-
tion. Carse et al. [18] used the genetic algorithm to evolve
fuzzy rule based controllers. Lin and Xu [19] proposed a
sequential-search based dynamic evolution (SSDE) to en-
sure better-performing chromosomes will be initially gener-
ated and better mutation points will be determined for per-
forming dynamic-mutation at upcoming generation. In [20]
the group-based symbiotic evolution (GSE) was proposed
to solve the issue of the traditional GA that all the fuzzy
rules were encoded into one chromosome. In [21], authors
proposed a hybrid evolution learning algorithm (HELA).
The HELA combines the compact genetic algorithm (CGA)
and the modified variable-length genetic algorithm, and per-
forms the structure/parameter learning for constructing the
network dynamically.

Although the above evolution learning algorithms [17–
21] can improve the traditional genetic algorithms, these al-
gorithms may encounter one or more of the following is-
sues: 1) all the fuzzy rules are encoded into one chromo-
some; 2) the numbers of fuzzy rules have to be assigned in
advance; 3) the population cannot evaluate each fuzzy rule
locally; 4) the selection and crossover steps are vulnerable
to local optima solution.

Recently, data mining becomes a popular field [22, 23].
Data mining is a method of mining information in a database

formed by transactions. The data mining can be regarded as
a new way of data analysis. One goal of data mining is to
find association rules among frequent item sets in transac-
tions. Several methods have been proposed to achieve goal
[24–27]. In [24], the authors proposed a mining method of
ascertain large item sets to find association rules in transac-
tions. Han et al. [25] proposed the frequent pattern growth
(FP-Growth) to mine frequent patterns without candidate
generation. In [26], an algorithm of data mining for trans-
action data with quantitative values was proposed. In [26],
each quantitative item is translated to a fuzzy set and the
authors use these fuzzy sets to find fuzzy rules. Wu et al.
[27] proposed a data mining based GA algorithm to effi-
ciently improve the Traditional GA by using analyzing sup-
port and confidence parameters. Since data mining is able
to find the information within large item sets, it should be
useful to solve the problems that mentioned above.

In this paper, a self-organization mining based hybrid
evolution learning (SOME) for designing a TFM is pro-
posed for improving the evolution learning algorithms. The
SOME consists of structure and parameter learning. In struc-
ture learning, the SOME determines the number of fuzzy
rules automatically and processes the variable combina-
tion of chromosomes. The SOME proposes a two-step self-
organization algorithm (TSSO) to decide the suitable num-
ber of rules. In the TSSO, the modified compact genetic al-
gorithm (MCGA) [21] is adopted. Different from [21], the
TSSO uses two steps for determining the suitable number
of rules to avoid the number of rules may from falling into
local optima solution.

In parameter learning of the SOME, this paper proposes
the data mining based selection strategy (DMSS) and the
data mining based crossover strategy (DMCS) to decide the
selected group indexes and parental group indexes of chro-
mosomes by FP-Growth. In the DMSS, the groups are se-
lected according to the frequent item sets based on three
different actions. These three actions are the normal, the
searching, and the exploring action. After performing the
DMSS, the suitable groups are obtained and the chromo-
somes are selected from these groups. In the DMCS, similar
to the DMSS, the parental groups are selected based on the
same three actions. After performing the DMCS and DMSS,
the good combination of individuals can be retrieved while
the exploration of other combinations continues to avoid the
formerly-retrieved information from falling into the local
optimum solution.

The advantages of the proposed SOME are summarized
as follows: 1) the SOME uses the GSE so that each group
represents only one fuzzy rule; 2) the TSSO is proposed to
decide the suitable number of rules; 3) the SOME uses the
GSE to evaluate the fuzzy rule locally; 4) the DMSS and
DMCS are proposed to select the suitable group indexes and
parental group indexes.
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This paper is organized as follows. Section 2 introduces
the TFM. The proposed SOME is described in Sect. 3. Sec-
tion 4 presents the simulation results. The conclusions are
summarized in the last section.

2 Structure of TSK-type Fuzzy Model (TFM)

A fuzzy controller is a knowledge-based system character-
ized by a set of rules, which model the relationship among
control input and output. The reasoning process is defined
by means of the employed aggregation operators, the fuzzy
connectives and the inference method. The fuzzy knowledge
base contains the definition of fuzzy sets stored in the fuzzy
database and a collection of fuzzy rules, which constitute the
fuzzy rule base. Fuzzy rules are defined by their antecedents
and consequents, which relate an observed input state to a
desired control action. Most fuzzy systems employ the in-
ference method proposed by Mamdani in which the conse-
quence parts are defined by fuzzy sets [1]. A Mamdani-type
fuzzy rule has the form:

IF x1 is A1j (m1j , σ1j ) and x2 is A2j (m2j , σ2j )

and . . . and xn is Anj (mnj , σnj )

THEN y′ is Bj (mj ,σj ) (1)

where mij and σij represent a Gaussian membership func-
tion with mean and deviation with ith dimension and j th
rule node respectively. The consequences Bj of j th rule
is aggregated into one fuzzy set for the output variable y′.
The crisp control action is obtained through defuzzification,
which calculates the centroid of the output fuzzy set. Besides
the common fuzzy inference method proposed by Mamdani,

Takagi, Sugeno and Kang introduced a modified infer-
ence scheme [3]. The first two parts of the fuzzy inference
process, fuzzifier the inputs and applying the fuzzy oper-
ator are exactly the same. A Takagi-Sugeno-Kang (TSK)
type controller employs different implication and aggrega-
tion methods than the standard Mamdani controller. Instead
of using fuzzy sets the conclusion part of a rule, is a linear
combination of the crisp inputs.

IF x1 is A1j (m1j , σ1j ) and x2 is A2j (m2j , σ2j )

and . . . and xn is Anj (mnj , σnj )

THEN y′ = w0j + w1j x1 + . . . + wnjxn. (2)

Since the consequence of a rule is crisp, the defuzzifica-
tion step becomes obsolete in the TSK inference scheme.
Instead, the control output is computed as the weighted av-
erage of the crisp rule outputs, which is computationally less
expensive then calculating the center of gravity.

In this paper, the TFM is adopted to solve nonlinear con-
trol problems. The structure of the TFM is shown in Fig. 1,

where n and M are, respectively, the number of input di-
mensions and the number of rules. It is a five-layer network
structure. The functions of the nodes in each layer are de-
scribed as follows:

Layer 1 (Input Node) No function is performed in this
layer. The node only transmits input values to layer 2. That is

u
(1)
i = xi. (3)

Layer 2 (Membership Function Node) Nodes in this layer
correspond to one linguistic label of the input variables in
layer 1; that is, the membership value specifying the degree
to which an input value belongs to a fuzzy set is calculated
in this layer. For an external input xi , the following Gaussian
membership function is used:

u
(2)
ij = exp

(
−[u(1)

i − mij ]2

σ 2
ij

)
(4)

where mij and σij are, respectively, the center and the width
of the Gaussian membership function of the j th term of the
ith input variable xi .

Layer 3 (Rule Node) The output of each node in this layer
is determined by the fuzzy AND operation. Here, the prod-
uct operation is utilized to determine the firing strength of
each rule. The function of each rule is

u
(3)
j =

∏
i

u
(2)
ij . (5)

Layer 4 (Consequent Node) Nodes in this layer are called
consequent nodes. The input to a node in layer 4 is the output
delivered from layer 3, and the other inputs are the input
variables from layer 1 as depicted in Fig. 1. For this kind of
node, we have

u
(4)
j = u

(3)
j

(
w0j +

n∑
i=1

wijxi

)
, (6)

where the summation is over all the inputs and where wij

are the corresponding parameters of the consequent part.

Layer 5 (Output Node) Each node in this layer corresponds
to one output variable. The node integrates all the actions
recommended by layers 3 and 4 and acts as a defuzzifier
with

y = u(5) =
∑Mk

j=1 u
(4)
j∑Mk

j=1 u
(3)
j

=
∑Mk

j=1 u
(3)
j (w0j + ∑Mk

i=1 wijxi)∑Mk

j=1 u
(3)
j

(7)

where Mk is the number of fuzzy rule.
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Fig. 1 Structure of the
proposed TFM

3 A self-organization mining based hybrid evolution
learning

This section will introduce the SOME. Recently, many re-
searches try to enhance the traditional GAs have been made
[28–30]. One category of them tries to modify the structure
of a population. Examples in this category include the dis-
tributed GA [28], the cellular GA [29], and the symbiotic
GA [30].

In structure learning of these papers, the SOME de-
termines the number of fuzzy rules automatically and
processes the variable combination of chromosomes. The
length of combination of chromosomes denotes the rule sets
that can form a TFM. In traditional symbiotic evolution,
each individual in the population represents only a partial
solution. The complete solution was consisted of several in-
dividuals. The partial solution can be characterized as spe-
cializations which avoid converging to local optimum so-
lution [30]. Although the specialization property ensured

diversity, there still has a problem which the population can-
not evaluate performance of each partial solution locally. To
cope with this, the SOME adopts the GSE. The GSE is dif-
ferent from the traditional symbiotic evolution; with each
population in the GSE method is divided to several groups.
Each group represents a set of the chromosomes that be-
long to one single fuzzy rule. Each group will perform the
reproduction and crossover operations in each generation
independently.

In the proposed SOME, the numbers of rules in a TFM
are variable. The structure of chromosomes in the SOME
is shown in Fig. 2. For determining the numbers of fuzzy
rules, the TSSO is proposed. In the TSSO, a building block
(BB) is used to determine the number of fuzzy rules and the
number of selection times of the TFM with different num-
ber of fuzzy rules. In Fig. 3, the TSSO codes the proba-
bility vector into the BBs, Mk represents k rules that used
to form a TFM; VMk

is a probability vector which repre-
sents the suitability of a TFM model with k rules. In the
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Fig. 2 The structure of the
chromosome in the SOME

Fig. 3 Coding the probability vector into the building blocks (BBs) in
the TSSO

TSSO, the maximum number of rules (Mmax) and the min-
imum number of rules (Mmin) must be predefined in ad-
vance.

In parameter learning, this study proposes the data min-
ing based selection strategy (DMSS) and the data mining
based crossover strategy (DMCS) by the FP-growth to de-
cide Mk and to decide parental groups that are used to per-
form crossover step. The FP-Growth was proposed by Han
et al. In the proposed DMSS, the FP-Growth is used to
find the frequent group sets from transactions. In this pa-
per, a transaction means the collection of well-performing
chromosomes selected from Mk groups to form a TFM.
After the frequent group sets have been found, the DMSS
uses three actions to form a TFM with k rules. The three
actions are defined as the normal, searching, and explor-
ing actions. In normal action, the selection of groups that
are used to perform crossover is random. In search ac-
tion, the groups are chosen from the frequent patterns ob-
tained by FP-growth. And in explore action, the groups
are chosen from the non-frequent patterns set to avoid the
mined frequent patterns from falling into local optimum.
In the DMCS, the parental groups are selected according
to same three actions (normal, searching, and exploring ac-
tions). The whole learning process of the SOME is shown in
Fig. 4.

In the proposed SOME, the coding structure of the chro-
mosomes must be fit for group based symbiotic evolution.
Figure 5 describes a fuzzy rule that has the form of (2) where
mij , σij , and wij represent a Gaussian membership function
with mean and deviation and weight with ith dimension and
j th rule node and w0j represents the coefficient with j th
rule.

The learning process of the SOME in each group in-
volves seven major operators: initialization, the TSSO, the
DMSS, fitness assignment, elite-based reproduction strategy
(ERS), the DMCS, and the self-organization mutation strat-
egy (SOMS). The whole learning process is described step-
by-step as follows:

3.1 Initialization step

Before the SOME is designed, individuals forming several
initial groups should be generated. The initial groups of the
SOME are generated randomly within a fixed range. The fol-
lowing formulations show how to generate the initial chro-
mosomes in each group:

Deviation:

Chrg,c[p] = random[σmin, σmax]
where p = 2,4, . . . ,2n;
g = 1,2, . . . ,Mk; c = 1,2, . . . ,NC; (8)

Mean:

Chrg,c[p] = random[mmin,mmax]
where p = 1,3, . . . ,2n − 1; (9)
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Fig. 4 The learning process of
the SOME method

Fig. 5 Coding a rule of a TFM into a chromosome in the SOME

Weight:

Chrg,c[p] = random[wmin,wmax]
where p = 2n + 1,2n + 2, . . . ,2n + (n + 1), (10)

where Chrg,c represents cth chromosome in gth group; Mk

represents k rules that used to form a TFM and NC is the to-
tal number of chromosomes in each group; p represents the
pth gene in a Chrg,c; and [σmin, σmax], [mmin,mmax], and
[wmin,wmax] represent the range that are predefined to gen-
erate the chromosomes.

3.2 Two-step self-organization algorithm (TSSO)

After every group is initialized, the SOME proposes the
TSSO to decide the suitable selection times of each num-
ber of rules (in this paper the number of rules lie between
[Mmax,Mmin]); that is, it determines the selection times of
Mk groups which form a TFM with k rules. After the TSSO,
the selection times of the suitable number of rules in a TFM
will increase, and the selection times of the unsuitable num-
ber of rules will decrease. The details of the TSSO are listed
as follows:

Step 0 Initialize the probability vectors of the BBs:

VMk
= 0.5, where Mk = Mmin, Mmin+1, . . . ,Mmax (11)

Accumulator = 0 (12)
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Step 1 Update the probability vectors of the BBs according
to the following equations:{

VMk
= VMk

+ (Upt_valueMk
∗ λ), if Avg ≤ fitMk

VMk
= VMk

− (Upt_valueMk
∗ λ), otherwise

where Mk = Mmin,Mmin+1, . . . ,Mmax (13)

Avg =
Mmax∑

Mk=Mmin

fitMk
/(Mmax − Mmin) (14)

Upt_valueMk
= fitMk

/ Mmax∑
Mk=Mmin

fitMk
(15)

if FitnessMk
≥ (Best_FitnessMk

− ThreadFitnessvalue)

then fitMk
= fitMk

+ FitnessMk
; (16)

where VMk
is the probability vector in the BBs and repre-

sents the suitable number of k rules; λ is a predefine thresh-
old value; Avg represents the average fitness value in the
whole population; Best_FitnessMk

represents the best fit-
ness value with k rules; fitMk

is the sum of fitness value
with k rules when the fitness value with k rules greater than
Best_FitnessMk

minus a predefined threshold value named
ThreadFitnessvalue. As shown in (13), if fitMk

≥ Avg, then
the suitable k rules that from a TFM should be increased.
On the other hand, if fitMk

< Avg, then the k rules that from
a TFM should be decreased.

Step 2 Determine the selection times according to the prob-
ability vectors of the BBs as follows:

RpMk
= (Selection_Times) ∗ (VMk

/Total_Velocy)

where Mk = Mmin,Mmin+1, . . . ,Mmax; (17)

Total_Velocy =
Vmax∑

Mk
=Vmin

VMk
(18)

where Selection_Times represents total selection times in
each generation; RpMk

is the selection times of Mk groups
that use to select k chromosomes for constructing a TFM.

Step 3 After step 2, the selection times of every numbers
of rules in a TFM are obtained. Then the RpMk

times are
used to select k chromosomes form Mk groups to construct
a TFM.

Step 4 In the proposed TSSO, for avoiding suitable Mk

groups may fall in the local optima solution, the TSSO pro-
posed two different actions to update the VMk

. Decide the
deferent action according to the following equations:

if Accumulator ≤ TSSATimes

then do Step 1, Step 2, and Step 3; (19)

if Best_Fitnessg = Best_Fitness

then Accumulator = Accumulator + 1; (20)

if Accumulator > TSSATimes

then do Step 0 and Accumulator = 0, (21)

where TSSOTimes is a predefined value; Best_Fitnessg rep-
resents the best fitness value of the best combination of chro-
mosomes in gth generation; Best_Fitness represents the best
fitness value of the best combination of chromosomes in cur-
rent generations. Equations (19)–(21) represents that if the
fitness is not changed for a sufficient number of generations,
the suitable Mk groups may fall in the local optima solution.

3.3 The data mining based selection strategy (DMSS)

After the TSSO step, the selection times of each rule num-
ber in a TFM is decided. The SOME then performs selec-
tion step. The selection step in the SOME can be divided
by selection of groups and chromosomes. In the selection
of groups, this paper proposes the DMSS to improve the
random selection. In the DMSS, the groups are selected ac-
cording to the frequent patterns found by FP-Growth. In the
proposed DMSS, the FP-Growth finds the frequent groups
from a transaction (in this paper a transaction means a set of
the Mk group indexes that perform well). After the frequent
group indexes have been found, the DMSS selects the Mk

groups indexes according to the frequent group indexes. To
avoid the frequently-occurring groups from falling in the lo-
cal optimal solution, the DMSS uses three actions to select
Mk groups. The three actions defined in this paper are nor-
mal, search, and explore. The detail of the DMSS is shown
as follows:

Step 0 The transactions are building as follow equation:

if FitnessMk
≥ Best_FitnessMk

− ThreadFitnessvalue

then Transactionj [i] = TNFSRuleSetMk
[i]

where i = 1,2, . . . ,Mk;
Mk = Mmin,Mmin+1, . . . ,Mmax;
j = 1,2, . . . ,TransactionNum, (22)

where the FitnessMk
represents the fitness value of TFM

with k rules; ThreadFitnessvalue is the predefined value;
TransactionNum is the total number of transactions Trans-
actionj [i] represents the ith item in the j th transaction; and
TNFSRuleSetMk

[i] represents ith group index in Mk group
indexes that are selected to form a TFM with k rules. The
transactions have the form that shown in Table 1. As shown
in Table 1, every transaction represents Mk group indexes
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Table 1 Transactions in a FP-Growth

Transaction index Group indexes

1 1, 4, 8

2 2, 4, 7, 10
.
.
.

.

.

.

TransactionNum 1, 3, 4, 6, 8, 9

that form a TFM with k rules. For example, as shown in
Table 1, the first transaction of the transaction set means
the 3 rules TFM that select from 1st group, 4th group, and
8th group has a well performance. The building transactions
step continues in normal, searching, and exploring actions.

Step 1 Normal action:
After building up the transactions, the DMSS selects

group according to different action types. If the action type
is normal action, the DMSS selects the group as following
equation:

if Accumulator ≤ NormalTimes

then GroupIndex[i] = Random[1,PulationSize]
where i = 1,2, . . . ,Mk;Mk = Mmin,

Mmin+1, . . . ,Mmax, (23)

where Accumulator is defined in (20); GroupIndex[i] repre-
sents selected ith group index of the Mk group indexes and
PulationSize represents there are PulationSize groups in a
population in the SOME.

Step 2 Find the frequent groups:
If the action is searching or exploring action, the DMSS

uses the FP-Growth to find frequent group indexes in trans-
actions. The frequent group indexes are found according to
the predefined Minimum_Support. The Minimum_Support
means the minimum fraction of transactions that contain
an item set. The FP-Growth algorithm can be viewed as
two parts: construction of the FP-tree and FP-growth. The
sample transactions shown in Table 2 are taken as exam-
ples. Minimum_Support = 3 is considered in this exam-
ple. Frequent group indexes generated by FP-growth shown
in Table 3 are then thrown into the pool that’s named
FrequentPool.

Step 3 Select the group indexes according to different ac-
tions:

After obtaining the frequent item sets, the DMSS selected
group indexes according to different actions that describe as
follows:

Table 2 Sample transactions

Transaction index Group indexes

1 {b, c, e, f, g, h, p}

2 {a, b, c, f, i, m, o}

3 {c, f, i, m, o}

4 {b, c, e, s, p}

5 {a, b, c, d, f, m, o}

Table 3 Frequent group indexes generated by FP-growth with
Minimum_Support = 3

Suffix group Cond. group base Cond. FP-tree Frequent group indexes

B c:4 c:4 cb:4

F cb:3, c:1 c:4, cb:3 cf:4, bf:3, cbf:3

M cbf:2, cf:1 cf:3 cm:3, fm:3, cfm:3

O cbfm:2, cfm:1 cfm:3 co:3, fo:3, mo:3,
cfo:3, cmo:3, fmo:3,
cfmo:3

(a) In the searching action, the group indexes are selected
from the frequent item as follow equations:

if NormalTimes < Accumulator

≤ SearchingTimes

then GroupIndex[i] = w,

where

w = Random[1,PulationSize] and

w ∈ FrequentItemSet[q];
FrequentItemSet[q] = Random[FrequentPool];
q = 1,2, . . . ,FrequentPoolNum;
i = 1,2, . . . ,Mk;Mk = Mmin,Mmin+1, . . . ,Mmax,

(24)

where SearchingTimes is a predefined value that judge
to perform searching action; FrequentPool represents
the sets of frequent item set that obtain from FP-
Growth; FrequentPoolNum presents the total num-
ber of sets in FrequentPool and FrequentItemSet[i]
presents a frequent item set that select from Frequent-
Pool randomly. In (24), if Mk greater than the size of
FrequentItemSet[i], the remaining groups are selected
by (23).

(b) In the exploring action, the group indexes are selected
according to the frequent item as follow equations:

if SearchingTimes < Accumulator

≤ ExploringTimes
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then GroupIndex[i] = w,

where

w = Random[1,PulationSize] and

w /∈ FrequentItemSet[i];
FrequentItemSet[i] = Random[FrequentPool];
i = 1,2, . . . ,Mk;Mk = Mmin,Mmin+1, . . . ,Mmax,

(25)

where ExploringTimes is a predefined value that judge
to perform exploring action.

Step 4 After selecting Mk group indexes, the k chromo-
somes are selected from Mk group as follows:

ChromosomeIndex[i] = q,

where q = Random[1,Nc];
i = 1,2, . . . , k, (26)

where Nc represents the number of chromosomes in each
group; ChromosomeIndex[i] represents the index of a chro-
mosome that select from ith group.

The illustration of the DMSS is shown in Fig. 6 with a
simple description as follows:

Suppose the TSSO determines that 4 rules are expected,
and 3 out of 7 groups, group 2, 3 and 6, are deemed as fre-
quent groups. If the current action type of the DMSS is nor-
mal action, then 4 random groups will be selected to form
a TFS. If the search action is taken, then frequent group 2,
3 and 6 will be selected. The remaining one group will be
draw randomly from group 1, 4, 5 and 7. If the explore ac-
tion is taken, then the 4 non-frequent group 1, 4, 5 and 7 will
be selected in case of the problem of local optimum.

3.4 Fitness assignment step

The fitness value of a rule (an individual) is calculated by
concatenating this individual with elites of other groups se-
lected by DMSS. The details for assigning the fitness value
are described as follows:

Denote G1,G2, . . . ,GMk , the Mk groups selected by the
DMSS; Gj ·pi denotes the i-th individual of the j -th group;
yj refers to the elite individual of the j -th group. Then the
fitness of the individual Gj ·pi can be computed as follows:

fitness(Gj · pi)

= fitness(G1 · y1, . . . ,Gj · pi,Gj+1 · yj+1,

. . . ,GMk
· yMk

). (27)

3.5 Elites-based reproduction strategy (ERS)

Reproduction is a process in which individual strings are
copied according to their fitness value. A fitness value is as-
signed to each chromosome in each group according to a
fitness assignment method in which high numbers denote a
good fit. The goal of the SOME is to maximize the fitness
value. For keeping the stable of the algorithm, this study pro-
poses an elite-based reproduction strategy (ERS) to let the
best combination of chromosomes in each group can be kept
in the next generation. In the SOME, the chromosome that
has best fitness value may not be the chromosome in the best
combination. About this, in the ERS, every chromosome in
the best combination of Mk groups must be kept by per-
forming reproduction step. In the remaining chromosomes
in each group, this study uses the roulette-wheel selection
method for this reproduction process. The best performing
chromosomes in the top half of each group [12] advance to
the next generation. The other half is generated to perform
crossover and mutation operations on chromosomes in the
top half of the parent generation. In the reproduction step,
the top half of the population for each group must be kept
the same number of chromosomes.

3.6 The data mining based crossover strategy (DMCS)

Although the ERS operation can search for the best ex-
isting individuals, it does not create any new individuals.
In nature, an offspring has two parents and inherits genes
from both. The main operator working on the parents is the
crossover operator, the operation of which occurs for a se-
lected pair with a crossover rate. In this paper, the data min-
ing based crossover strategy (DMCS) is proposed to perform
the crossover operation. The DMCS mimics the cooperation
phenomenon in society [42, 43], in which individuals be-
come more suitable to the environment as they acquire and
share more knowledge of their surroundings. In the DMCS,
as same with the DMSS, the DMCS uses FP-Growth to se-
lect the parental group indexes to perform crossover opera-
tion in the next generation. Moreover, the DMCS also pro-
posed threes actions to select parental group indexes accord-
ing to the frequent item set. The best performing individuals
in the top half of selected parental group indexes that are
called elites are used to select the parents for performing
with the DMCS. Details of the DMCS are shown below.

Step 1 The first one of the parents that is used to perform
the crossover operation is selected from the original group
by using the following equations:

Fitness_Ratiog,t =
∑t

u=1 fitnessg,u∑Nc
c=1 fitnessg,c

,

where t = 1,2, . . . ,Nc; (28)



A self-organization mining based hybrid evolution learning for TSK-type fuzzy model design 463

Fig. 6 The example of the
DMSS

Rand_Value[g] = Random[0,1],
where g = 1,2, . . . ,PulationSize; (29)

Parent_SiteA[g] = t,

if Fitness_Ratiog,t−1 < Rand_Value[g]
≤ Fitness_Ratiog,t , (30)

where Fitness_Ratiog,t is a fitness ratio of the fitness value
of t th chromosome in the gth group; Rand_Value[g] ∈
[0, 1] is the random values of gth group; Parent_siteA[g]
is the site where the first parent is. According (30), if the
Rand_Value[g] is greater than the fitness ratio at (t − 1)th
chromosome in gth group and smaller or equal to the fitness
ratio at t th chromosome in gth group, the site of the first
parent of gth group is assigned to t .

Step 2 After determining the first parent, the second paren-
tal group index is decided according to different actions that
describe as follows:

(a) In the normal action, the best performing elites in each
group is used to determine the other parent. In this step,
the total fitness ratio of every group is computed accord-
ing to the following equations:

Total_Fitnessg =
Nc∑
c=1

fitnessg,c,

where g = 1,2, . . . ,PulationSize; (31)

Total_Fitness_Ratiow

=
∑w

u=1 Total_Fitnessu∑PulationSize
g=1 Total_Fitnessg

,

where w = 1,2, . . . ,PulationSize; (32)

where Total_Fitnessg represents the summation of the
fitness value of every chromosomes in gth group;
Total_Fitness_Ratiow is a total fitness ratio of wth
group. After computing the total fitness ratio, the
group where the chromosome is selected from to be
the other parent for performing crossover with the

Parent_SiteA[g]-th chromosome in gth group is deter-
mined according to the following equations:

Group_Rand_Value[g] = Random[0,1],
where g = 1,2, . . . ,M; (33)

Parent_Group_SiteB[g] = w,

if Total_Fitness_Ratiow−1 < Group_Rand_Value[g]
≤ Total_Fitness_Ratiow,

(34)

where Group_Rand_Value[g] ∈ [0,1] is a random val-
ues of gth group; Parent_Group_SiteB[g] represents
the site of the group that the second parent is selected
from.

(b) In the searching action, the second parent is decided ac-
cording to the following equations:

FrequentItemSet[q] = Random[FrequentPool]
where q = 1,2, . . . ,FrequentPoolNum; (35)

Parent_Group_SiteB[g] = w,

if w ∈ FrequentItemSet[q]. (36)

(c) In the exploring action, the second parent is decided ac-
cording to the following equations:

FrequentItemSet[q] = Random[FrequentPool]
where q = 1,2, . . . ,FrequentPoolNum; (37)

Parent_Group_SiteB[g] = w,

if w /∈ FrequentItemSet[q]. (38)

Step 3 After the Parent_Group_SiteB[g]-th group is se-
lected, the other parents in the selected Parent_Group_
SiteB[g]-th group according to the following equations:

Fitness_RatioSelected_g,t

=
∑t

u=1 fitnessSelected_g,u∑Nc
c=1 fitnessSelected_g,c

,
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where t = 1,2, . . . ,Nc;
Selected_g = Parent_Group_SiteB[g]; (39)

Rand_Value[g] = Random[0,1],
where g = 1,2, . . . ,PulationSize; (40)

Parent_SiteB[g] = l,

if Fitness_RatioSelected_g,l−1

< Rand_Value[g] ≤ Fitness_RatioSelected_g,l , (41)

where Fitness_RatioSelect_g,t is a fitness ratio of the fitness
value of t th chromosome in the Parent_Group_SiteB[g]-th
group; and Parent_SiteB[g] is the site where the second par-
ent is.

After the DMCS selects the parents form the gth group
and Parent_Group_SiteB[g]-th group, the individuals
Parent_SiteA[g]-th chromosome and the Parent_SiteB[g]-
th chromosome) are crossed and separated using a two-point
crossover in the gth group. In two-point crossover, exchang-
ing the site’s values between the selected sites of parents’
individual create new individuals.

Here we use Fig. 6 as the DMSS use for convenience
to illustrate the DMCS. A simple example of the DMCS is
described as follows:

Suppose the group 1 is scheduled to perform crossover
step; group 2, 3 and 6, are deemed as frequent groups. At
first, it randomly draws a chromosome from group 1 as the
1st parent chromosome of crossover. Second, the DMCS is
used to determine the group that 2nd parent chromosome
should be selected from based on three different actions. If
the action type of the DMCS is normal action, the other
group will be selected randomly from group 2 to 7. If the
search action is taken, then the other group will be selected
from frequent group 2, 3 and 6. If the explore action is taken,
then one, beside the group 1 itself, of the non-frequent group

4, 5 and 7 will be selected. Finally, it randomly draws a chro-
mosome from the group that DMCS determines as the 2nd
parent chromosome, and applies crossover operation on it
with the 1st parent chromosome.

3.7 Self-organization mutation strategy (SOMS)

Mutation is an operator that randomly alters the allele of a
gene. Recently, the sequential-search based dynamic evolu-
tion (SSDE) [19, 33, 34] is widely used in mutation oper-
ator. Therefore, better mutation points will be determined
to perform dynamic-mutation. To make sure the best com-
bination of chromosomes will be mutated at the next gen-
eration, the proposed SOME adopts the SSDE method [19]
to generate the new chromosomes. The search algorithm of
SSDE is similar to the local search procedure in [35]. In
SSDE, every gene in the previous best combination of chro-
mosomes is selected by using a sequential search and the

gene’s value is updated to evaluate the performance based
on the fitness value. Although the SSDE can obtain the bet-
ter mutation point, the population may fall in local optimum
solutions and may not easily to skip. This is because that
the SSDE changes the gene according to the performance of
the chromosomes, the closer performance of chromosomes
leads to the fewer updating value of gene. For avoiding the
issue of local optimum, the self-organization mutation strat-
egy (SOMS) is proposed here. In the SOMS, if the SSDE
cannot improve the performance of the best combination of
chromosomes, the traditional mutation [32] takes over. The
details of the SOMS method are listed as follows:

Step 1 Sequentially search for a gene in the best combina-
tion of previous chromosomes.

Step 2 Update the chosen gene in step 1 according to the
following formula:

Chrg,best_c[p] =
{

Chrg,best_c[p] + �(fitness_value,mmax − Chrg,best_c[p]), if α > 0.5
Chrg,best_c[p] − �(fitness_value,Chrg,best_c[p]−mmin), if α < 0.5

(42)

wherep = 2,4,6, . . . ,2n;

Chrg,best_c[p] =
{

Chrg,best_c[p] + �(fitness_value, δmax − Chrg,best_c[p]), if α > 0.5
Chrg,best_c[p] − �(fitness_value,Chrg,best_c[p]−δmin), if α < 0.5

where p = 1,3,5, . . . ,2n − 1; (43)

Chrg,best_c[p] =
{

Chrg,best_c[p] + �(fitness_value,wmax − Chrg,best_c[p]), if α > 0.5
Chrg,best_c[p] − �(fitness_value,Chrg,best_c[p]−wmin), if α < 0.5

where p = 2n + 1,2n + 2, . . . ,2n + (n + 1); (44)

�(fitness_value, v) = vλ(1/fitness_value)λ, (45)
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where α,λ ∈ [0,1] are the random values; fitness_value is
the fitness value; Best_C represents the Best_Cth chromo-
some in the gth group of the best combination of chromo-
somes and p represents the gene in a chromosome; i and j

represent the ith input dimension and j th rule.

Step 3 If the new gene that is generated from step 2 can
improve the fitness value, then replace the old gene with the
new gene in the chromosome. If not, recover the old gene in
the chromosome. After this, go to step 1 until every gene is
selected.

Step 4 If the genes check form step 1 to step 3 cannot im-
prove the performance of the best combination of previous
chromosomes, the algorithm adopts the traditional mutation
operation [32] to mutate the chromosomes each group. In the
following simulations, a mutation rate is set to 0.3 for per-
forming the traditional mutation. The aforementioned steps
are done repeatedly and stopped when the predetermined
condition is achieved.

4 Illustrative examples

In two different simulations, the proposed SOME is used to
train a TFM. The first simulation performs an approximation
problem that is described in [36]. The second simulation is
carried out to control a water bath temperature control sys-
tem that is described in [34] and [37]. For the two computer
simulations, the initial parameters are given in Table 4 be-
fore training. The initial parameters are determined by prac-
tical experimentation or trial-and-error tests.

4.1 Example 1: approximation of nonlinear functions

This example considers a nonlinear system presented by
Sugeno et al. in [36],

z = (1 + x−2
1 + x−1.5

2 )2, 1 ≤ x1, x2 ≤ 5 (46)

The fuzzy network identification was based on 50 sam-
ples reported in [36]. The original samples were four in-
puts and one output with two dummy inputs. Figure 7 show
a three-dimension input-output graph of this system. The
TFM discarded the two dummy inputs using the proposed
SOME for training. The parameters of this example are
show in Table 5. These parameters are determined by prac-
tical experimentation or trial-and-error tests. The evolution
processed for 200 generations and was repeated 50 times.
Figure 8 shows the results of the probability vectors in the
TSSO. In this figure, the final optima number of rules is 7.

Table 4 The initial parameters before training

Parameters Value

Coding Type Real number

PulationSize 16

NC 10

Selection_Times 280

NormalTimes 10

SearchingTimes 20

ExploringTimes 30

Crossover Rate 0.5

Mutation Rate 0.3

[Mmax,Mmin] [3, 10]

Table 5 The initial parameters number in the example 1

Parameters Value

ThreadFitnessvalue 100

TSSATimes 30

[mmin,mmax] [0,5]
[σmin, σmax] [0,5]
[wmin,wmax] [−10,10]
Minimum_Support TransactionNum/2

Fig. 7 Input-output relation of a nonlinear system

The obtained fuzzy rules of the TNFS using the SOME
method are shown as follows:

R1: If x1 is A1,1(0.87,0.68) and x2 is A2,1(2.93,1.16)

Then y′ = 0.92 + 0.32x1 + 6.74x2

R2: If x1 is A1,2(3.51,2.37) and x2 is A2,2(4.13,1.04)

Then y′ = 4.96 + 1.14x1 + 4.12x2
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Fig. 8 The results of the probability vectors in the TSSO

R3: If x1 is A1,3(0.79,0.62) and x2 is A2,3(4.91,2.63)

Then y′ = 8.22 − 3.73x1 + 1.97x2

R4: If x1 is A1,4(1.72,0.68) and x2 is A2,4(2.16,0.94)

Then y′ = −0.57 + 2.96x1 − 0.43x2

R5: If x1 is A1,5(2.43,4.81) and x2 is A2,5(0.91,3.46)

Then y′ = 8.67 − 0.12x1 − 4.97x2

R6: If x1 is A1,6(3.82,4.21) and x2 is A2,6(0.87,1.78)

Then y′ = −9.12 + 2.098x1 + 8.43x2

R7: If x1 is A1,7(2.56,4.67) and x2 is A2,7(0.95,2.21)

Then y′ = 9.07 − 2.73x1 + 0.78x2

The final mean square error (MSE) of the output approx-
imates 0.00026. In this example, in order to show the ef-
fectiveness and efficiency of the proposed SOME method,
the group-based symbiotic evolution (GSE) [20], the sym-
biotic evolution (SE) [34], and the genetic algorithm (GA)
[8] were applied to design TFM by solving the same prob-
lem. In the GSE, the SE, and the GA, the population size
and group size were set to 200 and the crossover and muta-
tion probabilities were set to 0.5 and 0.3, respectively. There
are seven rules that set to the GSE, SE, and the GA. The
evolution processed for 200 generations and repeated for 50
times. Figure 9 shows the learning curves of the four mod-
els. As shown in Fig. 9, the proposed SOME method also
yields better results.

Table 6 shows the results given in the relevant litera-
ture plus the error found using the SOME method. The per-
formance of the very compact fuzzy network obtained by
the proposed SOME method is better than all the previous
works.

Fig. 9 The learning curves of the proposed SOME, GSE [20], SE [34]
and GA [8]

Table 6 Comparison results for Sugeno’s nonlinear function approxi-
mation example

Author and reference MSE

SOME 0.00026

GSE [20] 0.00063

GEFREX [41] 0.00078

SE [34] 0.0026

Lin [40] 0.005

Emami [38] 0.004

Sugeno [36] 0.01

Delgado [39] 0.231

GA [8] 0.019

To demonstrate the efficiency of the proposed TSSO,
DMSS, DMCS, and SOMS methods, in this example the
four different methods are used such as: the proposed
SOME without TSSO, DMSS, and DMCS (Type I), the GSE
method (Type II), the proposed SOME (Type III), the pro-
posed SOME without SOMS (Type IV), and the GSE with
the SSDE (Type V). In Type I method, the SOME method
uses only the proposed SOMS method. In Type II method,
the traditional GSE [20] is adopted. In Type III method, the
SOME uses the proposed TSSO, DMSS, DMCS, and SOMS
to perform structure and parameter learning. In Type IV, the
SOME uses the proposed TSSO, DMSS, and DMCS meth-
ods. In Type V method, the GSE combines the SSDE to
perform parameter learning. Table 7 shows the performance
comparison of four methods. As shown in Table 7, the pro-
posed SOME (Type III) obtains a better performance than
other methods.
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Table 7 Performance
comparison of three different
methods in example 1 (Time
steps)

Method MSE

Type I method (The proposed SOME without TSSO, DMSS and DMCS) 0.0005

Type II method (The GSE method) 0.00063

Type III method (The proposed SOME) 0.00026

Type IV method (The proposed SOME without SOMS) 0.00041

Type V method (The GSE with SSDE) 0.00054

Table 8 The initial parameters number in the example 2

Parameters Value

ThreadFitnessvalue 50

TSSATimes 30

[mmin,mmax] [0,2]
[σmin, σmax] [0,2]
[wmin,wmax] [−30,30]
Minimum_Suppor TransactionNum/2

Fig. 10 Flow diagram of the TFM using the SOME for solving the
temperature control problem

4.2 Example 2: water bath temperature control system

The goal of this simulation is to control the temperature of a
water bath system given by

dy (t)

dt
= u (t)

C
+ Y0 − y (t)

R1C
(47)

where y(t) is system output temperature in °C; u(t) is heat-
ing flowing inward the system; Y0 is room temperature; C is
the equivalent system thermal capacity; and R1 is the equiv-
alent thermal resistance between the system borders and sur-
roundings.

Assuming that R1 and C are essentially constant, the sys-
tem in (47) can be rewritten into discrete-time form with

Fig. 11 The results of the probability vectors in the TSSO

Fig. 12 The learning curves of the proposed SOME, GSE [20], SE
[34] and GA [8]

some reasonable approximation. The system

y(k + 1)

= e−αTsy(k) +
β
α
(1 − e−αTs)

1 + e0.5y(k)−40
u(k)

+
[
1 − e−αTs

]
y0 (48)
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Fig. 13 (a) Final regulation performance of the TFM training by the
proposed SOME for water bath system. (b) The error curves of the
SOME, GSE [20], SE [34] and GA [8]

is obtained, where α and β are some constant values describ-
ing R and C. The system parameters used in this example
are α = 1.0015e−4, β = 8.67973e−3, and Y0 = 25.0 (°C),
which were obtained from a real water bath plant in [34] and
[37]. The input u(k) is limited to 0 and 5 represent voltage
unit. The sampling period is Ts = 30. The system configu-
ration is shown in Fig. 10, where yref is the desired temper-
ature of the controlled plant.

In the TFM, a sequence of random input signals u(k)

limited to 0 and 5 V is injected directly into the simu-
lated system described in (48). The 120 training patterns
are chosen from the input-outputs characteristic in order to
cover the entire reference output. The initial temperature of
the water is 25°C, and the temperature rises progressively
when random input signals are injected. The two input vari-
ables yref and y(k) and the output u(k) are normalized be-

Fig. 14 (a) Behavior of the TFM training by the proposed SOME un-
der the impulse noise for water bath system. (b) The error curves of the
SOME, GSE [20], SE [34] and GA [8]

tween 0 and 1 over the following ranges, yref : [25,85],
y(k) : [25,85], u(k) : [0,5]. The parameters of this example
are show in Table 8. These parameters are determined by
practical experimentation or trial-and-error tests. The evolu-
tion processed for 360 generations and was repeated for 50
times. Figure 11 shows the results of the probability vectors
in the TSSO. In this figure, the final optima number of rules
is 4.

In this example, the SOME is also compared the per-
formance with other methods (the GSE [20], the SE [34],
and the GA [8]). In the [20, 34], and [8], the parameters
are the same with example 1. There are four rules that set
to the GSE, the SE, and the GA. The evolution processed
for 360 generations and was repeated for 50 times. Figure
shows the learning curves of the four models. In Fig. 12,
the proposed SOME also obtains a better fitness value than
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Fig. 15 (a) Behavior of the TFM training by the proposed SOME when a change occurs in the water bath system. (b) The error curves of the
SOME, GSE [20], SE [34] and GA [8]

Fig. 16 (a) The tracking performance of the TFM training by the proposed SOME for the water bath system. (b) The error curves of the SOME,
GSE [20], SE [34] and GA [8]

other models. To test the performance of the four models, the
comparison performance measures include set-points regu-
lation, the influence of impulse noise, and a large parameter
variation in the system, and tracking capability of the con-
trollers.

The first task is to control the simulated system to follow
three set-points.

yref (k) =
{35°C, for k ≤ 40

55°C, for 40 < k ≤ 80
75°C, for 80 < k ≤ 120.

(49)

The regulation performance of the SOME is shown in
Fig. 13(a). In this paper, the regulation performance is also

test by using the GSE [20], the SE [34], and the GA [8]. The
error curves of the SOME, the GSE, the SE, and the GA
are shown in Fig. 13(b). In this figure, the SOME obtains
smaller errors than other controllers.

The second set of simulations is carried out for the pur-
pose of studying the noise-rejection ability of the four mod-
els when some unknown impulse noise is imposed on the
process. One impulse noise value −5°C is added to the plant
output at the sixtieth sampling instant. A set-point of 50°C
is performed in this set of simulations. The behaviors of the
SOME under the influence of impulse noise and the corre-
sponding errors of the SOME, the GSE, the SE, and the GA
are shown in Fig. 14(a)–(b).
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Table 9 Performance comparison of various controllers

SOME GSE [17] SE [31] GA [8]

Regulation Performance 344.80 357.43 365.20 378.02

Influence of Impulse Noise 241.13 252.67 258.80 262.77

Effect of Change in Plant
Dynamics

235.87 240.84 244.14 280.38

Tracking Performance 40.56 58.17 87.18 100.22

Training Time (s) 31.43 52.2 153.59 122.17

One common characteristic of many industrial-control
processes is that their parameters tend to change in an unpre-
dictable way. To test the robustness of the four controllers, a
value of 0.7 ∗ u(k − 2) is added to the plant input after the
sixtieth sample in the fourth set of simulations. A set-point
of 50°C is used in this set of simulations. The behaviors of
the SOME when there is a change in the plant dynamics are
shown in Fig. 15(a). The corresponding errors of the SOME,
the GSE, the SE, and the GA are shown in Fig. 15(b).

In the final set of simulations, the tracking capability of
the SOME with respect to ramp-reference signals is studied.
The equation of this simulations are defined

yref (k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

34°C, for k ≤ 30
(34 + 0.5 ∗ (k − 30))°C, for 30 < k ≤ 50
(44 + 0.8 ∗ (k − 50))°C, for 50 < k ≤ 70
(60 + 0.5 ∗ (k − 70))°C, for 70 < k ≤ 90
70°C, for 90 < k ≤ 120

(50)

The tracking performance of the SOME is shown in
Fig. 16(a). The corresponding errors the SOME, the GSE
[20], the SE [34], and the GA [8] are shown in Fig. 16(b).

To test performances, a performance index, sum of ab-
solute error (SAE), is defined by

SAE =
∑

k

∣∣yref (k) − y(k)
∣∣ (51)

where yref (k) and y(k) are the reference output and the ac-
tual output of the simulated system, respectively. For the
aforementioned simulation results, Table 9 has shown that
the proposed SOME method has better performance than
those of other methods.

5 Conclusion

In this paper, a self-organization mining based hybrid evolu-
tion learning algorithm (SOME) for designing a TSK-type
fuzzy model (TFM) is proposed. The proposed SOME has
structure-and-parameter learning ability. That is, it can de-
termine the suitable number of fuzzy rules and efficiently
tune the free parameters in the TFM model. The proposed
learning method also processes variable lengths of the com-

bination of chromosomes in several groups. The advantages
of the proposed SOME are summarized as follows: 1) the
SOME used the GSE that each group represents only one
fuzzy rule; 2) the TSSO is proposed to decide the suitable
number of rules; 3) the SOME uses group-based population
to evaluate the fuzzy rule locally; 4) the DMSS and DMCS
are proposed to select the suitable combinations of individ-
uals and parents; 5) it indeed can obtain better performs and
converge more quickly than some genetic methods. Com-
puter simulations have shown that the proposed SOME has
a better performance than the other methods.
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