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Chia-Hsiang Yang, Member, IEEE, Tsung-Han Yu, Student Member, IEEE, and Dejan Marković, Member, IEEE

Abstract—This paper presents a design methodology for power
and area minimization of flexible FFT processors. The method-
ology is based on the power-area tradeoff space obtained by
adjusting algorithm, architecture, and circuit variables. Radix
factorization is the main technique for achieving high energy
efficiency with flexibility, followed by architecture parallelism
and delay line circuits. The flexibility is provided by reconfig-
urable processing units that support radix-2/4/8/16 factorizations.
As a proof of concept, a 128- to 2048-point FFT processor for
3GPP-LTE standard has been implemented in a 65-nm CMOS
process. The processor designed for minimum power-area product
is integrated in 1.25 1.1 mm and dissipates 4.05 mW at 0.45 V
for the 20 MHz LTE bandwidth. The energy dissipation ranging
from 2.5 to 103.7 nJ/FFT for 128 to 2048 points makes it the lowest
energy flexible FFT.

Index Terms—Fast Fourier transform (FFT), CMOS digital in-
tegrated circuits, reconfigurable architecture, power and areamin-
imization.

I. INTRODUCTION

F AST FOURIER TRANSFORM (FFT) is an important
digital signal processing (DSP) technique to analyze the

phase and frequency components of a time-domain signal. FFT
processors have been widely used in various applications such
as communications, image, and biomedical signal processing.
For example, high-performance and low-power FFT processing
is indispensable in orthogonal frequency-division multiplexing
(OFDM) systems. Applications are now changing towards
increasing diversity of features and standards that need to
be supported on a single device. This change in applications
greatly emphasizes the need for flexibility. At the same time,
maintaining high levels of energy efficiency is of crucial im-
portance for mobile terminals. We therefore investigate energy
efficiency of flexible FFTs that be configured to a variety of
FFT sizes and sampling rates.
FFT architectures have been extensively studied. Traditional

architectures include memory-based [1], pipelined [2], array
[3], and cached-memory architecture [4]. Advanced circuit
techniques such as design for minimum-energy operation
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[5], [8], dynamic voltage and frequency scaling (DVFS) [6],
asynchronous logic [7], and deep pipelining [8] have also been
used to enhance energy efficiency of FFT processors. The
benefits of radix factorization for reduced hardware cost of
custom FFTs have been largely unexplored. A ring-structured
multiprocessor architecture was proposed in [9] to utilize mixed
radix. A mixed-radix (radix 4 and radix 8) multipath delay
feedback (MRMDF) architecture and indexed-scaling pipelined
architecture were introduced in [10] and [11], respectively. A
variable-length FFT processor that integrates two radix-2 stages
and three radix-2 stages for FFT sizes 512, 1024 and 2048
was proposed in [12]. Prior work optimized various aspects
of the FFT processors, but explored limited set of parameters.
A systematic design methodology that integrates parallelism,
radix factorization, and memory parameters for flexible FFTs
has not been thoroughly investigated.
We propose an FFT design methodology that jointly con-

siders algorithm, architecture, and circuit parameters. We con-
tribute with insights on how to use FFT radix structure for highly
energy- and area-efficient implementations. Hundreds of archi-
tectures for 128- to 2048-point FFT exist by varying the degree
of parallelism and radix factorization, as will be explained in this
paper. Apart from parallelism and radix, delay buffers need to
be efficiently implemented. Memory size partition and memory
elements for delay lines of different lengths are evaluated. Our
approach provides a cross-layered FFT design methodology to
jointly optimize above parameters. For illustration, we will de-
sign for minimum power-area product (PAP). We will show an
FFT processor that achieves the lowest energy per FFT oper-
ation, comparable area and much fewer processing cycles as
compared to prior work.
This paper is organized as follows. Section II gives a brief re-

view of FFT operation, FFT radix structure and possible hard-
ware architectures. Estimation of power and area and the use
of FFT design techniques are discussed in Section III. As a
proof of concept, Section IV presents a chip implementation
of 3GPP-LTE compliant FFT (128 to 2048 points). Chip mea-
surements indicate over a 2 better energy efficiency than prior
work. Section V concludes the paper.

II. FFT ALGORITHMS AND ARCHITECTURES

The -point discrete Fourier transform (DFT) of an input
sequence is defined as

(1)

where and is known
as the twiddle factor. Direct implementation of (1) requires
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complexmultiplications and complex additions. FFT
algorithms efficiently compute the DFT by decomposing the
input sequence into smaller-size DFTs [13]. The Cooley-Tukey
algorithm [14] leverages the divide-and-conquer technique to
recursively partition a DFT of size into many
smaller DFTs of sizes and . For and

, where and , the
-point FFT can be represented in a two-dimensional form as

in (2):

(2)

The calculation of is hence decomposed into three steps:
1) compute -point DFT, 2) multiply the outputs by twiddle
factors, and 3) compute -point DFT. Due to decomposition,
the number of complex multiplications is reduced from to

. The number of additions is reduced from
to .
The most common FFT algorithm is the radix-2 Cooley-

Tukey algorithm, which recursively splits an -point
FFT into two segments of size . Using the symmetry

and periodicity of
the twiddle factors, DFT can be computed efficiently. The
split-radix FFT algorithm [15] mixes radix-2 and radix-4
factorizations, yielding an algorithm with fewer additions and
multiplications than the radix-2 FFT. However, the split-radix
algorithm has an irregular signal-flow structure and it can only
be applied when is a multiple of 4. For the case where
and are relatively prime, the DFT can be computed more
efficiently using the prime-factor algorithm (PFA) [16]. The
PFA decomposes and into smaller recursive sections
without using the twiddle factors. The computation of the
PFA has fewer multiplications but a complex re-indexing is
required. For a power-of-prime size, the Winograd Fourier
Transform Algorithm (WFTA) [17] performs the decomposi-
tion efficiently using cyclic-convolution techniques. Since the
cyclic-convolution operations often have coefficients of 1, 0,
or , the WFTA requires fewer multiplications at the cost of
more additions. The disadvantage of PFA and WFTA is that
they only work for specific FFT sizes.
Inspired by the split-radix algorithm, various radix factor-

izations have been proposed to implement efficient FFTs. For
example, a split-radix FFT with minimal multiplicative com-
plexity is proposed in [18]. High-speed low-power hardware
implementations are presented in [19], [20]. As mentioned be-
fore, prior work utilized radix factorization with limited success.
The hardware complexity is minimized by only reducing the
number of complex (full) multiplications for various radix FFTs.
Also, the use of high-radix is commonly believed to be more
area-efficient than low-radix algorithms [6], [10] due to the use
of fewer complex multiplications. The complexity analysis that

considers only the asymptotic trend may lead to
an inefficient architecture for dedicated designs that consider the
cost of constant multipliers and adders, and also account for the
signal wordlengths. This work presents an optimal-radix design
methodology by considering the cost of all arithmetic elements.
We start from radix-2 architecture since mixed-radix structures
are built using radix-2 butterflies.

A. Radix-2-Butterfly Based Architecture

The radix-2 FFT algorithm decomposes the -point DFT
into 2-point DFTs recursively. It requires mul-
tiplications and additions, leading to a significant
saving for a large compared to direct-mapped DFT. The
atomic module of radix-2 FFT is the butterfly operation shown
in Fig. 1(a). Decimation-in-time (DIT) and decimation-in-fre-
quency (DIF) butterfly operations have the same structure and
only differ in the placement of the multiplier. In this work,
DIF structure is adopted, but the proposed design methodology
is also applicable for DIT. Besides radix-2, an -point DFT
can also be decomposed into -point DFTs. This is known
as radix- FFT algorithm. There are stages and
butterflies per stage. Each butterfly requires complex
multiplications. When , radix- butterfly can be further
decomposed by cascading radix-2 stages, known as radix-
algorithm [21]. The total number of complex multiplications
of radix- FFT is considering that
the twiddle factors of the last stage are always equal to unity.
As we will describe later, all multipliers internal to the radix-
butterfly can be implemented as constant multipliers
in order to reduce area and power. The number of complex
additions is regardless of .
Due to its regular structure, the FFT can be realized using

radix- butterflies, delay lines, and complex mul-
tipliers. Radix- can be realized using several architectures
considering the tradeoff between silicon area and execution
time. The memory-based time-multiplexed architecture [1] has
only one radix- butterfly and complex multipliers. The
inputs, outputs, and interim results are read from and written
back to memory for complete FFT operation. This architecture
has the lowest area and longest execution time. Another extreme
is the direct-mapped fully parallel architecture, which requires

complex multipliers. Between
these two extreme cases, there is a pipelined architecture which
provides a balanced tradeoff between area and execution time.
Two major types of pipelined architectures are multi-path delay
commutator (MDC) and single-path delay feedback (SDF). For
higher-radix algorithms, the SDF architecture is preferred since
it requires less memory and fewer complex multipliers than the
MDC architecture [21].
The radix-2 SDF architecture for -point FFT is shown in

Fig. 1(b). In each stage, the required butterfly operations
are time-multiplexed onto one butterfly operator. Delay buffers
are used to support the time-multiplexing. The inter-stage multi-
pliers are used tomultiply stage outputs by twiddle factors .
The radix-2 SDF architecture requires inter-stage
complex multipliers, complex adders, and delay
buffers.
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Fig. 1. (a) Signal-flow graph of radix-2 butterfly for decimation in time (DIT) and decimation in frequency (DIF). (b) Radix- single-path delay feedback (SDF)
architecture. Output of stage does not need twiddle-factor multiplication.

Fig. 2. Radix- butterfly operations. Shaded stripes indicate constant multipliers.

B. Reconfigurable Architecture

Based on the pipelined SDF architecture, a reconfigurable
FFT architecture can be implemented by cascading several
radix- stages in order to accommodate different FFT sizes.
The signal-flow graphs for radix-2 to radix- butterflies are
shown in Fig. 2. The minus signs in the butterfly modules are
omitted for simplicity. The highlighted inter-stage multipli-
cations are implemented as constant (complex) multipliers as
opposed to using full (complex) multipliers. The radix- can
be realized by cascading several atomic processing units (PUs)
as in Table I. The PUs are shown in Fig. 3. Looking at the
cost of the constant multipliers (shown in brackets in Fig. 3)
in terms of the number of equivalent adders, we discovered
that radices beyond are impractical, because the increasing

number and complexity of required constant multipliers makes
them no longer advantageous over full multipliers. In addition,
full multipliers need extra ROMs to store the coefficients as op-
posed to locally computed coefficients of constant multipliers.
Therefore, radix-2 to radix- is the proper level of granularity
for mixed-radix FFT implementations.
As shown in Fig. 3(a), each PU contains a basic butterfly

module and a set of constant multipliers. The butterfly module
is initialized to the data-switch mode until the delay buffers
are loaded by the valid inputs and then switched to the but-
terflymode for FFT operation. The required constant multipliers
for PUs 1–4 are shown in Fig. 3(b). Only half the twiddle fac-
tors (dark-filled circles) are generated in the PUs, the other half
(gray-filled circles) are created using the symmetry property.
The PUs with lower index can be deduced from the PUs with
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Fig. 3. Reconfigurable processing units (PUs) support radix-2 to radix- factorizations. (a) PU1-4 architecture. Each PU can operate in a data-switch or a butterfly
mode. (b) The constant multipliers associated with PU1-4. The numbers in brackets next to each PU indicate relative cost (in terms of the number of real-valued
adders) of its constant multiplier.

TABLE I
COST OF RADIX IMPLEMENTATIONS WITH RECONFIGURABLE PROCESSING UNITS (PUS)

higher index. For example, PU4 can serve as PU3, PU2 or PU1.
This “back-compatibility” is useful for reconfigurable designs.
All the intra-stage multipliers inside the PUs for a -point FFT

are constant multipliers. Full multipliers are only used
for the inter-stage twiddle factors. Since the inter-stage full mul-
tipliers cost more than the intra-stage constant multipliers, radix
factorization should minimize the number of full multipliers.

III. POWER AND AREA MINIMIZATION

We propose a systematic methodology to explore FFT power-
area tradeoff. FFT realizations are systematically explored in
three steps. First, architecture parallelism combined with FFT
decomposition is used to explore the power-area space through

voltage scaling. Next, radix factorization is explored for a given
FFT size. The third step consists of memory partition, selection
of memory cells and logic operators. To support multiple FFT
sizes, optimal mapping of processing units that considers all
required FFT sizes is performed.

A. Parallel Architecture With FFT Decomposition

Parallelism is an effective technique to increase throughput
[10] or to reduce power consumption [22], [23] of an FFT pro-
cessor. For a fixed throughput, scaled voltage and a lower clock
frequency improve the energy efficiency of a parallel architec-
ture. Since time-multiplexing is inherently applied to SDF archi-
tecture, parallelism is used to improve its energy efficiency and
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Fig. 4. (a) Reference -point FFT architecture. (b) A -way
parallel architecture requires replicas of the -point FFT. (c) When

, the -point FFT can be shared across the streams, which leads to a
reduced hardware area.

adjust the design point in the area-energy-delay plane [24]. An
area-efficient parallel architecture is possible by leveraging FFT
decomposition. As shown in Fig. 4(a), an -point FFT is de-
composed into -point FFT and -point FFT. Straightforward
-way parallel architecture, Fig. 4(b), requires -point FFTs

and -point FFTs, increasing the area by a factor of (ne-
glecting the overhead of the serial-to-parallel and parallel-to-se-
rial blocks). When , the single-input SDF FFTs can be
combined into a single -input parallel FFT, as in Fig. 4(c),
to reduce area. This architecture simplification is possible since
the -point FFTs can be computed first and combined into the
-point output stage to compute an -point FFT.
The architecture in Fig. 4(c) contains

and

Besides the reduced arithmetic complexity, effective implemen-
tation of memory is also required. delay buffers used for
scheduling of the -point FFT in Fig. 4(b) can be removed since
in Fig. 4(c) the inputs of paths are available and aligned in
time. The total number of delay buffers is reduced from
to .
Finally, the hardware complexity of the -point FFT can be

reduced. Combining streams in Fig. 4(b) necessitates zero-
padding of data and the length of delay buffers in the -point
FFTs to be a multiple of . When , as in Fig. 4(c), the
length- delay buffers in each of the -point FFTs can be re-
placed by length-1 buffers at times lower rate to match the

Fig. 5. Simulated delay (left y-axis) and power (right y-axis) vs. supply voltage
for a FO-4 inverter in 65 nm CMOS is used to predict the speed-power tradeoff
in FFT architectures. The reported power assumes maximum clock rate for a
given voltage.

delay. This reduces the number of delay buffers in Fig. 4(c) from
to , which

is the minimal number of delay buffers required for an -path
-point FFT.

B. Estimation of Area and Power

To evaluate many architecture and circuit realizations, high-
level area and power models of the FFT building blocks are de-
veloped. Area is estimated as the total relative area of multi-
pliers, adders, and memory. The area of the -path SDF archi-
tecture in Fig. 4(c) is estimated as

(3)

where , and represent the area of multiplier,
adder, and delay buffer, respectively. These three parameters
can be estimated from synthesis. Without loss of generality,
we use 12-bit arithmetic and DFF-based delay buffers in our
analysis.
Power is estimated from the total area, switching activity,

operating frequency and voltage. It considers both switching
and leakage components. Fig. 5 shows FO4 in-

verter delay and power vs. supply voltage in the typical-typical
(TT) corner in a standard-V 65-nm CMOS technology. The
delay-voltage curve is used to predict the amount of voltage
scaling for varying performance requirements. For example,
if a 20 MHz design is required to run at 0.45 V, it has to be
synthesized for 160 MHz at 1 V, as shown in Fig. 5. A ratio

is estimated from a FO4 inverter chain at
0.45 V and 20 MHz. By lowering from 1 V to 0.45 V and
frequency from 160 MHz to 20 MHz, the power is reduced by
46.3 .
Since circuits operate at the same voltage and frequency the

switching power of the processing units can be estimated as
the product of per-cycle utilization rate and active area
as given by

(4)

where is the area cost. Inactive blocks are disabled by
using clock gating or wired-AND circuits. The two complex
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Fig. 6. Constant multipliers use canonic signed digit (CSD) representation for area-efficient implementation. Only three generated values (top table) are required
to implement all constant multipliers required by the PUs from Fig. 3, resulting in a total of 30 real-valued adders.

adders in the butterfly module of PUs (Fig. 3) have utilization
rate of 1/2 because the periods for the data-switch and butterfly
modes are the same, resulting in two real additions per cycle, on
average. According to the signal-flow graph in Fig. 2, the uti-
lization rate of each constant multiplier is 1/4, 1/8, and 1/16 per
clock cycle for PU2, PU3, and PU4, respectively. The utilization
rate of the inter-stage full multipliers depends on the preceding
PUs and it is accounted for in our analysis.

C. Mixed-Radix Implementation

As mentioned in Section II.A, higher-radix structures can be
made more area efficient by judiciously replacing full multi-
pliers with constant multipliers. These constant multipliers are
implemented using canonic signed digit (CSD) representation
[25], as shown in Fig. 6. A 10-bit twiddle factors are assumed.
Each of the constant factors requires no more than 4 additions,
which leads to a large area reduction. The area of constant mul-
tipliers is minimized using the symmetry property of twiddle
factors and sharing of common sub-expressions. Only 30 adders
are need for all twiddle-factor multiplications shown in Fig. 3.
The cost of implementing radix-2 to radix- operations, which
will be used in radix factorizations, is summarized in Table I.
To minimize the hardware cost of inter-stage full multipliers

(between radix- blocks), full complex multipliers are imple-
mented by using 3 real multipliers and 5 real adders (rather than
4 real multipliers and 2 adders) [26] as follows:

The equivalent number of adders in a full real multiplier is es-
timated as the wordlength of twiddle factors. Since the number
of butterfly adders is the same in all radix structures, only the
equivalent adders for complex multiplications are used for
quick comparison of different FFT architectures. The number
of equivalent adders for 4- to 16-point FFTs with twiddle factor
(TF) wordlengths 8b–16b is summarized in Table II. For ex-
ample, a 16-point FFT can be implemented using two radix-
stages, one adder per stage (Table I), along with an inter-stage

full multiplier (using three multipliers and five adders). For
8-bit twiddle factors, the number of equivalent real-valued
adders is thus . FFTs up to 16 points are
considered, because this is the adequate level of granularity for
radix factorization, as discussed earlier. The choice of radix
depends on the FFT size and twiddle-factor wordlength. Radix
structures with minimum area are highlighted. Radix- archi-
tecture needs only one adder for 4-point FFT, but the radix-2
architecture needs 29–53 adders due to the use of full multi-
pliers. Using higher radix makes sense here, because radix-
exactly matches 4 FFT points. As the FFT size increases, a
larger number of constant multipliers required to support higher
radix diminishes the area advantage over full multipliers. For
16 points, the radix- architecture needs 37–49 adders while
the radix-2 architecture needs 87–159 adders (a 2.53–3.24
larger area). The area saving for the 16-point FFT is not as
large as that for the 4-point FFT. The wordlength of twiddle
factors also affects the area. Radix- architecture is the most
area efficient for twiddle factors below 14 bits, else radix-
should be used. In summary, radix-2 is the least area efficient.
Higher radix (up to ) is generally better unless wordlength of
twiddle factors is small (less than 14 bits).
Using the area and power models from Section III.B, we

can evaluate area-power tradeoff for various radix factorizations
and degrees of parallelism. As an example, Fig. 7 shows the
area-power tradeoff for 2048-point FFT implemented using ar-
chitecture from Fig. 4(c). Partitioning with and

gives the lowest PAP for 2048 points. It achieves a
lower PAP than design. Next, since ,
we have to examine radix factorization of 256-point FFT for
further area and power reduction. Radix structure of 256-point
FFT is shown in Fig. 8. The architecture with eight radix-2
stages (A1) occupies the largest area, as expected from prior
analysis. Architecture A11 (consisting of one radix- stage and
two radix- stages) is the most area efficient. The architecture
with highest radix, i.e., cascading two radix- stages, (A14) has
the lowest PAP. A and PAP reduction are achieved
from radix-2 (A1) to radix- (A14) and from radix- (A10) to
radix- (A14), respectively, due to radix factorization. Taking
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TABLE II
NUMBER OF EQUIVALENT ADDERS REQUIRED TO IMPLEMENT FFT

Fig. 7. Power-area product (PAP) for varying levels of parallelism for the ar-
chitecture in Fig. 4(c). Radix factorization (the mix-radix curve) and parallelism
have comparable impact on PAP.

delay buffers into consideration, as will be discussed next, a
reduction in power-area product is achieved from archi-

tecture A1 to A14. An overall PAP reduction compared
to the direct mapped architecture ( ) is
achieved through FFT decomposition and radix factoriza-
tion .

D. Delay-Buffer Architecture and Memory Bit-Cell

After FFT decomposition and radix factorization, the next
step is the power-area optimization of delay buffers. Three
options are considered for delay buffer implementation [21]:
1) DFF-based shift register, 2) register file (RF)-based, and
3) SRAM-based delay buffer. Architecture and memory cells
for various delay lengths have to be evaluated. To illustrate
our methodology and support the example in Section IV, we
assume delay lengths up to 1024.
We start by comparing RF-based and SRAM-based delay

buffers, which have different memory cells and peripheral
circuits. A straightforward implementation is a dual-port (DP)
RF/SRAM-based architecture, as shown in Fig. 9(a). If the
RF/SRAM memory size is , the output of the dual-port
RF/SRAM is read after cycles, so an overall -cycle
delay is achieved. Area and power of RF and SRAM designs

Fig. 8. Power and area (normalized to radix-2 architecture) for feasible radix
factorizations of 256-point FFT. Architecture A14 has the lowest power-area
product.

are evaluated using commercial memory compilers for the
target 65-nm technology. For 32-bit (complex-valued input)
delay buffers, RF-based design is superior since it consumes
41–49% of power with a 66–82% silicon area compared to the
SRAM-based counterpart.
Next, we compare RF-based and DFF-based designs.

RF-based delay buffers are more area efficient due to the
compact bitcell structure but the peripheral circuits contribute a
considerable area overhead for small-size memories. However,
RF-based designs cannot be operated at very low voltage
due to cell read margin and sense amplifier operation. Since
DFF-based designs can operate at a low voltage, they are more
energy efficient despite the area disadvantage. In addition to
voltage scaling, the power consumption of the DFF-based
buffers can be reduced using a pointer-based architecture,
Fig. 9(b). Instead of shifting the data, a shift-delay-line chooses
the corresponding DFF to read and write. The remaining
DFFs are clock gated when they are not activated by the
shift-delay-line, eliminating significant dynamic power. To
evaluate the tradeoff between RF-based and DFF-based delay
buffers, power and area for the delay lines of interest are shown
in Fig. 10. For the delay buffers longer than 256, the RF-based
design at 0.9 V has a lower PAP compared to the DFF-based
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Fig. 9. (a) Dual-port RF-based delay buffer and (b) pointer-based DFF-based
delay buffer.

Fig. 10. Power-area product of delay buffers: D flip-flops (DFF) are used for
delay lengths of 128 and 256, register files (RF) are used for delay lengths of
512 and 1024.

design operated at 0.4 V, for a 20 MHz sampling rate. There-
fore, the delay buffers of length 512 and 1024 are implemented
using RFs.
The power of RF is further reduced via memory partitioning.

Fig. 11 shows the possible memory partition schemes and the
optimal partition for lengths 512 and 1024. The architecture
with lower power is chosen if multiple designs have the same
PAP. The designs with two and four 256 32b RF banks are
chosen for the delay buffers of length 512 and 1024, respec-
tively.
Finally, one length-256 dual-port (DP) RF block can be re-

placed with two length-128 single-port (SP) RF blocks. This re-
duced PAP by and , respectively, for delay buffers
of length 512 and 1024. The final memory structure for the delay
buffers is shown in Fig. 12. Eight 128 32b and four 128 32b
RFs are used to implement length 1024 and 512 delay buffers.

Fig. 11. Power-area tradeoff for feasible memory partitions. Partitions 2 256
for length 512 and 4 256 for length 1024 delay buffers yield minimum power-
area product.

Fig. 12. Memory architecture for length 512 and 1024 delay buffers (top),
length-256 ping-pong register file (bottom).

Input/output of two SP RF modules are written/read alterna-
tively to create adequate delays. For the remaining delay buffers,
DFF-based registers with aggressive voltage scaling are used.

E. Area-Efficient Twiddle-Factor Generator

Twiddle factors are generated in an area-efficient way by
trigonometric approximation instead of fetching coefficients
from ROMs. The trigonometric approximation is realized by
a first-order linear approximation [27], as follows. First, by
means of symmetric sine/cosine values, angles can
be used to construct the whole sine/cosine space. Second, sine
values can be approximated using piecewise-linear approxima-
tion, as given by

Third, for
is approximated by another linear

approximation as shown in the equation at the bottom of
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TABLE III
3GPP-LTE DESIGN SPECIFICATIONS

this page. Based on these approximations, only shift and
add operations are needed to generate the twiddle factors
(TFs). The overall number of intra-stage TF generators is

, where is the number of PU stages of in
the -point FFT block. Since TFs for the multipliers in the
same stage of the -point FFT blocks can be shared, only

unique TF generators are necessary. In addition, there
are TF generators for the multipliers between -point
and -point FFTs.

IV. CHIP IMPLEMENTATION

A reconfigurable FFT processor for the OFDM-based 3GPP
long term evolution (LTE) standard is designed and imple-
mented to demonstrate the proposed design methodology [28].
The processor supports complex FFTs with 128 to 2048 points
for the bandwidths from 1.25 to 20 MHz [29], as shown in
Table III.

A. Architecture and Chip Implementation

Starting from FFT decomposition and architecture paral-
lelism, the maximum-size 2048-point FFT is decomposed into

to achieve minimum PAP for the bandwidth
of 20 MHz. The 8-path 256-point SDF FFT architecture is
shown in Fig. 13. It can support 16 to 256 points by recon-
figuring the data-path inter-connection between the PUs. To
support 1536 points, a 6-point FFT module is constructed by
sharing hardware resources with the 8-point FFT. The optimal
PU configuration for each FFT size is chosen from minimum
PAP. The optimal radix factorizations for supported FFT sizes
are listed in Table III. An overall PAP reduction can be
achieved for 2048 points through FFT decomposition and radix
factorization compared to the baseline radix-2 architecture.
The overall memory size for the register files is

kb. The feedback delays (64/32, 32/16, 16/8)
are reconfigured by switching between different delay-buffer
modules. The area difference between 128 and 2048 points is

less than since half of the 256-pt module is used to support
16 points and they share the same 8-point FFT in the second
stage. Clock gating disables unused PUs and delay buffers for
energy saving. The twiddle factors for 1536 points are calcu-
lated using the same TF generator as for FFTs with a power-of-2
size.
Fig. 14 is the chip micrograph of an OFDM-based MIMO

decoder with highlight on the FFT processor. Chip features
are summarized in Table IV. The chip is fabricated in a stan-
dard-V 65-nm CMOS process. The total chip area with I/O
pads is 6.86 mm . The area of the reconfigurable FFT processor
(including RF memory bank) is 1.375 mm . The core supply
voltage is tunable between 0.2 V and 1.0 V, and the I/O pads
are supplied from 1.0/2.5 V. Cross-coupled level shifters are
inserted between voltage domains and the core-I/O boundary.
The supply voltage of the FFT core and RF bank is 0.45 V and
0.9 V, respectively, for the 20 MHz bandwidth. To support up to
eight antennas for the LTE-Advanced standard, the maximum
I/O frequency is 160 MHz. The input is de-multiplexed into
the 8-path FFT processor, with core frequency of 20 MHz, and
multiplexed back for output. Clock frequencies of 40 MHz
and 80 MHz are used for memory access, as shown in Fig. 12.
The numerical performance of the FFT processor for input
SNR of 25 dB, Fig. 15, justifies the choice of the 12-bit input
wordlength since the output SNR flattens beyond 12 bits.

B. Test Setup

Chip testing is performed with the aid of an IBOB FPGA
board [30] for pattern generation and data analysis. Test vec-
tors are stored on the FPGA, which stimulates the custom ASIC
board over two high-speed Z-DOK connectors. The outputs
of the ASIC are captured into the block RAMs on the FPGA
board for analysis. The I/O interface between the client PC and
the FPGA board is built on the BEE Platform Studio environ-
ment and controlled through an integrated Simulink/Matlab in-
terface [31]. The FPGA testing approach is favorable due to the
real-time operation and low cost as compared to traditional pat-
tern generation and logic analysis systems.
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Fig. 13. Reconfigurable 2048/1536-point FFT architecture. The first-stage pipelined 256-point FFT is reconfigurable to support 16-256 points (in powers of 2).
The second stage parallel FFT supports 8 or 6 points. The overall FFT meets the 3GPP-LTE standard specification (128, 256, 512, 1024, 1536, 2048 points).

Fig. 14. Die photo of LTE-compliant MIMO sphere decoder with the recon-
figurable FFT processor (highlighted) from Fig. 13.

C. Chip Measurements and Comparison to Prior Work

The normalized Energy/FFT [4], [21] as in (5) is used to com-
pare the energy of the proposed FFT with prior work.

(5)

where is the number of clock cycles required to perform
an FFT, is the clock period, and is the minimum
channel length. The area is evaluated by the Normalized area
[4], [12]:

(6)

Fig. 15. Numerical performance of the FFT processor for input
dB. Output SNR remains constant for input wordlength greater than 12 bits.

Fig. 16 compares variable-length FFTs [5], [9] in terms of nor-
malized energy and area. The power and area for real-valued
FFT [5] is multiplied by a factor of 2 for fair comparison with
complex-valued FFTs. Our work is used as baseline for the
energy and area normalizations. As shown in Fig. 16(a), this
work achieves the highest energy efficiency (lowest energy).
Although the design target was to minimize the power-area
product instead of energy, the energy of this work is still lower
than the sub-threshold design from [5] while operating at a
higher voltage (0.45 V vs. 0.35 V) and with a higher sample
rate (20 MHz vs. 10 kHz). In [5], the energy is minimized by
voltage scaling and circuit design for sub-threshold operation.
In our work, we use radix factorization and chip synthesis tools.
Further improvements in energy of our work would be possible
with similar circuit-level techniques. This comparison reveals
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TABLE IV
CHIP SUMMARY

Fig. 16. (a) Energy and (b) area comparison with prior work. This work is used
as baseline for energy and area normalization.

that radix factorization has higher impact than circuit-level
techniques. The energy efficiency of [9] is not comparable
with other ASICs due to the processor-based architecture. The
area comparison is shown in Fig. 16(b). Active area indicates
only the blocks that are actually used for the required FFT
configuration. The chip in [9] supports larger FFT size (4096
points) with less area due to the processor-based architecture
at the cost of longer latency. For example, it takes 5280 clock

cycles to compute a 1024-point FFF as compared to 1024
cycles in this work.

V. CONCLUSION

An FFT processor design methodology yielding optimal
power-area tradeoff is explored by examining feasible parallel
architectures and radix factorizations. The use of constant
multipliers for intra-stage twiddle factors enables substantial
area and power savings compared to the use of full multipliers.
Radix factors up to 16 should be used. Radices beyond 16
are ineffective due to a large number of constant multipliers
required. Short delay line buffers (up to 256) are best realized
in D-flip-flops, medium buffers (length 512 and 1024) are
the most energy and area efficient when realized with register
files. Twiddle factors are generated using trigonometric ap-
proximations as opposed to ROM memories. The proposed
synthesis-based methodology is robust to process scaling and
can quickly port across technologies. The methodology can
be further refined with circuit-level customizations if that is
available to the designer. It is also applicable to digital filters
and general DSP architecture optimization.
As a demonstration, a 128- to 2048-point FFT processor

for the 3GPP-LTE standard has been implemented in a 65-nm
CMOS technology. The chip designed for minimum power-area
product consumes 2.5 to 103.7 nJ/FFT for 128 to 2048 points
and 1.25 to 20 MHz bandwidth (4.05 mW worst-case power
consumption), making it the lowest energy flexible FFT pro-
cessor.
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