
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 3, MARCH 2012 459

NCTU-GR: Efficient Simulated Evolution-Based
Rerouting and Congestion-Relaxed Layer

Assignment on 3-D Global Routing
Ke-Ren Dai, Wen-Hao Liu, and Yih-Lang Li, Member, IEEE

Abstract—The increasing complexity of interconnection designs
has enhanced the importance of research into global routing when
seeking high-routability (low overflow) results or rapid search
paths that report wirelength estimations to a placer. This work
presents two routing techniques, namely circular fixed-ordering
monotonic routing and evolution-based rip-up and rerouting using
a two-stage cost function in a high-performance congestion-driven
2-D global router. We also propose two efficient via-minimization
methods, namely congestion relaxation by layer shifting and
rip-up and reassignment, for a dynamic programming-based layer
assignment. Experimental results demonstrate that our router
achieves performance similar to the first two winning routers
in ISPD 2008 Routing Contest in terms of both routability and
wirelength at a 1.05 and 18.47 faster routing speed. Moreover,
the proposed layer assignment achieves fewer vias and shorter
wirelength than congestion-constrained layer assignment (COLA).

Index Terms—Algorithms, design automation, optimization,
routing.

I. INTRODUCTION

A S VLSI design complexity continues increasing and
semiconductor manufacturing advances to the nanometer

scale, interconnection delay begins to dominate the circuit
delay. Placement and routing stages mainly determine in-
terconnection delay, where placement determines the lower
bound of total wirelength and routing realizes physical wires
to determine final wirelength. In recent years, there has been
an increasing amount of literature concerning routing issues
for nanometer designs, including global routing for nanometer
designs, variable-rule routing [1]–[3], double-via-aware routing
[4], [5], lithography-friendly routing [6]–[9], and density-driven
routing [10], [11], etc.

Conventional routing flow is composed of global routing and
detailed routing. Global router identifies a global path for every
net to constraint the path searching conducted by detailed router
within the global path. Path search space is substantially reduced
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and path searching time is thus massively dropped. Meanwhile,
global routing result can offer a good estimation of routing con-
gestion and routed wirelength. 2-D global routing determines
the global path for each net, while 3-D global routing addition-
ally determines the used layer of every routing path. Mostly, 3-D
global routing is accomplished by 2-D global routing as well as
layer assignment. The ideal approach for interconnection opti-
mization is to undertake a simultaneous placement and global
routing [12] or take interconnection delay into account in early
stage. The necessity for fast and efficient global routing algo-
rithms for cooperating with placers and tackling modern designs
with high congestion and complexity is increasing.

Lee’s algorithm [13] has been widely employed in path
searching of various routing problems and promises to identify
a feasible path for a routing problem that has a feasible solution.
However Lee’s algorithm costs large runtime for the routing of
large modern designs. Hence initial routing generally applies
another fast routing algorithm, such as pattern routing [14] or
monotonic routing [15]. The most commonly used patterns
are L-shaped or Z-shaped patterns. Pattern routing used in
multi-net routing offers extremely fast routing speed at the cost
of worse routing quality than maze routing. Monotonic routing
is another very fast routing technique and produces a path
without detour as well. Dynamic programming algorithm can
efficiently realize monotonic routing. The number of routing
paths a routing algorithm searches for determines the routing
speed and quality. For a 2-pin net routing in a bounding
box, Z-shaped pattern routing identifies the best path out of

paths, while monotonic routing identifies the best
path out of paths. With the
aid of these two fast routing techniques, routing congestion
estimation before real routing becomes an important operation
in most modern leading-edge global routers.

Besides, novel history-based cost function design for rip-up
and rerouting process develops the improvement of overflow
elimination and runtime speedup by increasing the routing cost
of congested regions [16]. Congestion history scheme forces
the preceding routing to evade congested regions such that the
routing resource of congested regions are reserved for subse-
quent routing. Ideal congestion history scheme is to remove
overflow quickly with slightly increasing wirelength. Current
state-of-the-art global routers apply unique history-based cost
function in rip-up and rerouting stage. A routing using a short
wire consumes less routing resource than using a long wire and
more routing resource is thus reserved for subsequent routing.
Adopting too many detours in early routing stage should be well
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controlled to evade lowering the routability and overflow-free
rate of subsequent routings due to overusing routing resources
in early routing stage. Thus control over the increase of wire-
length is very important in global routing.

In this paper, we present a novel 2-D global router based on
simulated evolution rip-up and rerouting with two-stage conges-
tion history scheme. The simulated evolution technique can en-
courage the router to escape from local optimum and achieve
better performance. Furthermore, we also propose a conges-
tion-relaxed layer assignment (CRLA) algorithm that can ex-
plore more solution space than congestion-constrained layer as-
signment (COLA) [17]. Compared with other global routers, the
proposed router takes less time to have a level of routing quality
to that of the first two winning routers in the ISPD 2008 global
routing contest [18].

NCTU-GR is compared to the first two winners in ISPD
2008 Routing Contest, produces the shortest average wire-
length and completes 12 out of 16 benchmarks at a 1.05 and
18.47 faster routing speed. Our key contributions include the
following:

• circular fixed-ordering monotonic routing (CFOMR) to
efficiently remove overflow before rip-up and rerouting
stage;

• simulated evolution-based rip-up and rerouting technique
with two-stage cost function to accelerate routing speed
and decrease overflow;

• CRLA algorithm based on layer shifting and rip-up and
reassignment to achieve fewer vias than congestion con-
strained layer assignment.

The rest of this paper is organized as follows. Section II
presents background and previous works. Section III gives
an overview of the proposed router. Section IV presents the
proposed 2-D global routing technique. Section V describes the
proposed layer assignment algorithm. Section VI summarizes
the experimental results. Section VII draws conclusions and
discusses future work.

II. BACKGROUND AND PREVIOUS WORKS

A. Problem Formulation

A routing region can be partitioned into an array of global
cells or bins (G-cells) and modeled by a grid graph ,
where every node of the graph denotes a global cell and every
edge (global edge) is termed the adjacency of the related global
cells of its two end nodes. The capacity of an edge indicates
the number of routing tracks that can be accommodated across
the abutting boundary. Fig. 1(b) shows a three-layer grid graph
of a circuit containing 4 4 G-cells in Fig. 1(a). An overflow
occurs when the number of wire demand exceeds the number
of capacity. The number of overflow in a global edge is calcu-
lated as the exceeding demand. The problem of global routing
is defined as follows: given a set of nets, a grid graph, and the
capacity of every grid edges, the global routing is to find the
paths to connect all the pins for every net such that the number
of overflows is minimized.

Fig. 1. G-cells and their corresponding grid graph.

B. Metrics of Global Routing

A global router largely focuses on producing a highly
routable global path for every net. The metrics of routability
can be measured based on the congestion of all global edges and
wirelength of every net. Few overflow global edges and short
wirelength imply high routability. The increasing number of
overflow global edges raises the difficulty of routing; reducing
the wirelength lowers the congestion of some global edges. In
the ISPD 2007 Global Routing Contest [19], the quality of a
global router is evaluated by the following equation:

(1)

where is the set of nets, is the number of grid edges
used by net , is the number of vias of net ,
is the weighting factor of one via. In the ISPD 2007 Global
Routing Contest, is set to three.

In the ISPD 2008 contest [18], run time is considered as a part
of weighted total wirelength which is formulated as follows:

(2)
where is the total wirelength cost in (1), is the run-
time of a router and is the median runtime of all
routers in the routing contest. In the ISPD 2008 Global Routing
Contest, is set to one. According to (2), a router re-
duces its wirelength by 4% when it runs two times faster.

C. History-Based Routing

Fig. 2 displays an example of using L-shape pattern routing
and congestion history during the rip-up and rerouting stages.
Fig. 2(a) depicts four congested global cells containing nets b
and c. In conventional rip-up and rerouting flow, nets b and c are
ripped up and rerouted. If net b is rerouted prior to net c, then
the new routing path of net b remains the same as that of the
previous rip-up and rerouting iteration, since the path has the
smallest routing cost. In this case, every rip-up and rerouting
iteration produces the same congested regions (global cells 1,
2, 3, and 4) and thus never removes overflow. However, if the
routing cost for passing global cells 1, 2, 3, and 4 is increased,
then rerouting encourages net b to seek other routing regions,
as shown in Fig. 2(b). Overflow can thus be removed, as dis-
played in Fig. 2(c). McMurchie and Ebeling [16] proposed the
following history-based congestion cost function:

(3)
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Fig. 2. Example of the use of congestion histories.

where is the cost of node in the th iteration; is the base
cost of node ; is the history cost of node and repre-
sents the penalty cost of node . The history cost increases
as overflow continues in subsequent rip-up and rerouting itera-
tions. The value of in the th iteration is given by

if is overflowed
otherwise.

(4)

D. Simulated Evolution-Based Rip-Up and Rerouting

Rip-up and rerouting technique is widely used in global and
detailed routing. Given an illegal routing solution, rip-up, and
rerouting technique iteratively rips up the nets with violation
and reroutes them to solve the routing violation. However, only
greedy rip-up and rerouting may yield local optimum. Lin et al.
presented a simulated evolution-based rip-up and rerouting de-
tailed router called SILK [20]. The simulated evolution scheme
scores each individual in a population and then determines its
survival rate in the next generation. SILK scores each net in a
generation by its routing violation and path quality as follows:

(5)

where is the violation number of net , is the
number of vias in net , is the number of pins of net
, is the actual routed wirelength and the

is the minimal possible wirelength of net .
SILK is a detailed router and the violation number of net
is referred to as the number of DRC and short errors on the
routing of net . The last two items in (5) reflect the routing
quality of net . A net is considered to have good quality if
it comprises less vias and shorter wirelength. All scores are
then normalized to 0.1–0.9. Finally, SILK generates a random
number between 0.0 and 1.0 for each net. The nets with nor-
malized scores greater than their random numbers are weeded
out in next generation, i.e., the paths of these nets will be ripped
up. These removed nets are then rerouted in decreasing order
of their normalized scores. Thus, the nets with low cost also
have chance to be ripped up and rerouted. Additionally SILK
also employs rip-up and rerouting to improve routing quality.

E. Previous Works—Global Router

Kastner et al. [14] developed a pattern-based global routing
algorithm. Hadsell and Madden [21] proposed the Chi dis-
persion router by using a linear cost function and amplified
congestion estimation for path searching and rip-up and
rerouting, respectively. In recent years, many global routers

have been proposed to advance the study. Cho and Pan [22]
presented BoxRouter to utilize integer linear programming
(ILP) to solve global routing problem. In the beginning,
BoxRouter finds the most congested region in the design by
prerouting to get the initial box and then solves the routing
problem by rapidly progressive ILP, adaptive maze routing and
box expansion. Finally, post routing is performed to balance
the optimizations in wirelength and routability. FastRoute [23]
employs congestion-driven Steiner tree construction and edge
shifting to find a good net topology and then extremely fast
completes the design using pattern routing and maze routing.
FastRoute 2.0 [15] utilizes monotonic routing and multi-source
multi-sink maze routing to further develop routing quality.

ISPD 2007 Global Routing Contest stimulates researches
in global routing for modern congested benchmarks from in-
dustry. Archer [24] proposed a framework to achieve a smooth
tradeoff between overflow and wirelength minimization. A
Lagrangian relaxation-based topology improvement algorithm
is employed to alter the Steiner tree for congestion minimiza-
tion. BoxRouter is upgraded with negotiation-based search
and topology-aware wire rip-up in BoxRouter 2.0 [25]. FGR
[26] suggests a routing technique based on discrete Lagrange
multipliers in rip-up and rerouting. NTHU-Route [27] employs
a congested region identification method to determine the
net order in rip-up and rerouting. MaizeRouter [28] uses dif-
ferent net topology representations and employs extreme edge
shifting, edge retraction and garbage collection to minimize
overflow. NTUgr [29] develops least-flexibility-first routing
and multi-source multi-sink escaping-point routing to minimize
the congestion of in-tile nets and the residual via capacity for
global routing. FastRoute 3.0 [30] uses the concept of virtual
capacity to complete high quality routing. FastRoute 4.0 [31]
uses via-aware Steiner tree and 3-bend routing to further reduce
the via count of FastRoute 3.0. NTHU-Route 2.0 [32] improves
the quality of NTHU-Route by using a new history based cost
function and a new ordering method for rip-up and rerouting.
As for 3-D global routing problem, FGR [26] can directly
solve 3-D global routing by using 3-D maze routing. GRIP [33]
utilizes integer linear programming to complete 3-D global
routing by column generation and branch-and-bound without
adopting layer assignment. Since the complexity of 3-D global
routing is very huge, GRIP partitions a routing region into a set
of sub-regions and assigns the routing job of each sub-region
to a computer in a clustered computer system through network
to achieve scalable speedup.

F. Previous Work—Layer Assignment

Cho et al. proposed an integer linear programming formu-
lation to solve via/blockage aware layer assignment problem
in BoxRouter 2.0 [25]. The formulation tries to complete as
many nets as possible. The unassigned nets are then completed
by maze routing. Lee and Wang [17] presented an efficient dy-
namic programming algorithm to solve congestion-constrained
layer assignment for via minimization problem (COLA) on a
grid graph. They firstly determine the assignment order of each
net and then adopt a dynamic programming algorithm to assign
the layer of each net sequentially. The net order influences the
layer assignment results, because the nets in the later assigning
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Fig. 3. Design flow of the proposed router.

order have less available layer resources than the nets in the early
assigning order.

III. OVERVIEW OF OUR ROUTER

Fig. 3 presents the design flow of the proposed router. The
3-D routing problem is transformed into a 2-D routing problem.
This study then tries to minimize overflow and wirelength in
2-D global routing via simulated evolution-based rip-up and
rerouting using two-stage history-based maze routing. Finally,
the number of vias is minimized in the Layer Assignment for
3-D global routing.

IV. 2-D GLOBAL ROUTING

A. Net Decomposition and Initial Route

Many state-of-art global routers use FLUTE [34], [35] to de-
compose multiple-pin nets into two-pin nets. Net decomposition
with a rectilinear Steiner minimal tree (RSMT) reduces wire-
length more than a minimum spanning tree (MST); additionally,
the RSMT has less routing flexibility than the MST as it gener-
ates more flat segments than the MST. This study decomposes
each net into two-pin nets via MST. Then, FLUTE is employed
to yield RSMT as the initial routing solution.

B. Circular Fixed-Ordering Monotonic Routing

Net ordering influences routing results. Precisely identifying
a good net ordering is difficult. A fixed net ordering would likely
hinder some nets, while adopting different net orderings could
release this blocking.

Rip-up and rerouting is widely used in global routers to
remove overflows. However, it is very time-consuming. To
achieve better performance, it is desirable to rapidly solve
as many overflows as possible before entering rip-up and
rerouting stage. The proposed router employs a novel routing
technique, called circular fixed-ordering monotonic routing
(CFOMR), to improve the overflow-removing efficiency of
applying fixed net-ordering routing. The CFOMR repeatedly
rips up and reroutes all nets in a decreasing order of wirelength
using monotonic routing times, where is a user-defined

Fig. 4. Example of CFOMR with routing order������� ���: (a) initial
routing; (b) rerouting net A in the second round; (c) the second round routing
result.

constant. Ripping up and rerouting is performed on one net at
a time. For every net, the existing routing paths on the routing
graph vary at different cycles when rerouting the net, which
is equivalent to perform the net routing with different net
orderings at different cycles. Adopting a decreasing order of
wirelength in each cycle improves routing performance when
processing long wires. In sum, this stage has the benefits on
designed and random net ordering. Fig. 4 shows a four-net
example of CFOMR. The horizontal and vertical capacity of
each grid is one and via cost is ignored in this example. Fig. 4(a)
shows the initial routing result with six overflows, using the
routing order . The second round routing
rips up and reroutes each net using the same net routing order
based on the routing result of the first round routing. Fig. 4(b)
depicts the routing result after rerouting net A. Notably, as net
A is rerouted, it looks like to route net A after routing nets B,
C and D. Similarly, as net B is rerouted, it also look like to
route net B after routing nets A, C and D. Six overflows are
totally removed after the second round routing [see Fig. 4(c)].
For this case, the optimal routing order is .
In the second routing of CFOMR, rerouting net A matches the
optimal routing order (route nets B, C, and D before net A)
while rerouting net B fulfills another partial order (route net C
before net B). Experimental results indicate that the number
of overflows stabilizes when constant reaches a threshold.
Fig. 5 shows that the number of overflows of adaptec5 declines
as the number of monotonic routings increases. In practice, this
study set to 5.

C. Simulated Evolution-Based Rip-Up and Rerouting

Fig. 6 presents the modified routing algorithm from SILK
for global routing. Routing violations in global routing are re-
garded as overflows. Furthermore, rerouting in the proposed
global routing applies two different cost functions in two stages
to tackle some hard-to-route nets. In the first stage, most or all
nets are complete. If the minimum number of overflows cannot
be decreased further within several iterations, i.e., the router
is stuck in a local optimum, rerouting enters the second stage
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Fig. 5. Effects of different � values on the benchmark adaptec5.

Fig. 6. Proposed simulated evolution-based rip-up and rerouting algorithm.

and employs another cost function for the remaining incomplete
nets.

1) Simulated Evolution-Based Rip-Up and Rerouting: The
proposed simulated evolution-based global router modifies the
scoring function and scheme for selecting ripped up nets. Equa-
tion (5) is improved by introducing the number of rip-up and
rerouting iterations as

if
otherwise (6)

where is the last two terms of (5)
, is a

user-defined constant, is the number of rip-up and rerouting
iterations, and is the number of violations of a net . In
global routing, a violation is an overflowed edge in the routing
path of net .

In (5), nets with large violations are ripped up and rerouted
first. However, since nets with large violations usually exist in
a congested area, rerouting these nets first may generate a long
detour and use additional routing resources. In (6), the nets with
few violations have larger scores than nets with many viola-
tions in the first few iterations; thus, nets with few violations are
ripped up and rerouted first. As the iteration process proceeds,
when the number of overflows cannot be decreased, rerouting
violation-free and bad-quality nets likely frees routing resources
for overflowing nets. Thus, the score is divided by
to reduce the influence of the number of violations. The design
principle of the cost function is to increase the possibility of rip-
ping up and rerouting violation-free bad-quality nets. Moreover,
in SILK, all nets are candidates to be selected, ripped up, and
rerouted. In the proposed global routing scheme, millions of nets
exist. To keep the number of ripped up nets within a reasonable
range, only the nets intersecting expanded bounding boxes of
overflowed nets are selected as possible candidates to be ripped

Fig. 7. Runtime comparison of five overflow-free benchmarks in ISPD’07
Routing Contest among SILK, traditional rip-up and rerouting, and the pro-
posed scheme.

up and rerouted. The expanded bounding boxes of overflowed
nets will be enlarged as the number of rip-up and rerouting iter-
ations increases to improve routing flexibility. In SILK, all se-
lected nets are ripped up and then rerouted. In NCTU-GR, one
net is ripped up and rerouted at a time. Traditional routers rip up
all overflowed nets and then route them sequentially.

Fig. 7 compares the runtime to find overflow-free solutions
among SILK, traditional rip-up and rerouting scheme, and the
proposed one. The experiments using five benchmarks from
ISPD 2007 global routing contest show that our simulated evo-
lution-based method can find overflow-free solutions in a much
shorter time than traditional method and the original method in
SILK.

2) Two-Stage Cost Function: In recent years, the concept
of history-based routing is widely used in many global routers
[24]–[27], [29], [31] to efficiently identify the overflow-free
routing solution. Equations (3) and (4) show the McMurchie’s
history-based cost function. However, McMurchie’s cost func-
tion has two problems. First, increases as the rip-up and
rerouting operation continues in order to overestimate earlier
congested regions, even when these previously congested re-
gions become un-congested. Second, the cost function of maze
routing is given by , where is the
estimation from the current position to the target and is
the cost from the source to . If McMurchie’s function is given
by , then as rip-up and rerouting procedure continues, in-
creasing in proportion to the number rip-up and rerouting
iterations dominates the value of . The new history-based
cost function, which solves these problems, is as follows:

(7)

where represents the cost of edge and is the history cost
of edge and is the penalty of edge . The proposed router
applies the logistic function in [23] as the penalty of edge . The
function is defined as follows:

(8)

where is the routing demand of edge , is the
capacity of edge , and are user defined constants.
In (7), never exceeds , thus does not become a large
and dominant factor in subsequent iterations. This cost function
can also balance and during maze routing.

Theorem 1: in (7) does not exceed .
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Proof: Equation (4) shows that the value of increase by
1 only when edge overflows. For any iteration , the value of

does not exceed , i.e., does not exceed 1

Thus does not exceed .
The rip-up and rerouting scheme using the cost function in

(7) can rapidly remove most overflows for ISPD benchmarks.
Some nets cannot be completed because the historical cost in (7)
is constrained to at most 1; thus, (7) may not have sufficient in-
tensity to make the router avoid previously overflowed regions.
If the rip-up and rerouting scheme cannot reduce the minimum
number of overflows within several iterations, the rip-up and
rerouting scheme enters its second stage to solve the remaining
incomplete nets by using the following cost function:

(9)

where and are defined as in (7) and is a user-defined
constant that is set to 2. In the second stage, routability is more
important than wirelength and historical cost has more impact
on the cost function than in the first stage. The resulting effect
removes additional overflows at the cost of increased run time
and wirelength.

3) Issues on Wirelength and Via: Via and wirelength are two
important minimized objectives in routing problem. Large via
number would increase yield loss in the circuit, while long wires
would occupy routing resources to decrease routability. In this
work, three simple effective schemes are employed to reduce
wirelength and the number of vias.

• During the rip-up and rerouting stage, a wirelength con-
straint is imposed on each net. The wirelength constraint is
set to be slightly larger than the half perimeter wirelength
(HPWL). As the iteration proceeds, the wirelength bound
is relaxed to allow for additional detours.

• The third term in (6) defines routing quality using wire-
length. The nets with long wire have an increased possi-
bility to be ripped up.

• In the circular fixed-ordering monotonic routing stage, this
study first sets a large via cost and via cost decreases as the
number of iterations increases.

D. Implementation Details

This section describes some implementation details. At first,
implementation issues of maze routing are presented. Then
some of the tuning techniques of the proposed router will be
discussed.

1) Implementation of Maze Routing: FastRoute 2.0 [15]
proposed a multi-source, multi-sink maze routing algorithm by
treating the whole sub-tree as a source or target point not only to
avoid yielding redundant wire segments, but also to yield better
routing results than that of pin-to-pin routing. However, identi-
fying all grid points on a large sub-tree expends a considerable
amount of time, with subsequent grid-point expansion tending
to explore a large space. To remedy the decline in routing speed,

Fig. 8. Difference of multi-pin maze routing between this work and NTHU-R
[27]. (a) The multi-pin routing result of a two-pin routing demand (from point
� to point �) in NTHU-R [27]. (b) The routing result of this work.

the proposed routing scheme considers only the pins on the
sub-trees as a source and target pins. The pins on two sub-trees
to be connected can be clustered efficiently into two sets using
the Disjoint set data structure [36], with one set containing the
original source pin and the other set containing the original
target pin. The points in two sets are starting and target points
of maze routing. The proposed scheme differs from the method
in [27] mainly in that the latter adopts the pins and Steiner
points on the sub-trees as the source and target points while the
former ignores the Steiner points. Although this work omits
Steiner points from the source and target points, the identified
result is still the same as that in [27] by setting the costs of
edges used by two sub-trees as zero if the minimum-cost path
connects to the existing Steiner point.

Lemma 1: The minimum-cost path identified this work to
connect two sub-trees is the same as that in [27].

Proof: Assume that two end points of the minimum-cost
path found in [27] are and in sub-trees and

, respectively. If and are both pins, obviously, path
can also be identified in this work. Additionally, if points

and are both Steiner points, a zero-cost path on
can definitely be found from any pin on to and a

zero-cost path on from any pin on to . The costs
of paths and are 0, explaining why the total cost of
paths plus and is the same as that of path .
Additionally, paths and are on sub-trees and and
their edges are redundant. The routing tree obtained in this work
after removing redundant edges is the same as that in [27]. As
for one point of and being a Steiner point, the proof
can be easily conducted using the previous two cases.

Fig. 7(a) and (b) display how this work differs from the work
in [27]. Dashed-dotted lines represent the original point-to-point
routing problem; light blue regions are congested regions; bold
gray wires imply existing routing wires and dotted lines rep-
resent the found minimum-cost rerouting path to connect two
sub-trees after ripping up the edge . In [27], the source and
target sets both contain three pins and one Steiner point [see
Fig. 8(a)] while, in this work, the source and target sets only
contain three pins [see Fig. 8(b)]. According to Fig. 8(b), the
intersections of bold gray wires and dot lines are the redundant
edges. Following removal of redundant edges in Fig. 8(b), the
final routing paths in Figs. 8(a) and 8(b) are the same. The pro-
posed scheme is characterized mainly by the relatively simple
structure to record routing paths and its subsequent efficiency
because only the path of each point-to-point routing is stored in
the structure and storing Steiner points is unnecessary.
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Fig. 9. Comparison of the logistic function with different ������.

The proposed routing scheme also utilizes searching al-
gorithm to accelerate path searching. For current position of
a routing path, the path cost function by maze routing can be
expressed as . In searching algorithm, a
priority queue is maintained. The path priority at is determined
by the function , where denotes the
cost from the source to point and refers to the heuristic
function to estimate the cost from point to the target. In mul-
tiple-pin maze routing, the target set may contain multiple pins
rather than one. Despite the linear complexity of minimum-dis-
tance computation from a point to a set of points, the number
of such computations may be extremely large during a two-pin
connection, necessitating the lowering of the complexity asso-
ciated with computing the target cost. Notably, if the heuristic
function is admissible, i.e., the cost to reach the target is
never overestimated, then algorithm seeks the optimal so-
lution. To achieve this objective, a bounding box that encloses
all target points is identified first. The heuristic function is
defined as the minimum Manhattan distance from position to
the bounding box.

2) Parameter Tuning: Some parameters must be tuned in
the proposed router. This section discusses the experiences
of tuning the parameters in our implementation. For global
routing, a tradeoff always occurs between wirelength and
overflow minimization. Of priority concern in generating
overflow-free routing results is not only to ensure that as many
edges as possible have a lower demand than their capacity in
the early routing stage, but also to gradually release edge usage
constraint as the routing iteration proceeds. To adhere to this
principle, NCTU-GR adequately controls the edge cost.

The proposed router adopts the logistic function in (8) with
two parameters. Parameter refers to the ability to avoid
an overflowed edge, while parameter is the function’s
slope. Fig. 9 compares the functions of (8) using the same

and various . Additionally, -axis denotes the
difference between demand and capacity, while -axis refers to
the function value of (8). Among the slopes of 0.5, 1, and 2, the
slope of 0.5 has the largest increasing rate in function value as
demand is significantly lower than capacity; meanwhile, that of
2 has the least increasing rate in the same range of -axis. As
demand approaches and slightly exceeds capacity, the slope of
2 has the largest raising rate in function value; meanwhile, that
of 0.5 has the least raising rate. In the beginning of the rip-up
and rerouting stage, a small slope can offer an early alarm as

Fig. 10. Flow of the proposed layer assignment.

to increasing edge usage in order to ensure that as many edges
as possible have a lower demand below their capacity. With a
growing number of rip-up and rerouting iterations, the value of

also grows to free the edge usage constraint. Moreover,
for congested benchmarks, the initial and should
be larger than those for uncongested benchmarks because
uncongested benchmarks are likely routed without overflow. A
small and can thus yield overflow-free routing
results faster than the large ones can.

In the proposed simulated evolution based rip-up and
rerouting scheme, each routed net is scored using (6). A net
with a large score is likely ripped up and rerouted. The pa-
rameter in (6) determines the penalty of a routing violation.
A large raises the likelihood of ripping up and rerouting
the nets with violation. In the beginning of the rip-up and
rerouting stage, a small encourages poor quality nets to be
ripped up and rerouted to release additional routing resources
for subsequent routings. With a growing number of rip-up and
rerouting iterations, the value of increases the likelihood of
ripping up and rerouting the nets with violation. For congested
benchmarks, the initial value of should be set to a larger
value than that for uncongested benchmarks, since additional
routed nets have violations in the congested benchmarks than
those in the uncongested ones in the beginning of the rip-up
and rerouting stage.

V. LAYER ASSIGNMENT

The purpose of layer assignment is to map a 2-D routing so-
lution into a 3-D solution while minimizing the number of vias,
without changing routing topology or increasing any overflow.
This problem is called constrained via minimization (CVM),
which has been proven to be NP-complete [37].

In previous layer assignment work, the net assignment order
strongly influences the layer assignment results because the nets
in the later assigning order have less available layer resources
than those in the early assigning order. In this work, the pro-
posed net decomposition offers more accurate assignment order;
besides a layer assignment algorithm with layer shifting tech-
nique is proposed to further reduce congestion by pushing away
early assigned nets to increase the flexibility of later assigned
nets. This problem is named as congestion-relaxed single net
layer assignment for via minimization.

Fig. 10 presents the flow of the proposed layer assignment.
At first, each net is decomposed into a set of subnets (line 1).
Then the assignment order of each subnet in is determined
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Fig. 11. Layer assignment example: (a) 2-D routing result; (b) 3-D grid graph;
(c)–(e) three optimal layer assignment results.

with (10) (line 2). Next, each subnet in is assigned to cor-
responding layer by a heuristic assignment algorithm (line 4).
Since the subnets of a net are assigned independently, the as-
signment result of a net tends to fall into the local optimum. To
further minimize via number, we rip up and reassign a net when
all subnets of the net have been assigned (line ). Note that

is the net that subnet belongs to. The proposed layer
assignment algorithm with layer shifting technique is adopted to
reassign nets to yield a better assignment result in global view
(line 6). Finally, rip-up and reassigning stage iteratively further
minimize via number until no room for improvement is avail-
able (line 7).

The proposed layer assignment has the following improve-
ments:

1) refined net ordering by net decomposition;
2) via minimization of a net by congestion-relaxed dynamic

programming-based layer assignment with layer shifting
and rip-up and reassignment.

A. Net Decomposition and Ordering

In this work, we discover that a good layer assignment re-
sult can be obtained by decomposing each net into several sub-
nets and then sequentially assigning all subnets. For example,
Fig. 11(a) is a 2-D routing of a net and Fig. 11(b) displays the
pin locations of the net in 3-D grid graph. If there is no preferable
routing direction constraint, Fig. 11(c)–(e) show three optimal
layer assignment results. In these three optimal assignment re-
sults, the subnet between and must be assigned to layer
1, but the subnet between and have three choices. Obvi-
ously, the optimal assignment requires the subnet between
and to be assigned first for using layer 1 while the subnet
between and does not need to own high assigning order
like subnet. In COLA [17], the order of a net is de-
termined by its average congestion, wirelength and number of
pins. However, if the congestions in the passed regions of a long
net vary significantly, then the average congestion will not ac-
curately reflect the state of the whole net. Net decomposition
can well tackle this problem by splitting a long net into several
subnets to reduce the congestion variation.

Breadth-first search (BFS) with queue is adopted to identify
the break points. The root node is labeled as 0 and then pushed
into the queue. The nodes that are subsequently pushed into the
queue are labeled in increasing order. A break point must be

Fig. 12. Net decomposition: (a) � is the root of subnet � . � and � are de-
composition points; (b)� and � are the roots of sub-nets� and� , respec-
tively.

an internal node, a pin and a node with a label that exceeds a
constant which determines the subnet size and is set to 3 in
this study. Increasing subnet size raises congestion variation and
thus assignment quality degrades. On the other hand, if subset
size is set to 2, over-fragmented subnets suffer from locally lim-
ited view and thus assignment quality also degrades. Fig. 12
shows an example of net decomposition. In Fig. 12(a), node
is chosen as the root of a BFS tree. Nodes and are identi-
fied as break points, but the node labeled 5 is not a break-point
since it is a leaf. Break points and are treated as new roots
to identify new subnets and , as presented in Fig. 12(b).
The score of each subnet is given by

(10)

where is the average congestion of net
and is the congestion variation of net .
Layer assignment is then performed on all nets sequentially in
the decreasing score order.

Fig. 13 shows different net orderings using the method
in COLA and the proposed method. Dark regions represent
congested area. In Fig. 13(a), if we use the method in COLA,
the net ordering is . However, if there is
another net , as shown in Fig. 13(b), the order of nets

and is hard to determine. The proposed approach
decomposes the long net into three subnets , and

[see Fig. 13(c)] and assigns the subnets in the order of
.

B. Heuristic Algorithm to Preassign a Subnet

We present a heuristic algorithm to efficiently obtain a preas-
signing solution for each subnet. Initially, the tree structure of a
subnet is constructed and then each edge in the tree from bottom
(leaf) to top (root) is sequentially assigned to the layer with least
assignment cost.

The cost of assigning a tree edge to a layer grid edge
consists of upstream via cost, downstream via cost and con-

gestion penalty. The fact that upstream tree edges of have not
yet been assigned makes it impossible to determine the required
number of vias to connect to its upstream tree edges. The de-
fault upstream via cost is thus set to zero. However, a pin located
at the upstream terminal of explains why the lower bound of
upstream via cost is the required number of vias to connect the
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Fig. 13. Comparison between the net ordering in COLA and the proposed
method: (a) simple example; (b) the net ordering in COLA; (c) the net ordering
in the proposed router.

pin to the terminal on layer . A pin is said to be located at the
terminals of a grid edge if the pin and the terminal of an edge
are located at the same position of a 2-D routing graph. The up-
stream via cost of is thus formulated as follows:

if a pin is located at
otherwise

(11)

where denotes the upstream terminal of and
denotes the layer of the pin located at .

The left and right figures in Fig. 14 depict 2-D and 3-D routing
graphs, respectively, and is assumed to be assigned to layer
2. The yellow circles are pins. In Fig. 14, equals
1 and, thus, the upstream via cost of is . The
downstream via cost is the required number of vias to connect

to its child edges. The fact that the child edges of have
been assigned before processing makes it easy to calculate
the required number of vias to connect with its child edges.
For a pin located at the downstream terminal of , the
pin must also be considered to involve via number calculation.
First, the maximum and minimum layers that child edges have
been assigned to must be calculated

(12)

(13)

where represents the set of ’s child edges and
refers to the layer that edge has been assigned to. The down-
stream via cost of is thus formulated as follows:

if a pin is located at
otherwise

(14)

Fig. 14. Example for illustrating how to compute the via cost in heuristic subset
preassinging algorithm. The cost of assigning Edge � to layer 2 in 3-D routing
graph is computed. The upstream tree edge from ���� � to root has not been
assigned.

where denotes the downstream terminal of and
is . In Fig. 14, , ,
and , , and are 3 and 1, respectively,
and the downstream via cost is 2.

The total cost of assigning to is formulated as follows:

if overflows

otherwise
(15)

where represents the congestion penalty of calculated
by (6) and refers to a weighted factor. For with an overflow,
congestion penalty is amplified to avoid increasing the overflow;
otherwise, via cost is amplified to minimize the number of vias.
Here, weighted factor is set to 10 000.

Because the cost of assigning each tree edge to each layer
is calculated, the time complexity of heuristic algorithm for as-
signing a net is , where denotes the layer number of
the 3-D grid graph and represents the number of tree edges
of the assigned net. The heuristic assignment algorithm is very
fast to the extent that each subnet in all ISPD benchmarks can
be preassigned in one second.

C. Dynamic Programming-Based Layer Assignment With
Layer Shifting (DPLALS)

In single net layer assignment, the 2-D routing result is trans-
ferred into a tree structure. The solution of COLA is obtained
using

if
otherwise

(16)

where is the root of tree is ’s child node and is the
sub-tree of rooted at . is the minimal cost of the
vias of sub-tree when is located on layer under the con-
gestion constraint and is the number of child nodes of is
the highest layer; is the grid edge on layer that connects

and ; is the capacity of and is
the demand of . The total number of vias of a tree with root

on layer is the sum of the via numbers of its sub-trees and the
via cost at on layer . Thus has two parts; the first
is the sum of the costs of the vias on ’s sub-trees and the second
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Fig. 15. Our DPLALS algorithm flow.

Fig. 16. Example of layer shifting: (a) � and� are already assigned nets,
grey areas represent obstacles; (b) assign � to layer 2, ����� ��� � �; (c)
push the segment of� to layer 2, ����� ��� � �; (d) push the segment of�
to layer 2, ����� ��� � 	.

is the via cost at vertex . Recursively computing
yields the assignment solution for tree . Notably, the solution
is found only when is larger than , if

equals to , no segment will be assigned
to because is short of resources.

The proposed layer-shifting scheme solves the layer resource
shortage problem for the nets in the later assigning order. The
concept of layer shifting is to push a previously assigned net
away from its current layer to accommodate a currently assigned
net. It is worthy of noting that the number of vias increases once
an already assigned net segment in a grid edge is shifted to an-
other grid edge on different layer. To realize this concept, the
MVC cost function is modified as follows:

if

if
if

(17)

where is the increase in the number of vias due to
layer shifting and is the minimal cost of vias of
layer assignment with layer shifting. In this problem, the max-
imum is four.

If exceeds , then a cost function that is
similar to (16) will be adopted. If equals
and is positive, the other net’s segment will be
pushed to shift its layer to another layer. Two terms are

TABLE I
ISPD07 BENCHMARKS

TABLE II
ISPD08 BENCHMARKS

associated with this situation; the first term indicates the total
number of vias of sub-tree at on layer and the second
term is the layer shifting cost. To reflect the layer shifting
cost, is introduced. In , all segments currently
in are tentatively shifted to other layers that still have
resources to seek the lowest via-cost solution and then the layer
with the least via-cost is recorded. If is zero, then
no segment will be assigned to so is set to .

Fig. 15 depicts the flow of the DPLALS algorithm. Initially,
the tree structure of net is constructed; then the and

values of every vertex are computed from the bottom
up for each layer. A dynamic programming algorithm identifies
the global assignment solution for the whole net when the root
is reached. Then, top-down assignment determines the layer of
every segment of net based on the global assignment solu-
tion. If no resource exists on the destination grid edge , the via
cost will be reduced by layer shifting the segment based on the
solution of . The corresponding segment on will be
shifted to another layer.

Fig. 16 presents an example of DPLALS. The rectangles rep-
resent grid cells; the gray areas represent obstacles. In Fig. 16(a),

and are already assigned. The capacities of layers 1 and
2 are 2 and 1, respectively. Fig. 16(b) and (c) display the re-
sults of assigning without layer shifting and with bad layer
shifting, in which the required numbers of vias are both 4. The
best result in this case is to shift the segment of in layer 1
to layer 2 and the required number of vias is then reduced to 2,
as shown in Fig. 16(d).

The time complexity of DPLALS is , represents
the number of layers of the 3-D grid graph, refers to the total
number of internal nodes and leaves of the assigned net. This
algorithm works well in practice because is a small constant.
For ISPD’07 and ISPD’08 benchmarks, is 6 or 8.

D. Rip-Up and Reassigning

Layer shifting is adopted to seek a local optimum for a seg-
ment of a net. Throughout the net, layer shifting may have room
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TABLE III
COMPARISON OF ROUTING RESULTS AMONG FGR, MAIZEROUTER, BOXROUTER, NTHU-ROUTE, ARCHER AND OUR ROUTER

TABLE IV
COMPARISON OF ROUTING RESULTS AMONG NTHU-ROUTE, NTU-GR, FASTROUTE 4.1 AND OUR ROUTER

for improvement. In this stage, an approach similar to the rip-up
and rerouting in the routing stage is proposed. A net is ripped up
and reassigned at a time to seek its global (single net) optimum.
Layer shifting will then be employed to check if any via can be
reduced further.

VI. EXPERIMENTAL RESULTS

The proposed global router was implemented in C/C++ lan-
guage on an Intel Xeon 3.0 GHz with 16 GB memory. Two sets
of benchmark circuits were used in the experiments; one set was
of ISPD07 benchmarks [19] and the other was of ISPD08 bench-
marks [18]. Tables I and II show the statistics of ISPD07 and
ISPD08 benchmarks. Notably, NCTU-GR requires at most 9.7
G memory among all benchmarks.

A. ISPD07 Benchmarks

Table III compares the routing results of the ISPD07 bench-
marks for six global routers—BoxRouter 2.0 [25], FGR [26],
MaizeRouter [28], Archer [24], NTHU-Route [27], and our
router. The table compares the total wire lengths and total
overflows. The proposed router can identify overflow-free
global paths in seven of eight circuits, while other routers can
find only overflow-free solutions in six out of eight circuits.

Moreover, our router yields 1% to 27.1% shorter wirelength
than the other routers. Additionally, the best results of FGR are
obtained in a runtime limit of 48 hours on a 2.4 GHz Opteron
processor, while all of the benchmarks, except for newblue3, are
completed in no more than 10 min by the proposed router.

B. ISPD08 Benchmarks

The ISPD08 global routing contest added eight 3-D bench-
marks. Table IV lists the routing results of the ISPD08 bench-
marks for the proposed router and winners of ISPD08 global
routing contest [18], NTHU-Route 2.0 [32], NTUgr [29], and
FastRoute 4.1 [31]. All routers adopted different sets of param-
eters to refine quality and performance. The statistics in Table IV
includes total overflow, CPU time for routing in seconds, total
wirelength. The untuned NCTU-GR adopted single set of pa-
rameters to route all the benchmarks. The untuned NCTU-GR
completed 12 out of 16 benchmarks, ran little slower but yielded
little less wirelength than that of the router NTHU-Route 2.0
(the winner of ISPD08 global routing contest). On the other
hand, NCTU-GR yielded the least wirelength among all routers
and ran 1.05 times faster than NTHU-Route 2.0, 18.47 times
faster than NTU-GR and 1.75 faster than FastRoute 4.1. In the
benchmarks with overflow, the proposed NCTU-GR performed
best among four routers in newblue4 while NTU-GR performed
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Fig. 17. Congestion map of benchmark adaptec4 in two stages: (a) stage after
CFOMR; (b) final stage.

TABLE V
EFFECTIVENESS OF CFOMR

best in newblue3 and FastRoute 4.1 performed best in newblue7
and bigblue4. The proposed NCTU-GR yielded a shorter wire-
length than others in all of the overflow-free benchmarks.

C. Effectiveness of CFOMR

This work chooses 12 overflow-free benchmarks to demon-
strate the effectiveness of CFOMR. All statistics are based on
the routing results of untuned NCTU-GR. Table V lists the
number of overflows before entering the rip-up and rerouting
stage (OFB), the percentage of nets with overflow (OF_rate),
the run time of CFOMR and the run time percentage of CFOMR
(time_rate) in global routing. On average, CFOMR can use
only 6.97% of the total run time to complete 90.3% of the
nets. Fig. 17 shows the congestion map of horizontal edges
of the benchmark adaptec4. Fig. 17(a) shows the congestion
map after CFOMR, while Fig. 17(b) shows the final congestion
map. According to these figures, the largest portion of the

TABLE VI
ROUTING RESULT WITHOUT APPLYING CFOMR

TABLE VII
ROUTING RESULT USING STAGE-1 COST FUNCTION

TABLE VIII
ROUTING RESULT USING STAGE-2 COST FUNCTION

congestion map is determined by CFOMR, while the proposed
simulated evolution rip-up and rerouting algorithm affects only
the congestion distribution of a few regions.

Table VI summarizes the routing results of the modified
routing flow by expelling CFOMR from the proposed routing
flow. Statistics include the number of overflows before entering
the rip-up and rerouting stage (OFB), routed wirelength (WL),
routing time (Time), the ratio of the wirelength in Table VI to
the wirelength of untuned NCTU-GR in Table IV (WL_ratio)
and the ratio of run time to the run time of untuned NCTU-GR
(T_ratio). On average, without using CFOMR, the total runtime
and the routed wirelength increase 58.3% and 0.8% respec-
tively, indicating that CFOMR can significantly reduce the total
routing time.
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TABLE IX
COMPARISON OF LAYER ASSIGNMENT RESULTS BETWEEN COLA AND OUR LAYER ASSIGNMENT

D. Effectiveness of Two-Stage Cost Function

To demonstrate the effectiveness of the proposed two-stage
cost function, Tables VII and VIII display two sets of routing
results (GR1stCF and GR2ndCF) of 12 overflow-free bench-
marks using first-stage cost function and second-stage cost func-
tion respectively, including overflow (OF), routed wirelength
(WL), run time (time), the ratio of the wirelength to the wire-
length of untuned NCTU-GR (WL_ratio) and the ratio of run
time to the run time of untuned NCTU-GR (T_ratio). Exper-
imental results indicate that the wirelengths of GR1stCF and
GR2ndCF are nearly equal to that of this work. However both
routers take more runtime to complete the routing since addi-
tional routing iterations are required to remove the overflows in
congested regions. Moreover, GR1stCF fails to route all over-
flow-free benchmarks. Although GR2ndCF can generate over-
flow-free solutions, the wirelength and the runtime is longer
since it may over emphasize the effect of historical cost at early
iterations. In some of the uncongested benchmarks, GR1stCF
produces an overflow-free solution with a lower run time and
shorter wirelength than GR2ndCF while GR2ndCF performs
better than GR1stCF in congested benchmarks.

Fig. 18(a) and (b) compare GR1stCF and GR2ndCF in
the congested benchmark newblue1 in terms of overflow and
wirelength. The -axis denotes the number of iterations in
the rip-up and rerouting stage. In the early iterations of rip-up
and rerouting, GR1stCF resolves more overflow with a lower
wirelength than GR2ndCF. With a growing number of iter-
ations, GR2ndCF removes more overflow than GR1stCF in
terms of the cost of an increasing wirelength. In short, the
proposed two-stage cost function scheme adopts GR1stCF in
the early routing stage to quickly remove most overflows with
shorter wirelength and then employs GR2ndCF to resolve the
remaining overflows with additional wirelength.

E. Comparison Between the Proposed Layer Assignment and
COLA

Table IX compares the layer assignment of the ISPD07
benchmarks between the proposed layer assignment and COLA
[17]. Total wirelength, vias and CPU time are reported. Since
our layer assignment runs on a different platform from COLA,
the runtime of COLA is normalized according to the clock rate

Fig. 18. Comparison of GR1stCF and GR2ndCF in newblue1: (a) overflow
comparison; (b) wirelength comparison.

ratio. Our layer assignment achieves 3.5% to 5.6% fewer vias
and 2.2% to 3.3% shorter wirelength than COLA while the
CPU time is even faster than COLA.

VII. CONCLUSION

This work proposes a high-performance congestion-driven
3-D global router. This study also presents two routing methods
for 2-D global routing—circular fixed-ordering monotonic
routing and simulated evolution-based rip-up and rerouting
using a two-stage cost function. It also presents a conges-
tion-relaxed dynamic programming-based layer assignment by
using a layer shifting algorithm followed by layer rip-up and
reassigning to further reduce the number of vias. Experimental
results demonstrate that our router achieves performance sim-
ilar to the first two winning routers in ISPD 2008 Routing
Contest in terms of both routability and wirelength at a 1.05
and 18.47 faster routing speed. Moreover, the proposed layer
assignment achieves fewer vias and shorter wirelength than
COLA.
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