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Extended object tunneling: Current-carrying states of Abrikosov vortices in a superconductor with
artificial nanobarriers
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We consider the structure and dynamics of two-dimensional fluxons created by a magnetic field in a type-II
superconductor film with critical temperature T1 in the presence of nanostripes of material with a higher critical
temperature T2. The width of the stripes is of the order of the coherence length ξ . Such a stripe plays the role
of a potential barrier for vortices. When subjected to the current J parallel to the stripe, vortices move toward
the barrier. Below the critical current Jc, the flux flow is effectively halted by the barrier, while above Jc, flux
penetrates the stripe and passes the barrier. The mechanism of the barrier penetration (“soliton tunneling” occurs
even at zero temperature) is rather unusual: the vortices adjust their shape, and upon passing the barrier, they
shrink their cores. The critical current and the I-V curves are calculated numerically and analytically using
variational approach.
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I. INTRODUCTION

A magnetic field penetrates a type-II superconductor in the
form of vortices with the superconducting order parameter
suppressed at the centers, thereby creating an inhomogeneity.1

Its value is recovered to the bulk value only a distance (of the
order of the coherence length ξ ) away from the core, while
the distribution of the magnetic field varies on a typically
much larger scale of the magnetic penetration depth λ. In
the interesting case of strongly type-II superconductor or
films (even made of type-I superconductors), λ is much
larger than ξ . Fluxons are spatially extended objects that are
topologically stable, can move under influence of the bias
current, and interact with defects and with each other. The
great interest in the problem of magnetic flux pinning is caused
by both the technological applications and rich basic physics
associated with nonlinear flux dynamics.2,3 It is well known
that in magnetic fields, the zero-resistance property of the
superconductors is lost due to the dissipative motion of the
magnetic fluxons (Abrikosov vortices) in the form of flux flow
or creep. In order to restore the superconductivity, one has
to find an efficient way to stop the flux flow by “pinning”
the vortices. An important challenge in applications of type-II
superconductors is achieving optimal critical currents Jc(B)
under an applied magnetic induction H . The electric current
acts as a driving force on the vortex matter, and there is an
intricate interplay between the stress and the elasticity of the
vortex matter and the pinning strength. The phase boundary
between the static phase and a moving (flux flow or creep)
phase is determined by the critical current as a function of
parameters of the system: magnetic field, temperature, and
pinning strength. The available magnetic field, especially
in high-temperature superconducting materials, becomes in-
creasingly large. Unfortunately, the critical current decreases
as magnetic induction B grows. Consequently, optimization of
the pinning efficiency becomes a central issue for applications.

Although intrinsic pinning always exists in bulk super-
conductors, it is rather inefficient especially at elevated

fields. Recently, a new way, i.e., pinning by artificially
assembled arrays of pointlike “pinning centers,” has been
developed. In this case, the pinning center is a region where
superconductivity is suppressed compared to the bulk by a
variety of techniques (particle irradiation,4 lithography,5 laser
irradiation6). The suppression can be described as a reduced
(sometimes to zero) local critical temperature T2 compared to
that of the bulk T1. The basic idea therefore hinges on creation
of “defects” or potential wells to attract vortices. There are two
important disadvantages of this method. Evidently, the sample
is damaged by the number of defects required especially
at large magnetic fields and, in addition, it is very difficult
to ensure that vortices can not sneak around the pointlike
structures.7

In this paper, we propose an alternative to achieve a stable
controllable flux pinning in thin films that is effective at large
magnetic fields. To simplify the discussion, let us consider a
sufficiently thin film where the vortices can be considered
two dimensional (2D) (generalization to thick samples is
straightforward). The main idea is that instead of considering
attracting pointlike[zero-dimensional (0D)] structures, one
can use repelling lines [one dimensional (1D)] crossing the
sample, thus effectively blocking the vortex motion (see
Fig. 1). To repel vortices, this stripe should be made from
a better superconductor with the critical temperature T2

exceeding that of the bulk T1. In this case, one avoids damaging
the sample, while vortices can not topologically sidestep
the repelling lines. Formally, the repelling stripe acts as an
extended two-dimensional object, a barrier, for a system of
vortices driven by the Lorentz force of the bias current. The
critical current in this case is determined by the ability of the
vortices to “tunnel” through the barrier. The barriers should
not be much wider than ξ to prevent the fluxon creation inside
the barrier.

The vortex passage process becomes very unusual and
complicated since the vortices can not be considered pointlike
objects. At barrier width comparable with the vortex core
size, the core-shape degrees of freedom play a major role.
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FIG. 1. (Color online) Vortex dynamics in the presence of a
barrier. A segment of size Lx × Ly of a type-II superconducting film
made from material with the critical temperature T1 is subjected to a
perpendicular magnetic field H = H ẑ and the transport current J =
J ŷ. The barrier is a superconductor with higher critical temperature
T2 > T1. The sample is periodic with period Lx . Abrikosov vortices
are driven by the Lorentz force FL and are repelled by the stripe.

Mathematically, the vortex core structure is described by
the distribution of the superfluid density (vanishing at the
center of the vortex). One therefore arrives at the theoretically
challenging question of dynamics of a soliton moving through
a potential varying on the scale of the soliton size. This was
an additional motivation for our study.

Theoretically, the problem of tunneling of the extended
object (the soliton) through the barrier is therefore consid-
erably different from that of motion of a vortex line near
a two-dimensional defect, extensively studied in connection
with twinning planes in high-Tc materials2,8 for which the core
structure is unimportant. The main phenomenon that attracted
attention was the curving (creation of loops) of the vortices
along the vortex axis (approximately the field direction) and
in-plane dynamics. These effects are unimportant in the case
of thin films, intensively studied experimentally nowadays.
This case will be mainly addressed in this paper. In this case,
the system is essentially two dimensional. The 2D problem
of single-vortex tunneling through a thin barrier (of order of
Thomas-Fermi screening length smaller than ξ ) of a special
form was studied early on in connection with an idea of
increasing critical current by an applied electric field effect.9,10

Even for a single-vortex system, it was noticed that the relevant
feature of the pinning process is the vortex core structure rather
than the distribution of the magnetic field. The critical current
was calculated from stability analysis of static configurations
of the superconducting order parameter (assuming a round 2D
Abrikosov vortex). When the bias current exceeds the critical
value Jc, the vortex system loses stability, vortices penetrate
the barriers, and flux flow ensues. The dynamics of the vortex
passing a barrier, however, has not been considered. As was
observed in recent simulations,11 this is expected to be quite in-
tricate. Just above the depinning, strong inhomogeneous elec-
tric fields appear and vortex cores get deformed. Even deep in
the flux flow regime, the shape of the vortex core is modified.12

In this paper, the critical current, local electric field dis-
tribution at depinning, and the voltage-current characteristics
are calculated numerically and analyzed analytically in the

framework of the simplified time-dependent Ginzburg-Landau
approach (GL) appropriate for large magnetic fields.3,11 The
process of vortices tunneling through the barrier above the
critical current was studied in detail, and it was found that
the passage through a narrow barrier (compared with the vortex
core size of the order of the coherence length ξ ) indeed is
accompanied by a significant vortex-shape change.

The paper is organized as follows. A general GL setup
including effects of the electric field in dynamics is briefly
described in Sec. II. A description of the numerical method
and results for different barrier width and driving currents are
presented in Sec. III for both static and dynamics current-
carrying states. In Sec. IV, an analytical theory of the pinned
states and critical current is developed for arbitrary shape of
the barrier and compared with numerical results. Summary
and discussion are the subjects of the concluding Sec. V.

II. VORTEX DYNAMICS OF TYPE-II
SUPERCONDUCTORS IN A STRONG

MAGNETIC FIELD

Pinning of a vortex is determined by properties of its
core (which is of the size of ξ ); the distribution of the
order parameter becomes of importance. Since a microscopic
theory in the inhomogeneous situation is not practical, the
only available tool is the Ginzburg-Landau phenomenological
approach.1 Static magnetic properties of the superconductor
are described by the GL Gibbs energy as function of the order
parameter � and vector potential A:

FGL[�,A] =
∫

dz dr
[

h̄2

2m∗
c

|∂z�|2 + h̄2

2m∗ |D�|2

− a′(r)|�|2 + b′

2
|�|4 + 1

8π
(B − H)2

]
. (1)

D ≡ ∇ − i 2π
�0

A denotes the covariant derivative and �0 = hc
e∗ ,

e∗ = 2|e| is the unit of flux, B = ∇ × A is the magnetic
induction. Here,

a′(r) = α[Tc(r) − T ]. (2)

The simplest relaxation dynamics of a superconductor in the
presence of an electric field is described by the time-dependent
Ginzburg-Landau (TDGL) equation1,3

h̄2γ

2m∗ Dt� = − δ

δ�∗ FGL, (3)

where scalar potential � appears in the electric field E =
−∇� − 1

c
∂
∂t

A and in the covariant time derivative Dt ≡
∂
∂t

− i e∗
h̄
�. The inverse diffusion constant γ in metals is simply

related to the normal-state conductivity σn.1 An external
current J will be applied in the y direction, so that the vortices
are moving along the x direction (see Fig. 1).

The approach simplifies considerably when the magnetic
induction exceeds significantly the lower critical field Hc1(T ).
The distribution of the magnetic induction becomes practically
uniform, and the only dynamic degrees of freedom are the
order parameter � and the electric field E. We consider a
superconducting slab of dimensions Lx × Ly × Lz subjected
to a sufficiently high, homogeneous, and time-independent
magnetic induction perpendicular to the slab B = B ẑ. For
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strongly type-II superconductors, the ratio of penetration depth
to coherence length, κ ≡ λ/ξ, is very large. In thin films, this
condition becomes λeff/ξ � 1, and is almost satisfied since the
penetration depth becomes λeff = 2λ2/Lz. The magnetization
is smaller than the field by the factor 1/κ2 (Ref. 11) and,
consequently, for magnetic fields a few times larger than
Hc1, B ≈ H is practically homogeneous. Hence, the vector
potential A = B × r/2 is not a dynamic variable. The same,
however, can not be assumed for the electric field. Although
far above the depinning transition the electric field is nearly
homogeneous due to reasons similar to those that led to
homogeneity of the magnetic field (see Ref. 12) and, as was
shown in Ref. 7, it becomes highly inhomogeneous near the
depinning point considered in this paper. Therefore, the scalar
potential is a dynamic variable.

The system is invariant under translations in the field
directions, so we use a 2D dimensionless energy density fGL:

FGL = H 2
c2

8πκ2
Lz

∫
dr fGL. (4)

In this paper, ξ = h̄/(2m∗αTc)1/2 will be used as a unit of
length r → r/ξ ; Hc2 = �0

2πξ 2 as a unit of magnetic field, b =
B/Hc2. The scaled order parameter is ψ = �/21/2�0, where
|�0| = (αT1/b

′)1/2, so that the dimensionless energy density
can be written in the form

fGL = −1

2
ψ∗D2ψ −

[
1 − t

2
+ U (x)

]
ψ∗ψ + 1

2
(ψ∗ψ)2,

(5)

where t = T/T1 and a dimensionless “pinning” potential U (r)
is a trapezoidal, one-dimensional stripe sketched in Fig. 2:

U (x) = U0u(x), (6)

where U0 = T2−T1
2T1

is the strength of the potential that the vortex
core “feels.” The function u(x) < 1 describes the shape of
the barrier: it approaches 1 inside the better superconductor
with critical temperature T2, and approaches zero in the bulk
superconductor with the lower critical temperature T1. In
numerical simulations, we use a Gaussian

u(x) = exp(−x2/2w2). (7)

- x0

x

U(x)

a

w

FIG. 2. Geometry of the potential barrier for the Abrikosov
vortices. Width of the stripe is w, while a is the width of the
interface between the stripe and the bulk superconductors. Position
of the vortex center (where the order parameter vanishes) is indicated
by xp .

The potential barrier is assumed to be repeated periodically
with period Lx (in simulations implemented by periodic
boundary conditions).

In analogy to the coherence length, one can define a
characteristic time scale. In the superconducting phase that
is a typical “relaxation” time tGL = γ ξ 2/2, leading in our case
to the time-dependent equation

Dtψ = − δ

δψ∗ fGL[ψ]

= −1

2
D2ψ −

[
1

2
(1 − t) + U (x)

]
ψ + ψ∗ψ2, (8)

where Dt = ∂t + iφ is utilizing the dimensionless scalar
potential. In our gauge, the dimensionless electric field E =
E/EGL = −∇φ, where unit of electric field is EGL = Hc2

ξ

ctGL
.

Equation (8) is supplemented (neglecting time variations of
the charge density that occur on the atomic scale) by the
charge conservation law1 ∇ · J = 0, where the current density
consists of two parts

J = ie∗h̄
2m∗ (�∗D� − �D�∗) + σnE = Jd j (9)

in the units of the depairing current

Jd = cHc2

2πξκ2
. (10)

Therefore, the dimensionless current density, including the
normal component, is given in our gauge by

j = i

2
[ψ∗Dψ − ψ(Dψ)∗] − k∇φ, (11)

where the conductivity will be given in units of

σGL = c2tGL

2πλ2
= c2γ

4πκ2
. (12)

This unit is close to the normal-state conductivity in low-Tc

superconducting metals in the dirty limit σn = c2γ

8πκ2
1. More

generally, there is a factor kof order 1, σn = kσGL. Therefore,
the second equation is

k∇2φ = i

2
∇[ψ∗Dψ − ψ(Dψ)∗]. (13)

The system of equations should be complemented by the
following metallic electrodes boundary conditions in the y

direction:

−∇yφ = j ext|y=0,Ly
, ∇xφ = 0|y=0,Ly

, ψ = 0|y=0,Ly
.

(14)

Periodic boundary conditions in the x direction (with period
Lx) are assumed and periodic under magnetic translations7 in
the x direction. This system of equations is solved numerically
after appropriate discretization in both static and dynamic
situations in the next section and analyzed analytically in
Sec. IV (only in a stationary current-carrying state) using exact
relations between space averages of physical quantities derived
from the GL equations.
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III. NUMERICAL SOLUTION OF THE TDGL EQUATIONS

A. Discretized form of the electrodynamics

The above equations were treated numerically using Wil-
son’s discretization (see details in Refs. 7,13). The points
on the grid (in units of ξ ) rn = (n1ax,n2ay) are labeled by
two integers n1 = 1, . . . ,nmax and n2 = 0, . . . ,nmax. The grid
lattice spacings are a2

x = 4π√
3bs2 and a2

y =
√

3π
bs2 , where s is an

integer. Our sample has the aspect ratio of Ly

Lx
=

√
3

2 with

nmax = sN1/2, so that number of vortices between two barriers
is N .

The constant homogeneous magnetic field is described by
the Wilson link phases exp(iθγ

n1,n2 ):

θ1
n1,n2

= − π

s2
n2, θ2

n1,n2
= π

s2
n1. (15)

Periodic (magnetic) boundary conditions for the rectangular
sample read as

ψ0,n2 = exp

[
i
πnmax

s2
n2

]
ψnmax,n2 ,

ψnmax+1,n2 = exp

[
− i

πnmax

s2
n2

]
ψ1,n2 , (16)

ψn1,0 = 0, ψn1,nmax = 0.

The corresponding boundary conditions for the scalar potential
are

φ0,n2 = φnmax,n2 , φn1,0 = φn1,nmax ,

φn1+1,0 − φn1,0 = φn1+1,nmax − φn1,nmax0 = φ(0,0,0) = 0,

1

ay

(φn1,1 − φn1,0) = −j ext, (17)

1

ay

(φn1,nmax − φn1,nmax−1) = −j ext,

φn1+1,0 − φn1,0 = φn1+1,nmax − φn1,nmax = 0.

The discretized TDGL equations are

ψn1,n2 (τ + �τ ) − ψn1,n2 (τ )

�τ

= iφn1n2ψn1,n2 + s2b
√

3

8π
Kn1,n2

+
(

1 − t

2
+ Un1

)
ψn1,n2 − |ψn1,n2 |2ψn1,n2 , (18)

where

Kn1,n2 = [
exp

(
iθ1

n1,n2

)
ψn1+1,n2 + 4

3 exp
(
iθ2

n1,n2

)
ψn1,n2+1

+ exp
( − iθ1

n1−1,n2

)
ψn1−1,n2

+ 4
3 exp

( − iθ2
n1,n2−1

)
ψn1,n2−1 − 14

3 ψn1,n2

]
.

The barrier is described by a discretized smoothed-out form
of Eq. (6):

Un1 = U exp

[
− (axn1)2

2w2

]
, (19)

where the width w is also the distance between the center
and the location of the largest derivative force. The discretized
Poisson equation (13) reads as

k

[
φn1−1,n2 − 2φn1,n2 + φn1+1,n2

a2
x

+ φn1,n2−1 − 2φn1,n2 + φn1,n2+1

a2
y

]
= i

s2b
√

3

8π
ψ∗

n1,n2
Kn1,n2 + c.c. (20)

The supercurrent density is discretized as

j s2
n1,n2

= i

2ay

ψ∗
n1,n2

exp
(
iθ2

n1,n2

)
ψn1,n2+1 + c.c. (21)

B. Numerical method

The numerical method utilized is a combination of the
Crang-Nicholson algorithm for the TDGL equation (18),
with use of tridiagonal matrix algorithm (TDMA) for the
Poisson equation (20) at each time step. The initial condition
was set by the Abrikosov analytic expression.14 As was
discussed in Ref. 7, it has a number of advantages (including
better stability) over the often-used fast Fourier transform.
Evolution in time settled after several thousands of time steps
of order �τ = 2.5 × 10−4tGL. The magnetic field is taken
as b = 0.5, the value of the normal-state conductivity in
Eq. (12) with k = 1 and the temperature t = 0 was constant
throughout our simulations. Variation of these parameters does
not change qualitatively the results of our study. No thermal
fluctuations on the mesoscopic scale were introduced, although
an insignificant grid noise was present. We always used
s = 16 corresponding to 16 × 16 grid points per vortex. The
number of vortices was always quite large, 16 × 16 = 256 and
32 × 32 = 1024, to overcome boundary effects. This allowed
us to check the scaling with Lx (see Sec. IV). In the middle
of our sample (in the current direction y), the dynamics is
independent of the edge effects due to the metallic leads. These
effects are interesting in their own right, but in our figures we
show the central area containing several vortices only. Now,
we proceed to the description of the results for structures of
pinned vortex matter and dynamics of the flux flow through
the stripes for various barriers and transport currents.

C. Structure of the pinned current-carrying vortex state below
the critical current

We start with statics. In Fig. 3, we show the distribution
of the order parameter |ψ | over a segment containing 16 × 16
vortices for b = 0.5 (in units of Hc2), interacting with a narrow
Gaussian barrier [Eq. (19)] of width w = 0.3ξ and strength
U0 = (T2 − T1)/2T1 = 1 (thus corresponding to T2/T1 = 3).
The external current density was set to be j = 0.90 × 10−3

(in units of the depairing current), just below the critical jc =
0.91 × 10−3. Contours of the order parameter demonstrate
that the barrier is sufficiently small, so that the structure of
the single-vortex core is basically the same as that of the
static lattice [Fig. 3(b)] calculated in Sec. IV B. However,
the Gaussian barrier marked by lines at distances ±w causes
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FIG. 3. (Color online) Numerical simulation of the 16 × 16
vortex system at magnetic field b = 0.5 in the presence of a stripe
of superconductor with higher critical temperature compared to the
static unperturbed Abrikosov lattice. Vortex matter is described by
the contours of the superconducting order parameter |ψ |. The dashed
lines mark the location of the narrow (width w = 0.3) Gaussian
barrier given by Eq. (19) (a superconducting stripe with higher Tc)
with strength U0 = 1. (a) Current density j = 0.9 × 10−3 just below
the critical one jc = 0.91 × 10−3, in units of the depairing current
[Eq. (10)]. Vortices in the bulk are arrested at certain distance xp

before the barrier (solid line), while less dense vortex matter inside
the barriers is also immobile. Only the central part of the sample
containing a few fluxons is shown. One observes that the vortex cores
are still roughly round as in the Abrikosov lattice. The hexagonal
symmetry is distorted by the barrier and becomes rectangular. (b)
Unperturbed Abrikosov lattice [Eq. (36)] for the same value of
parameters calculated analytically to next to leading order in small
parameter (1 − b)/2 = 0.25 [see Eq. (36)].

FIG. 4. (Color online) Static configuration of the order parameter
for a wide stripe w = 1.3. Current density j = 1.1 × 10−3 below the
critical current jc = 1.3 × 10−3 for that barrier. Magnetic field and
critical temperatures are as before (b = 0.5, U0 = 1). One observes
that the shape of vortex cores is still roughly round as in the Abrikosov
lattice, however, the density of pinned vortices in front of the barriers
is higher than in the bulk and there is an empty region behind
the barrier. Moreover, near the barrier, the vortices are significantly
smaller.

great enhancement of the order parameter there and the pinned
lattice prefers a rectangular lattice for not very large distances
between parallel barriers Lx .

In Fig. 4, the distribution of the order parameter for a rather
wide, w = 1.3ξ , Gaussian barrier of the same strength and
field is given at current j = 1.1 × 10−3 below the critical
current jc = 1.3 × 10−3 for that barrier. Vortices in the bulk are
arrested at a certain distance xp(j ) before the barrier (marked
by a thin line). One observes that the vortex cores are still
roughly round as in an Abrikosov lattice, however, the density
of pinned vortices in front of the barriers is higher than in the
bulk and there is an empty region behind the barrier. Moreover,
near the barrier, the vortices are significantly smaller (see
Fig. 4). The distribution of the order parameter as a function
of distance from the vortex core can be approximated as

|ψ(r)| =
√

1 − b

2βA

tanh(εr), (22)

where the fitting parameter ε > 1 describes the compression
of the vortex core and βA = 1.16. In an undistorted Abrikosov
lattice [see Eq. (36)], one gets a periodic array of cores with ε =
1. 37b1/2. This can be used only when b is not very small when
the cores overlap. For the simulated value b = 0.5, it describes
reasonably well large vortex cores far from the barrier in Fig. 4
(ε ≈ 1). At fields much smaller than Hc2, the vortices become
well separated and ε = 1. In the present case, one can fit the
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FIG. 5. (Color online) Dynamics of the barrier passage. At
large current density, j = 5.0 × 10−3 in units of depairing current
(above jc = 1.3 × 10−3), vortices are able to penetrate the interface
and therefore are bound to path the barrier. Six consecutive moments
t/tGL = 2100, 2200, 2240, 2280, 2400, 2740 describe the passage
of the vortices through the barrier. During the passage, the vortices
become elongated. Parameters are the same as in Fig. 4.

core width of the pinned vortices by ε = 3. The case of pinning
by a wide barrier is discussed analytically in Sec. IV D using
the single-vortex model.

D. Vortex dynamics at interface between two superconductors
and the critical current

The dynamics of a segment containing 16 × 16 vortices for
b = 0.5 interacting with a rather wide, w = 1.3ξ , Gaussian
barrier of strength U0 = 1 is shown in Fig. 5. The steady-state
evolution of the vortex system (after an initial transitional
state of order of hundreds of tGL = γ ξ 2/2) at the current
density j = 5.0 × 10−3 (above the critical current of jc =
1.3 × 10−3) is shown by the contours of the superfluid density
in dimensionless units of Sec. II. During five consecutive
moments t/tGL = 1000, 1100, 1140, 1180, 1240, the vortices
are able to penetrate the interface and therefore are bound
to pass a wide barrier. However, the next passage of line of
barriers takes a lot of time since the next passage occurs at

jc
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ic

fi
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d
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10
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FIG. 6. (Color online) The dc I-V curve for the wide barrier. The
Bardeen-Stephen law is shown by a straight line for comparison. The
critical current is quite high, jc = 1.3 × 10−3.

t = 1700, so that average velocity of the vortices is given by
j . During this stage, the vortices repel each other moving along
the barrier. Then, the process of fast passage starts again.

The I-V characteristics are given in Fig. 6 and demonstrate
a linear Bardeen-Stephen behavior above jc. Above the critical
current, very large gradients of the electric field accompany
the entrance of the vortices into the stripe as was observed
in pinning situations.7 The vortex lattice is rigid and rows of
vortices enter simultaneously the barrier. Entrance of a line
of vortices causes a spike in the electric field. These results
are independent of the system size (as is demonstrated by
comparison of part of the data with the larger sample size
Lx × Ly = 32 × 32). Although the dynamics can be studied at
present only numerically, the critical current can be estimated
analytically quite well for a variety of situations: different
barrier shapes and width and magnetic inductions.

IV. ANALYTICAL CALCULATION OF THE CRITICAL
CURRENT AND THE SHAPE CHANGES OF A VORTEX

TUNNELING THROUGH THE BARRIER

A. Qualitative estimate of the critical current from the balance
of the Lorentz and the pinning forces

The critical current is defined by the condition FL = Fp,
where FL is the overall Lorentz force applied by the bias
current on the segment of vortex matter between two adjacent
parallel barriers and Fp is the pinning force of the barrier
on a line of vortices coming in contact with the stripe. The
Lorentz force (per unit thickness of the film) created by the bias
current drives system of the Nx × Ny vortices in physical units
is

FL = �0

c
JNxNy. (23)

It does not depend significantly on the distribution of either
the magnetic field or the order parameter. The pinning force
acting on the line of Ny/2 vortices of the hexagonal lattice
pinned along the stripe (see Fig. 3) can be estimated as follows
(see a rigorous derivation from the GL equations in the next
section):

Fp = H 2
c

8π
aNy. (24)

Here, the height of the energy barrier force is roughly
given by the energy density associated with destruction of
superconductivity in the vortex core [Hc is the thermodynamic
critical field2 Hc = �0/(π23/2ξλ)] and it varies on the scale a

of order of the coherence length ξ (see Fig. 2).
The critical current condition FL = Fp therefore takes a

form

Jc = cH 2
c

8π�0

ξ

Nx

. (25)

By using Hc2 = �0
2πξ 2 and Eq. (10), one obtains for the

dimensionless current density defined above

jc = 1

32π2Nx

. (26)
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For Nx = 16, this gives jc = 1.2 × 10−3 in qualitative agree-
ment with the numerical simulations of the previous section
where we obtained jc ∼ 10−3 for b = 0.5 and width of
order ξ .

B. Derivation of balance of force equation from GL theory

Within the London approach when the vortex is considered
as a pointlike object, one often considers the vortex dynamics
in analogy to the overdamped motion of a particle moving
under influence of two forces:2 the driving force of the external
current (the Lorentz force), which is opposed by the pinning
force. In numerous situations when the vortex can not be
considered as a pointlike object,7 this approach is invalid, yet
the pinning force and the Lorentz forces acting on a system of
vortices (described by the order parameter) can nevertheless
be defined as an integral characteristic. In this section, we
derive the integral equation of the balance of forces from the
GL equations described above.

Let us first consider an external current smaller than jc and
times that are much larger than the microscopic relaxation time
tGL. Taking a covariant derivative Di ≡ ∇i − iAi of the GL
equations (8) in the stationary case(

− 1

2
D2 − 1 − t

2
+ U + ρ

)
ψ = 0, (27)

where ρ = |ψ |2 is the superfluid density, and multiplying the
result by ψ∗, one arrives at

ψ∗
(

− 1

2
DiD

2 + ∇iU + ∇iρ

)
ψ

+
(

− 1 − t

2
+ U + ρ

)
ψ∗Diψ = 0. (28)

By rewriting the second term using again the (conjugate) GL
equations [Eq. (27)], this equation simplifies and takes the
following form:

− 1
2ψ∗(DiD

2ψ) + ρ∇iU + ρ∇iρ + 1
2 (D∗2ψ∗)Diψ = 0.

(29)

To further simplify, one makes use of the commutator
[Di,D

2] = 2iεij bDj , where εij is the antisymmetric tensor
[derived from the basic commutation relation [Di,Dj ] = iεij b

(see Ref. 3)] to reexpress the first term in Eq. (29):

1
2 (D∗2ψ∗)Diψ − 1

2ψ∗[(D2Di + 2iεij bDj )ψ]

+ ρ∇iU + ρ∇iρ = 0. (30)

Finally, this leads to a local relation

1
2 (D∗2ψ∗ − ψ∗D2)Diψ + ρ∇iρ − iεij bψ∗Djψ = −ρ∇iU.

(31)

From this relation, one can define the overall pinning force of
a barrier.

The global balance of forces is obtained by integration of
Eq. (31) over a certain area S (as was discussed above, an
interesting case is one period of a periodic array):

F surf
i − i

2
εij b

∫
S

dr[ψ∗Djψ − (Djψ)∗ψ]

= −
∫

S

dr ρ∇iU. (32)

The surface terms, which can be represented as line integrals
over a gradient along certain direction (not necessarily the
force direction i),

F surf
i =

∫
S

dr∇j Tij =
∮

�

dsj εjkTik, (33)

Tij = 1

4
[D∗

j ψ
∗Diψ − ψ∗DiDjψ + c.c.] + 1

2
δijρ

2 (34)

were singled out (� denotes the edges of the area S). Therefore,
in the periodic case, where the surface terms vanish, one
obtains the force balance equation

FL
i = −εij bIj =

∫
dr V (r)∇iρ = F

p

i , (35)

where Ij = ∫
dx dy ji is an integral of the current density.

By using this relation that generalizes the well-known force
balance equation for pointlike (or linelike in 3D) vortices
within the London approximation2 to the case when the
structure of the vortex core is important, one can obtain
variational estimates of the critical current supporting the
numerical solution of the GL equations presented in the
previous section.

C. Narrow barrier

For a narrow barrier potential [Eq. (7)] with width w of
the order of coherence length or less, the Abrikosov lattice
is only slightly distorted, especially for fields not very far
from Hc2. It was shown in Ref. 14 how to calculate the static
Abrikosov solution for the hexagonal lattice as an expansion
in the effective small parameter (1 − b)/6. The first two orders
are

ψA(x,y) =
(

1 − b

2βA

)1/2

31/8
∑

l

ei

{
1 + β6(1 − b)

2β
3/2
A

√
266!

H6

[
b1/2

(
x − π (2l + 1)

a�b

)]}

× exp

{
i

[
πl2

2
+ π (2l + 1)

a�

(
y − a�

4

)]
− b

2

[
x − π (2l + 1)

a�b

]2}
, (36)

where β6 = −0.278 and Hn(x) is Hermite polynomial. The
leading order is usually a good approximation, however, in
our case of b = 0.5, the first correction can not be neglected

[see Fig. 3(b)]. Here, distance between the vortices is a� =√
2�0/31/2B = 2π1/2

31/4b1/2 and βA ≈ 1.16. The narrow barrier
potential certainly displaces the lattice, placing the pinned
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row at distance xp from the center of the barrier [so that
the function (36) is magnetically translated2 by xp]. Since
the barrier is narrow, there are no other vortices inside the
better superconductor. The simulation shown in Fig. 3(a)
demonstrates that the order parameter is represented correctly
near the vortex cores although the lattice is distorted at the
barrier, becoming rectangular. The theoretical value of the
order parameter away from vortex cores can be improved
by taking into account higher orders in the small parameter
(1 − b)/2 as in Ref. 14.

The pinning force acting on all the vortices trapped between
two consequent barriers according to Eq. (35) (neglecting the
distortion of the lattice by the barriers) can be written as

Fp(X) = −
∫ Lx/2

−Lx/2
dx

∫ Ly

0
dy|ψA(x − X,y)|2 d

dx
U (x),

(37)

where X is the distance of the pinned row from the center of
the barrier. By performing integrations and summations with
leading-order part of the static solution [Eq. (36)], one arrives
at (see Appendix B for details)

Fp(X) = πb1/2U0(1 − b)wLy

31/4
√

2βA

θ ′
3

×
{

π

2
+ 2π√

3

X

a�
, exp

[
− π√

3
(1 + 2bw2)

]}
, (38)

where θ ′
n is derivative of the elliptic theta function.15

The optimal X, xp is determined therefore from minimiza-
tion of the pinning force. For w � 1 (necessary to neglect the
distortion), one obtains

xp = −0.219a� = −0.59/
√

b. (39)

The critical current is

jc = Fp(xp)

bLxLy

= 0.30
U0(1 − b)w

b1/2Lx

. (40)

One therefore obtains linear dependence on the width of
the barrier w. The approximation becomes poor at w = 0.6.
For b = 0.5, U0 = 1, w = 0.3, and Lx = 16a� = 61 [the
same values of parameters as in the simulation, presented in
Fig. 3(a)], one obtains 1.0 × 10−3. This should be compared
with 9.1 × 10−4 obtained in simulation.

D. Pinning force on a single vortex by an interface

Let us assume that vortex cores are well separated. This
of course does not mean that the structure of the cores is
unimportant and vortices can be treated as pointlike. At large
magnetic fields, this is satisfied even very close to Hc2(T ),
when the distance between the vortex centers is just 2ξ (see
Ref. 14). The superfluid density is approximated well by
Eq. (22) [see Fig. 3(a)]. The contribution of a single vortex
with the core center located at position X to the pinning force
on a single vortex according to Eq. (35) can be written as

Fp(X) = −U0Ny

∫
unitcell

u(x − X)
d

dx
ρ(x,y), (41)

where ρ is given in Eq. (22) and the potential barrier in Eq. (7).
The integral over the current direction y can be extended to

infinity. The maximal repulsive pinning force (with respect
to the vortex position relative to the interface, X) determines
the critical current. The optimal distance xp is for b = 0.5,

U0 = 1, and w = 1.3 simulated in Fig. 4 is ε = 3 and is xp =
−1.3. This value and the critical current jc = Fp/bNxNy =
3 × 10−3 are in qualitative agreement with simulation.

V. DISCUSSION AND SUMMARY

To summarize, we investigated the structure and dynamics
of the current-carrying state of the vortex matter in type-II
superconductors in a magnetic field with the critical tem-
perature T1 in the presence of an array of parallel narrow
line inclusions (nanostripes) of superconducting material with
a higher critical temperature T2. It is proposed that this
geometry with currently achievable stripe widths as small as
the coherence length of low Tc (10−100 nm) and even high-Tc

superconductors (several nm) is more effective in quenching
vortex motion than the commonly used pinning by defects.
In this geometry, the structure of the Abrikosov vortex cores
becomes dominant. We found analytically and numerically
(using a phenomenological Ginzburg-Landau approach that is
particularly effective to account for the core structure at large
magnetic fields) the critical current for various fields, barrier
shapes, and characteristics of the inclusion material.

A typical value for such a moderately optimized system is
of order of Jc = 10−3Jd , where Jd is the depairing current of
the material. For low-Tc films, this might reach 1010A/m2 as in
best samples in superconducting metals. In high-Tc materials,
this option might be even more attractive since pinning by
defects is ineffective. Below the critical current Jc, the flux
flow halted by the barriers with the row of pinned vortices
held at distance xp ∼ ξ in front of each barrier (see Figs. 3 and
4). The vortex cores of this row shrink significantly and the
generally regular hexagonal vortex lattice becomes denser and
distorted near the barrier. These vortices are “squeezed” with
core radius significantly smaller than in the bulk. This row of
vortices supports all the other vortices of a segment between
two barriers. We developed a Ginzburg-Landau analog and the
balance-of-forces equation (between the Lorentz force and the
repulsion due to inclusions) [Eq. (35)] that allows a simple
estimation of the critical current and xp for arbitrary shape
of the barriers. It would be very interesting to confirm these
predictions of the static current-carrying state by probing the
order-parameter distribution by means of STM technique.

The dynamics of the barrier penetration for current densities
larger than Jc and high magnetic fields (smaller, but of the same
order of magnitude as the higher critical field Hc2 and much
higher than Hc1) was studied numerically and demonstrates
the following picture of the soliton tunneling. The estimate
of the passage time is of order 103tGL, where the GL time
is γ ξ 2/2 (γ , diffusion constant). For Nb film, the passage
time is of order 10−7s and much smaller for high-Tc materials.
The I-V curves calculated numerically, shown in Fig. 5, are
of a customary type. The barrier passage dynamics might be
observable in low-Tc materials by means of dynamic STM.

Let us finally note several generalizations of the results.
We have studied thin films, however, if the films are thick
but still smaller than the magnetic penetration depth, there
are no qualitative consequences (however, one has to use the
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correct effective penetration depth). The calculations were
performed for zero temperature only. For low Tc, one takes
into account the temperature by modifying coherence length
and penetration depth. However, if the thermal fluctuations
are strong (as is the case of strongly layered high-Tc cuprates),
the picture becomes essentially different. The flux creep will
dominate.
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APPENDIX A: SURFACE TERMS IN THE FORCE
BALANCE EQUATION

In this appendix, we derive the expression for the surface
term in the force balance equation (32). Adding the complex

conjugate to the consequence of the GL equation (33) leads to
1

4
[(D∗2ψ∗ − ψ∗D2)Diψ + c.c.]

+1

2
∇i(ρ

2) + i

2
bεij (ψD∗

j ψ
∗ − ψ∗Djψ) = −ρ∇iU.

(A1)

To show that the first term is a full gradient given in Eq. (31),
one makes use of the following identity:

(Dig)f ∗ = −gD∗
i f

∗ + ∇i(gf
∗) (A2)

valid for any functions f and g. In particular, for g = D∗
j ψ

∗
and f ∗ = Diψ , one obtains

D∗2ψ∗Diψ = −D∗
j ψ

∗(DjDiψ) + ∇j (D∗
j ψ

∗Diψ), (A3)

and for g = DjDiψ and f ∗ = ψ∗,

ψ∗(D2Diψ) = −(DjDiψ)D∗
j ψ

∗ + ∇j (ψ∗DiDjψ). (A4)

By substituting Eqs. (A3) and (A3) into Eq. (A1), one gets

1
4 [∇j (D∗

j ψ
∗Diψ − ψ∗DiDjψ) + c.c.]

+ 1
2∇i(ρ2) + bεij jj = −ρ∇iU. (A5)

As a result, the force balance equation is obtained with full
gradients leading to the surface terms (32).

APPENDIX B: PINNING FORCE ON THE VORTEX LATTICE

In this appendix, we provide details of calculation of the critical current for a narrow barrier. The gradient of the superfluid
density of the Abrikosov lattice [Eq. (36)] shifted by X along the direction x (perpendicular to current) and integrating over the
Gaussian barrier [Eq. (7)] is

S1 =
∫

x,y

ρ(x,y)
d

dx
u(x) = −31/4

2βA

(1 − b)b1/2

w2

×
∫

x,y

x
∑
l,l′

eiπ(l2−l′2)/2 exp

{
i

[
2π (l − l′)

a�

(
y − a�

4

)]
− b

2

[
x + X − π (2l + 1)

a�b

]2

− b

2

[
x − π (2l′ + 1)

a�b

]2

− x2

2w2

}
.

(B1)

Integration over y helps to sum over l′:

S1 = −31/4

2βA

Ly(1 − b)b1/2

w2

∑
l

∫
x

x exp

{
− b

[
x + X − π (2l + 1)

a�b

]2

− x2

2w2

}
. (B2)

By integrating over x, one obtains the sum

S1 = −31/4
√

2π

βA

b3/2(1 − b)wLy

(1 + 2bw2)3/2

∑
l

[
π (2l + 1)

a�b
+ X

]
exp

{
− b

1 + 2bw2

[
π (2l + 1)

a�b
+ X

]2}
. (B3)

Differentiating the elliptic theta function representation (see Ref. 15)

s0 =
∑

l

exp{−α[ε(2l + 1) + X]2} =
√

π/α

2ε
θ

[
3,

π

2

(
1 + X

ε

)
, exp

(
− π2

4αε2

)]
(B4)

with respect to X, one obtains an identity

ds1

dx0
= −2α

∑
l

[ε(2l + 1) + X] exp{−α[ε(2l + 1) + X]2} = − π3/2

8ε2α3/2
θ ′

[
3,

π

2

(
1 + X

ε

)
, exp

(
− π2

4αε2

)]
, (B5)
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which allows (identifying α = b
1+2bw2 and ε = π

a�b
= 31/4π1/2

2b1/2 ) the elliptic function representation of the pinning integral

S1 = π

31/4
√

2βA

b(1 − b)wLyθ
′
[

3,
π

2

(
1 + X

ε

)
, exp

(
− π2

4αε2

)]
(B6)

from which Eq. (38) follows.
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