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Abstract
We generalized the semiclassical path integral method originally used in the
D’yakonov–Perel’ mechanism to study the spin relaxation of the Elliott–Yafet mechanism in
low-dimensional systems. In quantum wells, the spin properties calculated by this method
confirmed the experimental results. In two-dimensional narrow wires, size and impurity
effects on the Elliott–Yafet relaxation were predicted, including the wire-width-dependent
relaxation time, the polarization evolution on the sample boundaries, and the relaxation
behavior during the diffusive–ballistic transition. These properties were compared with those
of the D’yakonov–Perel’ relaxation calculated under similar conditions. For ballistic narrow
wires, we derived an exact relation between the Elliott–Yafet relaxation time and the wire
width, which confirmed the above simulations.

(Some figures may appear in colour only in the online journal)

1. Introduction

Spin relaxation is one of the central issues in the study
of spintronics [1–3]. This phenomenon is ubiquitous in
materials with spin polarization and has a long research
history dating back to the Elliott–Yafet (EY) relaxation in
simple metals (see [3] and recent papers citing this review).
The study in this context is largely motivated by a fundamental
interest in material properties. However, the pursuit of
efficient spin manipulation in devices might further boost the
progress in this field. Today, several types of mechanisms
responsible for different spin relaxations have been found
[4–7], and, among these, the D’yakonov–Perel’ (DP) and
EY mechanisms play essential roles. The former is due to
spin precession between the momentum scattering events,
while the latter occurs ‘during’ the momentum scattering
events. These mechanisms affect the spin dynamics in various
materials. For instance, in zinc-blende semiconductors at low
temperatures, the spin relaxation is dominated by the DP
mechanism [8–13]. In InGaAs/InP multiple quantum wells at
room temperature [14, 15] and Te-doped InSb/Al0.15In0.85Sb
at low temperatures [16], the spin lifetime depends mainly on

the EY mechanism [17–20]. In the past, a large number of
experimental and theoretical studies have been devoted to the
DP mechanism, either in the 3D bulk or in low-dimensional
systems like quantum wells (QWs) and 2D narrow wires [13,
21–28]. However, comparatively less effort has been put into
studying the EY relaxation, especially in low-dimensional
systems [29]. In this work, we investigated the EY relaxation
in QWs and 2D narrow wires in both the diffusive and the
ballistic regimes.

The tool employed was the generalized semiclassical
path integral (GSPI) method, which was extended from
the original semiclassical path integral (SPI) approach for
Rashba interaction [24, 25, 27]. The SPI approach has proved
itself to be a powerful method for studying spin transport
and spin relaxations in several mesoscopic systems [24,
25, 27]. It is one of many numerical approaches for
understanding spin dynamics. Others include the microscopic
approach [30], the Boltzmann equation approach [31], the
two-component drift–diffusion approach [32], and Monte
Carlo based techniques [33]. Despite all these approaches
having been applied to the DP relaxation, they have rarely
been used in the EY relaxation. The SPI and GSPI methods
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arise from a similar concept to the Monte Carlo approach and
are suitable for exploring spin problems in both diffusive and
ballistic regimes bounded by arbitrary geometries.

In this work, we generalized the SPI approach from
the DP to the EY relaxations. This generalized formalism
was applied to real samples and gave results in accordance
with the experimentally measured values [16]. Based on this
consistency, we used this method to study the impurity and
sample size effects on the EY relaxation under broad sample
conditions. The main issues were how the relaxation time
changed with sample width, how the polarization evolved on
the boundary, and how the impurity density variation from the
diffusive to the ballistic regimes affected the EY relaxation.
Furthermore, the DP relaxation was calculated under the same
sample conditions in order to compare it with the EY results.
Finally, an analytical formula was derived for ballistic narrow
wires, which confirmed our simulations and revealed exactly
how the EY relaxation time varied with the wire width.

The paper is organized as follows. In section 2, the
original SPI method is reformulated for systems with an EY
mechanism. In section 3, the validity and precision of using
the GSPI method on the experimental samples are examined
and compared with the theoretical results. In sections 4 and
5, the effects of size and impurity, respectively, on the EY
relaxation are studied by the GSPI method and compared
with the DP relaxation. Finally, a summary and discussion are
given in section 6.

2. The generalized semiclassical path integral
formalism

The original SPI method was formulated for Rashba systems,
and has the Hamiltonian

H = H0 + HSOI, (1)

where H0 consists of the kinetic and potential energies of
an electron in the system and HSOI represents its spin–orbit
interaction (SOI). Since the energy of spin–orbital coupling
in the material of interest is usually much smaller than the
kinetic and potential energies, the electron trajectory γ can be
determined purely by H0. The spin dynamics of this electron
will be described by an evolution operator in the path integral
formalism,

Uγ = exp
[
−

i
h̄

∫
γ

HSOI(t) dt

]
. (2)

If the electron collides with the impurities or boundaries nγ
times, its trajectory γ will comprise nγ + 1 straight segments,

γ = γnγ+1 + · · · + γ2 + γ1. (3)

The corresponding spin evolution operator Uγ becomes a
product

Uγ = Uγnγ
× · · · × Uγ2 × Uγ1 (4)

of the individual operators Uγj = exp[− i
h̄ HSOItγj ], where tγj

is the time the electron spends to travel through the distance
γj. These operators possess a time order property and do
not commute with each other. This formalism can be easily

extended to other systems governed by the DP mechanism,
like the Dresselhaus Hamiltonian.

In systems under the EY mechanism, the Hamiltonian of
the electron can be separated into two parts

H = H0 + Hint. (5)

The unperturbed part

H0 =
p2

2m
+ V(r)+

h̄

4m2c2 (∇V(r)× p) ·σ (6)

consists of, respectively, the kinetic energy, the periodic
potential V(r) of the lattice, and the spin–orbit interaction
caused by V(r) [17, 18]. Therein, m, r, p, and σ are the
mass, position, momentum, and spin state of the electron,
and c is the speed of light. The second part Hint in (5) is a
perturbing Hamiltonian which contains several interactions
responsible for the electron scattering. These scattering
potentials could arise from impurities, heavy holes, phonons,
piezo-acoustic modes, or boundaries, etc [17–19]. The EY
relaxation discussed in the following can be ascribed to any
of the above scattering potentials.

Without the SOI in (6), the wavefunctions of H0 are the
well-known Bloch functions

ukeik·r, (7)

where uk has the translational symmetry of the lattice. If the
SOI term is present as in (6), the eigenfunctions of H0 are a
linear combination of two spin states [17],

(ak|Sz;+〉 + bk|Sz;−〉) eik·r, (8)

where ak and bk are two functions with the same symmetry as
V(r) and uk. The spin states |Sz;+〉 and |Sz;−〉 have angular
momentum ± 1

2 h̄ along the z direction. Now, let us take Hint
into account and consider a scattering, which changes the
electron momentum from k to k′. If the electron spin does not
flip during this scattering, the electron momentum relaxation
time τp is related to Hint by [17, 20]

1
τp
∝

∣∣∣∣∫ a∗k′Hintakei(k−k′)·r dr
∣∣∣∣2. (9)

If the spin flips during the scattering, the spin relaxation time
T1, often called the longitudinal time or spin–lattice time [3],
is given by [17, 20]

1
2T1
∝

∣∣∣∣∫ (a−k′Hintbk − b−k′Hintak)ei(k−k′)·r dr
∣∣∣∣2, (10)

which has around the same proportionality constant as (9).
When the electron encounters a scattering at ξ , whether its
spin state flips or not will be determined by the stochastic
operator (in SU(2) representation)

Uξ =



(
0 1

1 0

)
:= Iflip, flip probability φ,(

1 0

0 1

)
:= Iunflip, non-flip probability 1− φ,

(11)
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Figure 1. A quasi-2D sample and an observation window which is
a stripe of area 1× 200 µm2. For a quantum well with large L and
W, the stripe is long and the average spin behavior therein is almost
the same as that in the whole well (for the cases in figures 2 and 3).
For a narrow wire with large L but small W, the stripe is short and
the average spin behavior inside it is a local spin dynamics along the
wire (for the case in figure 7).

where 0 ≤ φ ≤ 1. To realize this process in a simulation, one
can randomly take a number x between 0 and 1 at a scattering.
Then the operator

Uξ = 2(φ − x)Iflip +2(x− φ)Iunflip (12)

will decide stochastically whether the spin will flip, where 2
is the Heaviside function. The flip probability is related to the
flip frequencies in equations (9) and (10) by

1
τp

1
2T1

=
1− φ
φ

, or φ =
τp

2T1 + τp
. (13)

This probability φ can be calculated from T1 and τp, provided
they can be measured experimentally.

If an electron encounters scattering nγ times at points ξ1,
ξ2,. . ., ξnγ , the corresponding spin evolution operator Uγ will
be

Uγ = Uξnγ
× · · · × Uξ2 × Uξ1 . (14)

This formula for the EY mechanism resembles (4) for
the Rashba systems. However, Uγ in (14) flips the spin
only at discrete times when a scattering occurs, whereas
that in (4) changes the spin at any time. With the
microscopic information on each individual spin from (14),
any macroscopic average of a crowd of spins can be
calculated. Suppose the 2D sample is put on the xy-plane,
as shown in figure 1. The main quantity of interest in the
following is the spin polarization in the z-direction,

Pz(t) =
1

n(t,D)

∑
electrons at (t,D)

sz(t), (15)

which averages over the z component of the spin states sz(t)
of all n(t,D) electrons in an observation window D at time t.
When the spin of an electron is polarized to the z direction, sz
is set to 1. Therefore, the maximum value of |Pz(t)| is 1, which
corresponds to all electrons being aligned in the z direction.

To apply the GSPI method in a simulation, a large
number of electrons are initially uniformly distributed in the
sample. All electrons are polarized in the z direction and run
isotropically with the Fermi velocity vF. In the following,
this condition is referred to as the standard initial condition.

Figure 2. A comparison between the analytical, numerical, and
experimental relations between τsT and mobility µ, as well as
between τs and temperature T (inset). The large triangle size
indicates the experimental error bar.

Each electron moves in a straight line before a scattering.
The distance γj between two scatterings conforms to the
well-known exponential free path distribution, which can be
derived as in the Beer–Lambert law. In the simulation, γj
is obtained from γj = −lmfp·ln(x), where lmfp is the mean
free path and x is a stochastic number between 0 and 1.
We assume that the wires have smooth boundaries on which
the electron reflection is specular. For samples with rough
boundaries, one should modify the reflection angles according
to the microscopic details.

3. The GSPI approach for experimental samples

The spin relaxation caused by the EY mechanism has been
explored by some experimental groups [14–16]. In [16], the
sample is an InSb/Al0.15In0.85Sb single QW grown by MBE
on a GaAs substrate. The QW has a well width of 20 nm
(corresponding to the height in figure 1) and is uniformly
Te-doped (sample number me1831F). The electron densities
in this sample are 5.7×1011 cm−2 at 77 K and 7.3×1011 cm−2

at 300 K. Since the carrier concentration of a semiconductor
is proportional to T [34], the concentration for other T values
between these values can be linearly interpolated, as ne(T) ≈
(0.0072T + 5.15) × 1010 cm−2. The mobility of this sample
was measured by means of the Hall effect and behaved as
log10µ(T) ≈ 0.28 × log10T − 0.55 m2 V−1 s−1 within T =
50–300 K. For more temperature dependent factors in spin
relaxations, the reader is referred to [23].

Figure 2 shows the product of the spin relaxation time
with the temperature, τsT , versus the carrier mobility µ. Its
inset depicts the spin relaxation time versus the temperature
of the sample. In both plots, the triangles are the experimental
data measured from the sample me1831F, which is mainly
governed by the EY mechanism. The black dots are calculated
from the formula [16]

1
τs
= CEYη

2
(

1−
m∗

m

)2 E1e

E2
g

kT
1
τp
. (16)
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Therein, m is the real electron mass, m∗ denotes the effective
mass in the conduction band, Eg represents the band gap,
E1e stands for the confinement energy of the lowest electron
subband, τs is the EY mechanism induced spin relaxation time
which is equal to T1 in equation (10), and η = 1/(Eg +

1) with the spin–orbit splitting energy 1. The momentum
relaxation time τp is related to the mobility µ by τp = µm∗/e
and the dimensionless constant CEY is believed to be of the
order of unity. The black dots in figure 2 are calculated from
(16) by using the following parameters of me1831F: 1 ≈
0.81 eV, Eg ≈ 0.24 eV, m∗/m ≈ 0.014, E1e ≈ 0.08 eV and
CEY ≈ 7.5 [16]. Recall that τs can be affected by various
scattering potentials mentioned below (6). Among others,
phonons will become more significant at high T .

Figure 2 shows that both the experimental and theoretical
studies give the relation τsT ∝ µ for most µ. But two
experimental points have an opposite trend τsT ∝ µ−1 at
high µ, which corresponds to the high T regime in the
sample me1831F, as known from the empirical µ(T) relation
mentioned at the beginning of this section. It is believed that
this opposite trend is because the DP mechanism overrides
the EY mechanism in the high µ regime, according to the
current understanding that τsT ∝ µ for the EY mechanism and
τsT ∝ µ−1 for the DP mechanism [16]. The latter is supported
by the observation on the sample me1833 (remotely n-doped
with Te 20 nm above the well) in [16], which follows the DP
mechanism and has the property τsT ∝ µ−1.

Next, the relaxation properties will be calculated by the
GSPI simulation. To compare with the above experimental
results, the following experimental parameters need to be
inserted in the simulations. First, the spin flip probability φ
will be calculated by (13), where the way in which τp =

µm∗/e and T1 vary with T is based on the above empirical
relation µ(T) and the black dots in the inset of figure 2, which
are calculated from (16). Second, vF can be derived from
vF = h̄/m∗

√
2πne with the above empirical electron density

ne(T). Notice that since ne lies between 5.5× 1011 and 7.3×
1011 cm−2, the corresponding de Broglie wavelength λF =√

2π/ne ranging from 34 to 30 nm is larger than the sample
height of 20 nm, as shown in figure 1. Thus, the electrons are
confined in the z direction of the sample. Third, the size of
the experimental sample was not explicitly mentioned in [16].
However, (16) therein is referred to [14, 15], where the sample
sizes are about 2 in (approximately 5×104 µm) in length. Our
simulation is performed on a smaller square of 2× 102 µm in
length for less consumption of computational resources. Both
the experimental and the simulation samples belong to bulk
systems. Since their scales are much larger than the de Broglie
wavelength λF (30–34 nm), the electron motion on the xy
plane is more particle-like and the validity of the semiclassical
GSPI approach is justified. We put 4× 106 electrons into our
2D sample, which are initially in the standard initial condition
and follow the simulation protocols at 50–300 K in table 1.
The time course of the polarization Pz(t) is recorded in the
middle of the sample (figure 1).

The observed Pz(t) is an exponential function with a
relaxation time τs. During the temperature variation in table 1,
the relations (τsT, µ) and (τs,T) can be calculated, and are

plotted as red squares in the main plot and the inset of
figure 2, respectively. Notice that our recent theoretical study
and simulation reveal that the Pz(t) of the DP relaxation in
a narrow wire will transit from an exponential function to a
Bessel function during the impurity density decline [27]. Such
Pz(t) deviation from an exponential function will not occur in
the EY mechanism, as we shall prove in section 5. Thus, here
we can characterize Pz(t) properly by the parameter τs without
worrying about its deformation.

The red squares in figure 2 calculated by the GSPI
method show very close agreement with the theoretical and
experimental results for most µ, with the same relation τsT ∝
µ. The opposite experimental trend τsT ∝ µ−1 in the high µ
regime is not seen in our simulation. This indirectly supports
the previous hypothesis that τsT ∝ µ−1 arises from other
mechanisms, because the pure EY mechanism in our GSPI
simulation cannot produce this trend. The main plot of figure 2
does not explicitly tell us how τs varies with T . In fact, T can
influence the sample me1831F in two ways. First, a large T
will increase the electron mobility µ and subsequently τp =

µm∗/e, which in turn will reduce the electron scattering per
unit traveling distance. However, a large T also will enhance
the spin flip probability φ (see table 1) and make the spin
flip more frequently. When the two effects blend together, it
is hard to predict how τs will change with T . Nevertheless,
an obvious τs decay is readily seen, when we transform the
(τsT, µ) data into the (τs,T) plot in the inset.

4. The size effect on the EY relaxation

The size effect on the spin relaxation is another interesting
issue in spintronics. For instance, the group of Awschalom
has carried out some measurements on the DP relaxation in
narrow wires of different widths [26]. However, to the best
of our knowledge, very few experiments have investigated the
size effect on the EY relaxation. A study close to this topic
was the EY relaxation in granular systems [29], but the sample
size there was fixed. In this section, we will study how the
EY spin relaxation changes with the width of a wire. Our
sample has a length of 200 µm, while its width varies between
0.1 µm (narrow wire) and 200 µm (2D quantum well). We
take 8 × 105 electrons in the standard initial condition and
use the parameter values from table 1 for the simulations as
before.

Figure 3 depicts the relaxation time τs versus the sample
width W at various temperatures T . Three conclusions can be
drawn from this plot.

(1) τs decreases with T .
(2) τs is nearly a constant for W > 1 µm at all T .
(3) τs drops abruptly to zero when W < 1 µm.

Phenomenon (1) has the same reasoning as that at the end
of section 3. To account for phenomena (2) and (3), recall that
for W > 1 µm the sample is like a bulk system. The electron
spins in this system are flipped mainly by the impurities in
the bulk and less by the sample boundaries. Therefore, the
relaxation time τs is almost fully determined by the impurity

4
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Table 1. The simulation protocols. T1 is calculated by (16), τp = µm∗/e, vF = (h̄/m∗)
√

2πne, lmfp = vFτp, and φ is calculated by (13).

T (K) 50 70 100 120 150 170 200 220 250 270 300

T1 (ps) 2.549 00 1.997 90 1.543 20 1.352 30 1.150 60 1.050 90 0.934 24 0.871 94 0.794 86 0.751 78 0.696 56
τp (ps) 0.066 19 0.072 63 0.080 14 0.084 28 0.089 63 0.092 78 0.097 03 0.099 62 0.103 20 0.105 41 0.108 52
vF (µm ps−1) 1.5381 1.558 0 1.5874 1.606 7 1.635 3 1.654 0 1.681 7 1.700 0 1.727 0 1.744 7 1.771 0
lmfp (µm) 0.101 80 0.113 16 0.127 22 0.135 41 0.146 56 0.153 45 0.163 18 0.169 35 0.178 21 0.183 91 0.19219
φ 0.012 82 0.017 85 0.025 31 0.030 22 0.037 49 0.042 28 0.049 37 0.054 04 0.060 96 0.065 51 0.072 27

Figure 3. The EY spin relaxation time versus the wire width at five
different temperatures, observed on a stripe of area 1×W µm2. The
inset is magnified from the main plot.

density and is thus a constant of W. However, for W < 1 µm,
the boundary induced spin flip becomes more significant. The
smaller the sample width is, the higher the collision frequency
will be, and the faster the spin will flip. When W approaches
zero, τs tends to zero, because almost all the electrons collide
with the boundaries infinitely often, except the minority of
electrons moving exactly along the wire axis.

It is well known that the DP relaxation near the
sample boundary behaves differently from that far from the
boundary [27, 35, 36]. An interesting question is whether
the EY relaxation will behave similarly on the boundary. To
answer this question, we shrink the observation window to a
small square of area 1 × 1 µm2 and use this window to scan
the local τs at different positions along the width direction
of a wire. Figure 4 depicts the EY relaxation time τs, which
remains close to a constant inside the sample, until the drops
near the two boundaries. How close to the boundaries τs will
begin to drop is an open question requiring further study.
Moreover, the inset of figure 4 shows that Pz(t) is almost
flat until the slight drops on the boundaries. These drops will
become apparent, if we magnify the individual Pz(t) curves.

For a comparison, we calculate the τs of the DP
relaxations along a wire of width 6–50 µm, as shown in
figure 5. The initial electron and spin states in the simulation
are the same as in the above EY cases, while the temperature
is as low as 5 K to mimic the real experimental environment.
The corresponding Fermi velocity and mean free path are
vF = 0.37 µm ps−1 and lmfp = 0.28 µm and the spin rotation
length (as defined in [24, 25, 27]) is Lso = 2 µm. The

Figure 4. The EY spin relaxation time versus four wire widths at
50 K, observed on a square of area 1× 1 µm2 scanning along the
wire width in the middle of the sample. The inset is the evolution of
spin polarization along the width W = 20 µm.

Figure 5. The DP spin relaxation time versus eight wire widths at
T = 5 K and Lso = 2 µm, observed on a square of area 1× 1 µm2

scanning along the wire width in the middle of the simulation
sample. The inset is the evolution of spin polarization along the
width W = 50 µm.

simulation method is as referred to in [27]. In contrast to the
EY relaxation, the DP relaxation time near the boundary is
larger than that elsewhere (figure 5). Moreover, the Pz(t) of
the DP relaxation on the boundary exhibits a hump structure
(inset of figure 5), which is opposite to the EY relaxation and
is a main difference between these two relaxations. The τs

increase on the boundary in the DP relaxation is ascribed to
the reverse rotation of spins [27, 36], whereas the τs decrease

5
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Figure 6. In a ballistic narrow wire, a straight trajectory p1p0 and a
zigzag trajectory p̃2p0 have the same length l = vFt. The length of
p̃2p0 is equal to that of p2p3, since the former can be regarded as a
multiple mirror reflection of the latter with respect to the horizontal
dashed lines. The values θ(ξ) and θ(ξ + ε) are the outgoing angles
of the electrons at ξ and ξ + ε, respectively, along which the
electrons can reach p0 after running through the same distance l.
The inset is a magnification of p̃2p0.

on the boundary in the EY relaxation is due to more frequent
boundary collisions.

5. The impurity effect on the EY relaxation

When the mean free path of the electrons exceeds the
wire width, the system will enter the ballistic regime. The
Pz(t) of the DP relaxation undergoes a drastic change from
an exponential function to a Bessel function during the
diffusive–ballistic transition [27]. In this section, we will
examine how the Pz(t) of the EY relaxation behaves in the
ballistic regime.

Suppose an ensemble of electrons in the standard initial
conditions are placed in a narrow wire as in figure 6. The
spin polarization Pz(t) observed at the origin p0 at time t is
averaged from the spin states of all electrons which arrive
at p0 at time t. These electrons can arrive through a straight
trajectory or various zigzag ones, like p1p0 and p̃2p0 in
figure 6, all of which have the same length l = vFt. Depending
on the trajectory types, these electrons will launch at different
x values at time 0. Suppose s̃z(x) is the z component of the
spin state of an electron at p0 at time t when it starts at x at
time 0. Then Pz(t) is an average over all these spin states [27],

Pz(t) =

∫ l
−l s̃z(x)ρw(x)W dx∫ l
−l ρw(x)W dx

, (17)

where w(x) is a weight proportional to the number of electrons
starting at x and contributing to s̃z(x) and ρ denotes the
constant surface density of the electrons in the wire. Notice
that since the spin flip in the EY mechanism is a stochastic
process, two electrons, even when running along the same
trajectory, may have different final spin states. Thus, the spin
state s̃z(x) should be understood as an ensemble average taken
from all electrons running along the same trajectory. The

fluctuation around this average is extremely small for real
materials having the typical electron density 1011 cm−2. If
an electron starting between x and x + ε (for the case x ≥ 0)
has to arrive at p0 at time t, its initial outgoing angle must
lie between θ(x) and θ(x + ε), with ε � 1 (see the example
for x = ξ in figure 6). Thus, the weight w(x) becomes the
fraction of electrons at x running within these two angles over
those within the whole 2π angle. If the electrons are uniformly
distributed in the wire with isotropic outgoing angles, the
fraction of electron number equals the fraction of orientation
range [27],

w(x) =
1

2π
2 [θ(x)− θ(x+ ε)]

=
1
π

[
arccos

(x

l

)
− arccos

(
x+ ε

l

)]
, (18)

where the factor 2 arises from the two mirror-symmetric
orientations ±θ .

While the fraction w(x) for EY relaxation is similar to
that for DP relaxation, s̃z(x) is completely different for the two
relaxations. To obtain s̃z(x) of the EY mechanism, we need
to know how many scatterings an electron running from x to
p0 will encounter and how its spin state will be changed by
these scatterings. If an electron is initially polarized in the z
direction and encounters scattering n times, its z component
of the spin state will on average change to the value (see (A.6)
in the appendix)

s̄z(n) = exp
(
−

n

τ

)
, with τ =

1− φ
2φ

, (19)

where φ is the spin flip probability in (13). Note that sz(t),
s̃z(x), and s̄z(n) in equations (15), (17), and (19) describe
the spin state as a function of t, x, and n, respectively. If an
electron at p2 in figure 6 has the outgoing angle θ(p2) and
travels a distance l = vFt along a zigzag trajectory to arrive
at p0 at time t, it will collide with the two boundaries n times
with

n ≈
x

1l
=

x

W cot θ(p2)
=

√
l2 − x2

W
, (20)

where 1l is the distance between two collisions projected on
the x axis (inset of figure 6). Inserting (20) into (19), s̄z(n)
becomes a function of x,

s̃z(x) = exp

[
−

(√
l2 − x2

W

)
1
τ

]
. (21)

Inserting (18) and (21) into (17), the evolution of Pz(t) at
the observation point p0 will become completely known.
Although this formula is too complicated to have a closed
form, its value can be evaluated numerically.

To test the accuracy of (17), let us consider three wires
of widths W = 0.01, 0.02, and 0.04 µm with the parameter
values for 50 K in table 1 and record Pz(t) in the middle
of the wires. In the main plot of figure 7, the black squares,
red circles, and blue triangles come from simulations, while
the black dotted, red dotted–dashed, and blue dashed curves
are calculated by (17). The two sets of data agree very well
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Figure 7. The polarization Pz(t) versus the time t in three wires of
different widths. The square, circle, and triangle symbols denote the
simulation data and the different lines are calculated by the formula
(17). The inset shows the spin relaxation time versus the wire width
from simulations (green rhombuses) and the analytical approach
(17) (red crosses), fitted by a straight line (blue dotted). These are all
results of (17) for specular boundary reflections. For diffusive reflec-
tions, the (τs, W) relation is plotted by the black circles in the inset.

with each other. They behave like exponential functions with
the relaxation times plotted in the inset of figure 7. In this
simulation, we narrowed W down to 10 nm. This value is
smaller than the height H = 20 nm of the experimental sample
and has reached the quantum regime in the width direction,
since the Fermi wavelength at 50 K is about 30 nm for
semiconductors. We took this extreme W in the simulation
to verify whether (17) was mathematically correctly derived.
The reader should not be puzzled by the physical validity of
the semiclassical approach. For samples with W = 0.2 µm,
this formula still predicts a rather close value to the simulated
relaxation time (see the inset in figure 7).

Figure 7 also indicates that in a ballistic wire the DP and
EY relaxation times vary rather differently with the wire width
W. When W→ 0, the Pz(t) of the DP relaxation will converge
to a Bessel function [27], but that of the EY relaxation (main
plot of figure 7) remains as an exponential function, whose
relaxation time decreases with vanishing W. That is, at W ≈ 0,
the DP relaxation is insensitive to W, but the EY relaxation is
sensitive to W. The reason is that in the limit W → 0, most
electrons are confined in the width direction and collide with
the boundaries at very high frequencies. The spins of these
electrons tend to be frozen (in the width direction) in the
DP mechanism, due to the motional narrowing effect [35],
but will be accelerated to flip in the EY mechanism, due to
the increasing collision frequency. This leads to the drastic
distinction between the Pz(t) of the DP and EY mechanisms
in the ballistic narrow wires.

In the inset of figure 7, the τs obtained from (17) begin
to deviate from those of the GSPI simulation at W ≈ 0.1 µm.
This W is five times larger than the sample height in [16].
Beyond this W, higher order corrections in equations (18)
and (21) are required to improve the accuracy of (17). For
W → 0, both simulation and the exact formula give the same
ratio τs/W ≈ 47.48. To account for this value, notice that the

denominator of (17) is independent of l and t. The function
s̃z(x) in the numerator varies slowly for most x ∈ [−l, l], but
increases sharply with |x| in the two small regions [−l,−l+ε′]
and [l − ε′, l], with the limit s̃z(±l) = 1. In contrast, w(x)
increases comparatively moderately within [−l, l], with the
limit w(l − ε′) = arccos(1 − ε′/l)/π ≈ (

√
2ε′/l)/π . Thus,

w(x) can be approximately regarded as a constant C and taken
out of the integral in the numerator of (17). Dropping all
l-independent terms, one obtains the proportional relation

Pz(t) ∝ C
∫ l

−l
s̃z(x) dx ∝

∫ l

l−ε′
s̃z(x) dx ≈ s̃z(x)ε

′
∣∣
x≈l. (22)

Using a Taylor expansion in (21), it yields a rough estimation

Pz(t) ∝ exp
[
−

l

τW

(
1−

1
2

(x

l

)2
− · · ·

)]
x≈l

≈ exp
(
−vFt

2τW

)
≡ exp

(
−t

τ ′

)
, (23)

where τ ′ = 2τW/vF, which, together with (19), gives the
ratio τ ′/W = ( 1

φ
− 1)/vF ≈ 50.08. This ratio is very close

to the 47.48 obtained from the simulation (inset of figure 7),
even though we only consider a small part of the integral
around x ≈ ±l in equation (17). Physically, it highlights the
essential contribution of the electrons starting at x ≈ ±l.
These electrons run almost along the wire axis and are nearly
free from collisions with the boundaries. They have no spin
flip within time t and will give the main contribution to the
non-zero value of Pz(t) at t.

The Pz(t) discussed above comes from the expression
(17), which is based on the assumption of specular reflections
on the boundary. For diffusive reflections, a large number of
new trajectories will contribute to Pz(t), in addition to the old
ones in (17). Along the wire direction, an old trajectory can
only have unidirectional movement, while a new trajectory
usually contains both forward and backward motions, similar
to the trajectories of a random walker. Given an initial point
p2, a final point p0, and a fixed time t, there exists only one old
trajectory (figure 6); however, a bunch of new trajectories are
allowed under the same conditions. The shorter the distance
p2p0 is, the more allowed new trajectories can be found, just
like a random walker has more possible routes to reach a point
closer to its initial position. Since the trajectories of shorter
p2p0 have more boundary collisions under a fixed t, Pz(t) for
diffusive reflections contains on average more trajectories of
high reflection frequencies than Pz(t) for specular reflections.
Thus, intuitively one would expect a faster polarization
relaxation for diffusive reflections, which is generally true, as
confirmed by the simulations depicted by the black circles in
the inset of figure 7. However, since the relaxation times of all
reflections decrease with wire width, the τs difference between
specular and diffusive reflections becomes insignificant for
extremely narrow wires.

6. Conclusion

In this work, we generalized the semiclassical path integral
method and extended its application to systems governed
by the EY relaxation mechanism. The spin relaxation times
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calculated by this method are in accordance with the values
measured in experiments (figure 2). For the size effect, the
EY relaxation time τs remains nearly constant for large
wire width, but drops abruptly to zero if W shrinks to a
certain extent (figure 3). This trend is robust against various
temperatures, electron mobilities, and electron densities. Near
the geometric boundaries, the local τs falls rapidly (figure 4),
because the boundaries enhance the scattering frequency and
the spin relaxation speed, in contrast to that in the DP
relaxation. The τs and relaxation patterns of both the EY and
the DP mechanisms were calculated and compared (figures 4
and 5). For ballistic narrow wires, we derived an analytical
formula (17) for the EY spin relaxation, which confirms
the above simulated Pz(t) (figure 7). This formula explicitly
relates the EY spin relaxation time τs to the wire width. The
predicted τs is in good agreement with the simulated value
(inset of figure 7).

The above results were calculated based on two as-
sumptions. First, all electrons contributing to the polarization
were on the Fermi surface. In reality, the electron velocity
may deviate from this unique value. However, our tests on
various velocity distributions showed that the spin relaxation
behaviors, especially the relation τsT ∝ µ, were less sensitive
to this factor. Thus, we presented the simplest distribution
concentrated at the Fermi velocity. Second, the scattering
rates on the boundary and impurities were assumed to be the
same. This was due to the lack of microscopic details on each
individual scattering. Although this assumption may not be
true for general materials, it does not affect our comparison
with the experimental results on the quantum wells, because
these wells are so large that the details of boundary scattering
are insignificant. For ballistic narrow wires, the boundary
scattering becomes important and the results presented here
are only a special example. Once the boundary reflection
properties for other systems are known, extension of the spin
relaxation study to these systems is straightforward.
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Appendix

As discussed in the text before equation (18), the spin state
in the EY mechanism should be understood as an ensemble
average, since the spin flip in this mechanism is a stochastic
process. Let S↑(n) and S↓(n) be the probabilities of a spin
being in up and down states, respectively, after its electron
encounters scattering n times. Clearly,

S↑(n)+ S↓(n) = 1. (A.1)

Under the EY mechanism, we have

S↑(n+ 1) = (1− φ)S↑(n)+ φS↓(n)

= S↑(n)(1− 2φ)+ φ, (A.2)

with the spin flip probability φ for each scattering, where
(A.1) has been used. After scattering n and n + 1 times, the
average spin states in the z component are respectively

s̄z(n) = S↑(n)− S↓(n) = 2S↑(n)− 1

s̄z(n+ 1) = 2S↑(n+ 1)− 1.
(A.3)

Thus, the relation

1s̄z(n)

1n
=

s̄z(n+ 1)− s̄z(n)

(n+ 1)− n
= −

1
τ

s̄z(n+ 1)+ s̄z(n)

2
(A.4)

is yielded, with τ = (1−φ)/(2φ). In the continuous limit, this
yields

ds̄z

dn
= −

1
τ

s̄z. (A.5)

According to this equation, if an electron is initially polarized
in the z direction, i.e., s̄z(0) = 1, the z-component of this spin
will evolve to

s̄z(n) = exp
(
−

n

τ

)
, (A.6)

after scattering n times.
Alternatively, (A.6) can be obtained in a different way.

Suppose we have an ensemble of electrons initially under
standard conditions in a diffusive bulk sample, with the
momentum relaxation time τp. If the average z-component of
the spin state, sz(t), undergoes a longitudinal spin relaxation,
it will decay exponentially, with the same relaxation time T1
as that in (13),

sz(t) = exp
(
−

t

T1

)
≈ exp

(
−

n

τ ∗

)
, (A.7)

where τ ∗ = (1 − φ)/(2φ), because t ≈ nτp for n collisions
within time t and τp/T1 = (2φ)/(1− φ) according to (13). A
comparison shows that τ in (A.6) and τ ∗ in (A.7) are exactly
the same.
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