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Abstract
We show that in the near-horizon limit of a Kerr–NUT–AdS black hole, the
space of conformal Killing–Yano two-forms does not enhance and remains of
dimension 2. The same holds for an analogous polar limit in the case of extremal
NUT charge. We also derive the conformal Killing–Yano p-form equation for
any background in an arbitrary dimension in the form of parallel transport.

PACS numbers: 04.20.−q, 04.70.Bw, 02.40.−k

1. Introduction and conclusion

Killing–Yano (KY) forms suitably generalize the notion of Killing vectors to higher degree
differential forms [1]. They are related to constants of geodesic motion [2], symmetries of the
Dirac equation [3], exotic supersymmetries of the superparticle [4], ADM-like charges [5],
and the integrability of the Hamilton–Jacobi equations and the Klein–Gordon equation [6].
Two recent, complementary, reviews are given in [4] and [6]. Conformal KY (CKY) forms
are the conformal generalization of KY forms and can describe the symmetries of massless or
conformally invariant equations. In four dimensions, the only degree of CKY forms to study
other than 1 is, by the Hodge duality, the degree of two-forms.

Rasmussen shows in [7] that the principal KY two-form of the d = 4 Kerr–NUT–(anti)-de
Sitter black hole has a smooth limit under the near-horizon spacetime limit. At the same time,
the CKY equation can be written in the form of parallel transport under some connection D
on a bundle of p-forms [8]. Then, Geroch’s result on spacetime limits and the holonomy of
D [9] implies that the vector space of CKY two-forms cannot reduce its dimension under
the near-horizon limit, in accordance with [7]. The space of CKY two-forms could enhance,
though. It was this question we wanted to answer definitely. We find that there are only two
independent CKY two-forms in the near-horizon geometry: the KY two-form and its Hodge
dual in [7].
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For the near-horizon geometry, there is an enhancement of isometries from rank 2, the time
translations and rotations, to rank 4 that form sl(2, R) ⊕ R. This is expected by construction
of the limit that can be written as a limit of a finite diffeomorphism:

g0 = lim
ζ→0+

e
1
ζ
(τ∂τ −x∂x )g.

In this expression, an infinitesimal diffeomorphism of the form τ∂τ − x∂x, which generates
the finite diffeomorphism, becomes in the limit ζ → 0+ a Killing vector of g0. Given that the
Killing vectors enhance, we asked whether the same holds for the KY two-forms, and more
generally whether the CKY two-forms enhance. There are for instance relations between KY
forms of various degrees in the definition of differential structure, e.g., see [8]. Note though
that the near-horizon limit is not the same as the BPS limits of black holes in [10], which are
known to have extra structure, e.g., see [11].

A recent result is the classification of spacetimes under the existence of a closed CKY two-
form in [12–14]. However, our motivation was more in line with [15]. In particular, we were
interested in the construction and consequences of a non-trivial (graded) algebra of Killing
vectors and CKY two-forms. This could be achieved by studying the (graded) commutator of
the symmetry operators on the Dirac equation [3] as in [15] or by lifting them, in the case of
special KY, to parallel objects on the cone [8] as in [16]. In the context of recent interest in
the near-horizon geometry [17], but undoubtedly beyond that, extra structure or symmetries
in the near-horizon geometry would be of considerable interest.

We also derive explicitly the CKY transport equation of p-forms, which was described in
[8]. Here, we were tempted to solve the equation explicitly. However, the calculation would
have been quite involved and not illuminating. Since the derivation of the transport equation
itself is straightforward but intense, we give the result in appendix A. Instead, we solve the
problem at hand by making use of the symmetry sl(2, R) ⊕ R that renders the background
of cohomogeneity 1. This allows us to write an ansatz on both sides of the CKY two-form
defining equation, which is shown to not pass the test.

In section 2, we introduce CKY two-forms. We show how for d = 4 Einstein solutions
each CKY two-form is mapped to a pair of Killing vectors. Furthermore, the map transforms
equivariantly under the isometry algebra. In section 3, we introduce the Kerr–NUT–AdS black
hole and the coordinate ranges that we use. In section 4, we introduce the near-horizon limit of
these black holes. In addition to [7], we discuss when the near-horizon limit has well-defined
coordinate ranges, as inherited from the black hole. This happens only when the NUT charge
is zero. We can thus differentiate the limit from a solution-generating technique to a limit that
can describe a physical process when there is no NUT charge. We also discuss in parallel
another spacetime limit, which we dub the polar limit. It is similar to the near-horizon limit
but with the role of radial and polar coordinates exchanged. We find that the polar limit has
well-defined coordinate ranges for any nonzero NUT charge. In these two sections, sections 3
and 4, we briefly comment on the positive cosmological constant case.

In section 5, we show that there are no parallel two-forms in these two limits because the
Lévi-Cività holonomy is not special. In section 6, we show that the CKY two-form equation in
the near-horizon extremal Kerr (NHEK) background can have either two or eight independent
solutions. This follows because the CKY two-forms should transform under SL(2, R) and
that there are no parallel two-forms. If there are eight independent solutions, we can write
an ansatz for the ‘new’ CKY two-forms by using the symmetries of the metric. However,
the ansatz does not pass the test of the CKY equation as we show in the concluding section
section 7.

The appendices contain supplementary material for our work. Appendix A derives the
connection D under which CKY p-forms are parallel. Appendix B describes a diffeomorphism
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of AdS4, which motivates the coordinate range of anti-de Sitter black holes with the NUT
charge. Appendix C repeats the analysis of section 3 for a positive cosmological constant.
Appendix D is a brief classification of AdS3 coordinates and appendix E solves the Einstein
equations for a specific form of the metric.

2. Conformal Killling–Yano two-forms

A two-form K on a d-dimensional manifold M with the metric g is a conformal KY two-form
(CKY) if it satisfies

∇μKνρ = Aμνρ + 1
2 gμνBρ − 1

2 gμρBν, (1)

where ∇ is the Lévi-Cività derivative, A is a three-form, and B is a one-form. A CKY two-form
with B = 0 is called a KY two-form. CKY two-forms are in one-to-one correspondence with
D-parallel sections of E :

K
=�→ E = K + A + B + C ∈ �2 ⊕ �3 ⊕ �1 ⊕ �2 = E, (2)

where �p is the space of p-forms and D is a connection on E . In appendix A, we derive the
connection D for the general case of a CKY p-form1.

The transport equation was described in [8], the calculation tool preferred instead being
Bär’s cone construction. However, the latter construction is possible only for the so-called
special CKY p-forms. The first-order equations DμE = 0 can be, in principle, solved up
to the obstructions given by the holonomy of D. The transport equations have the rank
d(d + 1)(d + 2)/6. For instance, in d = 4, there are 20 first-order equations and solving them
for a background of interest is computationally involved.

In the case of an Einstein space of dimension d = 4, we will use the simplification that
both B and the Hodge dual of the three-form A in (1) are Killing one-forms, as noted already
in [18]. The connection D is then given by (1) and

∇μAν1ν2ν3 = − 3
2 R[ν1ν2|μ

σ Kσ |ν3] − 3
4 gμ[ν1Cν2ν3], (3)

∇μBν = 1
2Cμν, (4)

∇μCν1ν2 = −2Rν1ν2μ
σ Bσ . (5)

The Lévi-Cività derivative on the one-form B, i.e. ∇μBν , is antisymmetric in its indices, and
thus, by definition, Bμ is a Killing one-form. This result was already shown by Tachibana in
[19]. The content of (5) is no more than Killing’s identity for a Killing vector. Furthermore, if
K satisfies

∇X K = iX A + 1
2 X 	 ∧ B (6)

as in (1), then its Hodge dual2 is again a CKY two-form and satisfies

∇X ∗ K = − 1
2 iX ∗ B + X 	 ∧ ∗A. (7)

By the same token as we used for B, ∇μ(∗A)ν is antisymmetric in its indices and is also a
Killing one-form. It is this simplification that we will use in this paper.

1 For p = 1, these are the (metric dual of) conformal Killing vectors. Nevertheless, for p > 1, one cannot in general
associate with the p-form a derivation generalizing the Lie derivative.
2 The square of the Hodge dual in d = 4 Lorentzian signature is ∗2|�2 = −1 and ∗2|�1⊕�3 = +1. With indices
these relations are 1/(2!)2 εμν

ρσ ερσ
μ̃ν̃ = −δ

[μ̃
μ δν̃]

ν , 1/3! εμ
ν1 ···ν3 εν1···ν3

μ̃ = δ
μ̃
μ and 1/3! εμνρ

σ εσ
μ̃ν̃ρ̃ = δ

[μ̃
μ δν̃

ν δ
ρ̃]
ρ ,

where εμνρσ is the Lévi-Cività tensor.
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From the above, the CKY two-form K on a four-dimensional Einstein space (M, g) is
mapped to a pair of Killing vectors. We will write this as K

π�→ (ξ̃ , ξ ) with A = ∗ g(ξ̃ ,−)

and B = 1
2 g(ξ ,−). Note that the kernel of this map is given by those CKY two-forms that

are parallel. It is easy to show, using (7), that if K
π�→ (ξ̃ , ξ ), then its Hodge dual is a CKY

two-form with ∗K
π�→ (−ξ, ξ̃ ). That is, the complex structure of CKY two-forms i K := ∗K

is compatible with the complex structure of the Killing vector doublets i(ξ̃ , ξ ) := (−ξ, ξ̃ ).
Knowledge of the isometries of the metric simplifies the task of finding the CKY two-

forms, since the unknowns on the right-hand side of (6) are now in terms of a finite number
of constants, a linear combination of the known Killing vectors. Killing vectors are easier
to find in general, whereas their maximal rank is d(d + 1)/2 = 12. However, the problem
can be reduced further. The Lie derivative along a Killing vector k commutes with the Hodge
operator, and its commutator with the Lévi-Cività derivative satisfies [Lk,∇X ] = ∇[k,X] for all
vectors X . By using (6), we can show that if K is a CKY two-form with K

π�→ (ξ̃ , ξ ), then its
Lie derivative along a Killing vector k is also a CKY two-form with LkK

π�→ ([k, ξ̃ ], [k, ξ ]):

0 = Lk
(∇X K − iX A − 1

2 X 	 ∧ B
)

= ∇[k,X]K − i[k,X]A − 1
2 [k, X]	 ∧ B + ∇XLkK − iXLkA − 1

2 X 	 ∧ LkB

= ∇XLkK − iXLkA − 1
2 X 	 ∧ LkB. (8)

Therefore, CKY two-forms form a representation under the isometry algebra of the metric and
the map K

π�→ (ξ̃ , ξ ) is equivariant under the action of Lk. We will use the power of this result
in what follows.

3. Kerr (NUT) anti-de Sitter black holes

Kerr’s black holes in anti-de Sitter space with the cosmological constant −3/�2 are described
by their mass M, a rotational parameter a and the NUT charge L. The metric is given by

ds2 = − �r

r2 + y2
(dt̂ + y2 dψ)2 + �y

r2 + y2
(dt̂ − r2 dψ)2 + r2 + y2

�r
dr2 + r2 + y2

�y
dy2, (9)

where the metric functions are

�r =
(

1 + r2

�2

)
(r2 + a2) − 2Mr, (10a)

�y = (a2 − y2)

(
1 − y2

�2

)
+ 2Ly. (10b)

These metrics can be generalized to the Plebański–Demiański [20] family of type-D Einstein–
Maxwell solutions3. By using the symmetry of Chen et al [10], which inverts a/� �→ �/a, we
will always take 0 � a � �.

When M = L = 0, the space is isometric to anti-de Sitter in two different ways; see
appendix B. Each diffeomorphism corresponds to either the range |y| < a or |y| > �, the two
regions where the function �y is positive. In particular, the range |y| < a covers the whole of
AdS4. This implies that we can focus on |y| � a since the two ranges are isometric. As we add
the nonzero mass and NUT charge, we will continue to take y in the finite region between the
two middle roots of �y. With the zero mass, �r is positive for all r. Above some critical mass
M∗ there are roots to �r so that the singularities at r = y = 0 are hidden from large distances
by a horizon. The coordinate range of (r, y) is thus determined from the roots of �r and �y.

3 See [21], which discusses their CKY two-forms.
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(a) M < M∗, no roots
r̄

(b) M = M∗, one extremal root (c) M > M∗, two roots

Figure 1. The graph of �r(r) in Kerr–AdS for fixed a.

One of our tasks is to give the different profiles of the graphs of these two functions as we
vary M and L for fixed a and �.

The value of NUT charge also affects the periodicity of the coordinates. When L = 0, we
shift t̂ = t − a2ψ so that

ds2 = − �r

r2 + y2
(dt + (y2 − a2) dψ)2 + (a2 − y2)

(
1 − y2

�2

)
r2 + y2

(dt − (r2 + a2) dψ)2

+ r2 + y2

�r
dr2 + r2 + y2

(a2 − y2)
(
1 − y2

�2

) dy2. (11)

Smoothness close to y = ±a at constant (t, r) requires ψ to be periodic with

ψ = ψ + 2π

a
(
1 − a2

�2

) . (12)

We are also interested in how the periodicities change with L 	= 0. As usual, a spacetime with
the NUT charge will require closed timelike curves. In this section, we present the allowed
coordinate ranges of (r, y, t, ψ) for the various allowed choices of parameters (a, M, L).

Profiles

For M = 0, �r is always positive and has one extremum at r = 0 with �r(0) = a2. The
number of local extrema is preserved for all M, because otherwise there would be a value of
M such that �′

r = �′′
r = 0 has a solution. However, �′′

r is positive for all M. As we increase
M, the graph of �r will deform and cross the horizontal axis for the value of an extremal mass
M = M∗. Solving �r = �′

r = 0, we find that this happens only once, with

M∗ = �√
6

⎛
⎝−

(
1 + a2

�2

)
+

√(
1 + a2

�2

)2

+ 12
a2

�2

⎞
⎠

1/2

×
⎛
⎝2

3

(
1 + a2

�2

)
+ 1

3

√(
1 + a2

�2

)2

+ 12
a2

�2

⎞
⎠. (13)

The profile of the graph of �r is shown in figure 1.
We parametrize the values of (M, a) at extremality in terms of the double root r̄:

M∗ = r̄

(
1 + r̄2

�2

)2

1 − r̄2

�2

, a2
∗ = r̄2 1 + 3 r̄2

�2

1 − r̄2

�2

. (14)

Note that given a there is always one extremal value for the mass given by (13). Since the
relation M∗(r̄) for 0 < r̄ < � is one-to-one and onto R

+, there is also a unique critical

5
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(a) L < L+ , four roots

ȳ

(b) L = L+ , three roots (c) L > L+ , two roots

Figure 2. Graph of �y(y) in Kerr–AdS for fixed a.

value of acceleration for any choice of mass. A black hole with shielded singularities requires
M > M∗(a) and r is taken larger than the biggest root of �r.

For L = 0, there are three extrema and four roots to �y = 0. We deform the graph by
turning on L. For some value of L, the three extrema will degenerate to one. However, we
are interested in the transition from four roots to two roots, which occurs at a lower value of
L. Since �y(y = 0) = a2 for all L and this is the local maximum for L = 0, the transition
from four to two roots involves one of the two local minima, rather than the local maximum,
crossing the horizontal line �y = 0.

Solving �y = �′
y = 0, we find a unique solution up to sign, |L| = L∗ with

L∗ = �√
6

⎛
⎝1 + a2

�2
+

√(
1 + a2

�2

)2

+ 12
a2

�2

⎞
⎠

1
2

×
⎛
⎝2

3

(
1 + a2

�2

)
− 1

3

√(
1 + a2

�2

)2

+ 12
a2

�2

⎞
⎠. (15)

We parametrize the extremal values of (L, a) with respect to the double root ȳ:

L∗ = ȳ

( ȳ2

�2 − 1
)2

1 + ȳ2

�2

, a2
∗ = ȳ2 3 ȳ2

�2 − 1

1 + ȳ2

�2

. (16)

The profile of �y is shown in figure 2.

Periodicities

Let us take 0 < |L| < L∗, in which case there are four roots to �y, y1 < y− < y+ < y2. We
define t = t± − y2

±ψ± and ψ = ψ± and expand the metric with y = y± ∓ ρ2 close to ρ2 = 0.
At constant (t±, r), the metric becomes

ds2
∣∣
r,t±

≈ 4(r2 + y2
±)

∓�′
y(y±)

×
(

dρ2 + ρ2

(
�′

y(y±)

2

)2

dψ2
±

)
. (17)

Smoothness at y = y± requires the periodicity ψ± = ψ± + 2πT±, with

T± = 2

|�′
y(y±)| . (18)

The two coordinate systems (t±, ψ±) are patched together, away from the roots y = y±, by

t+ = t− + (y2
+ − y2

−)ψ−, (19a)

ψ+ = ψ−. (19b)

6
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It follows from (18) and (19) that at fixed (y, r) the two patches describe torus fibers with
periodicities

(t±, ψ±) = (t±, ψ± + 2π T±) = (
t± ± 2π

(
y2
+ − y2

−
)

T∓, ψ± + 2π T∓
)
. (20)

We see that a nonzero NUT charge generically necessitates both the existence of closed
timelike curves, for instance the curve at fixed (ψ±, r, y), and the non-existence of a global
coordinate system to describe the t − ψ part of the metric; see [22, 23]. When L = 0, (19)
becomes t+ = t− and ψ+ = ψ−, and the periodicity is simply

(t+, ψ+) =
(

t+, ψ+ + 2π

a
(
1 − a2

�2

)
)

. (21)

There is however one more case we want to consider, i.e. when two roots degenerate at
|L| = L∗.

If there is a double root, say y+ = y2 =: ȳ, the torus fibers essentially ‘uncompactify’ in
one direction. This is because expanding close to the double root, the metric is approximately

ds2
∣∣
r,t±

≈
[
− �r

r2 + ȳ2
4ȳ2 + �′′

y (y+)

2
(r2 + ȳ2)

]
(y − ȳ)2 dψ2

+ + 2
r2 + ȳ2

�′′
y (y+)

dy2

(y − ȳ)2
. (22)

The bracket in gψ+ψ+ can become negative, but this is inconsequential4. What is important is
that there is an infinite throat that does not impose any periodicity on ψ+. We still have

(t−, ψ−) = (t−, ψ− + 2π T−) (23)

from expanding close to the other root. This enforces the periodicity on the (t+, ψ+) patch

(t+, ψ+) = (
t+ + (

ȳ2 − y2
−
)

2π T−, ψ+ + 2π T−
)
. (24)

This periodicity is inherited by the polar limit that we define in section 4.

The case of de Sitter

The Kerr family of black holes in de Sitter space, with the cosmological constant 3g2, can
be obtained from the Kerr–anti-de Sitter metric by simply substituting �2 = −1/g2. We will
consider this case as a side note, with a few more details given in appendix C. Here, we present
the qualitative differences to what was done previously.

We find that unless5 a2g2 < 7 − 2
√

12, the function �r always has two roots and it is
positive in a bounded region between these roots. Furthermore, the ‘origin’ r = 0 is in the
bounded region. When a2g2 < 7 − 2

√
12, there are two critical masses M± such that �r has

four roots (three of which are positive) when M−(a) < M < M+(a). When M < M− or
M > M+, there are again only two roots and the origin is in between them. The situation for
�y is, in a sense, opposite to that of �r. It always has two roots unless a2g2 > 7 + 2

√
12. For

a2g2 > 7 + 2
√

12, there are four roots only when L− < |L| < L+ for two critical values L±.
A black hole requires that the singularities at r = 0 are hidden behind a horizon. The

parameter space of physical interest is thus given by a2g2 < 7 − 4
√

3 and M−(a) < M <

M+(a), as in figure 3. The region where �r is positive covers the exterior of the black hole
but within the cosmological horizon [24]. The periodicity of (ψ, t) is analyzed identically to
the negative cosmological constant case without any surprises.

4 We can equivalently Kaluza–Klein reduce under the isometry generated by ∂t+ .
5 Note that one cannot choose a2 g2 � 1 as we did for �2, a2 � �2.

7



Class. Quantum Grav. 29 (2012) 045004 Y Mitsuka and G Moutsopoulos

M2g2

a g
0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.01

0.02

0.03

0.04

0.05

0.06

1
27

(
√

7 − 4
√

4,−80 + 416
3
√

3
)#4 roots

Figure 3. Physical regions in the (M2, a) plane.

4. Extremal limits

Now that we have introduced the black hole parameters (a, M, L) and how they affect the
range of coordinates, we proceed to define the extremal limits. The first limit, which is
known as the near-horizon extremal limit, corresponds to blowing up the region close to the
extremal horizon, i.e. when M = M∗. A systematic treatment of the near-horizon limit for
supersymmetric backgrounds was presented in [25], but the notion has been known since at
least [9]; see also [26]. We shall also consider a second spacetime limit, which corresponds to
blowing up the region of the throat y = ȳ, when L = L∗. For the lack of a better name, we will
call this an (extremal) polar limit.

Near-horizon limit

When the mass attains its lower bound, M = M∗, the horizon is extremal in the sense that past
and future event horizons do not intersect; equivalently, the Hawking temperature is zero. In
this case, we expand �r close to its horizon r = r̄ as

�r = 1

β2
(r − r̄)2 + O(r − r̄)3, (25)

where

β2 = 1 − r̄2

�2

1 + 6 r̄2

�2 − 3 r̄4

�2

. (26)

The metric in the (t±, ψ±) patch is

ds2 = − �r

r2 + y2

(
dt± + (

y2 − y2
±
)

dψ±
)2

+ �y

r2 + y2

(
dt± − (

r2 + y2
±
)

dψ±
)2 + r2 + y2

�r
dr2 + r2 + y2

�y
dy2. (27)

8
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We define the diffeomorphism (t±, r, ψ±, y) �→ (τ, x, φ̄, y) for any ε > 0 by

r = ε x + r̄, (28a)

t± = β2
(
r̄2 + y2

±
)
τ

ε
, (28b)

ψ± = T±φ̄ + t±(
r̄2 + y2±

) . (28c)

Taking the limit ε → 0+ gives the NHEK metric

ds̄2 = �2

(
−x2 dτ 2 + dx2

x2
+ �2(Tu dφ̄ + x dτ )2

)
+ r̄2 + y2

�y
dy2, (29)

where

�2 = β2(r̄2 + y2), �2�2 = �y

r̄2 + y2
4r̄2β4, Tu = r̄2 + y2

±
2r̄β2

T±. (30)

We make the observation that if L 	= 0, then the limit does not inherit a well-defined coordinate
range. That is, the lattice in (20) becomes degenerate in the coordinates (τ, x, φ̄) of (28) when
ε → 0+. This is reminiscent of the notion of the pinching manifold that was defined in another
context in [27]. If however L = 0, then φ̄ is simply periodic with φ̄ = φ̄ + 2π and the
coordinate ranges are well defined.

The NHEK metric (29) on a constant slice of y is

ds̄2
∣∣
y = �2

(
−x2 dτ 2 + dx2

x2
+ �2(du + x dτ )2

)
. (31)

For u ∈ R, this is the so-called spacelike-warped AdS3 metric, a metric deformation of AdS3,
an exposition of which can be found in [28]. When �2 = 1, the space is precisely AdS3. The
coordinates used here are closely related to the self-dual coordinates of [29]; see appendix
D. As a group manifold, AdS3 = SL(2, R) is preserved by its right action and left action,
generated, respectively, by the Killing vectors

r0 = −1

x
∂u − τx∂x + 1

2

(
1 + 1

x2
+ τ 2

)
∂τ , (32)

r1 = x∂x − τ∂τ , (33)

r2 = 1

x
∂u + τx∂x + 1

2

(
1 − 1

x2
− τ 2

)
∂τ (34)

and

l0 = −cosh u

x
∂τ − x sinh u∂x + cosh u∂u, (35)

l1 = sinh u

x
∂τ + x cosh u∂x − sinh u∂u, (36)

l2 = ∂u. (37)

However, spacelike-warped AdS3, i.e. when �2 	= 1, is preserved only by ra, a = 0, 1, 2, and
l2. The NHEK metric (29) is thus also preserved by the Killing vectors ra and l2. We will
henceforth use small latin indices a, b, c, . . . that take values 0, 1, 2 and are raised or lowered
with a flat Lorentzian metric ηab.
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Before we move on to the extremal polar limit, let us make a few more remarks. A metric
of the form

ds̄2 = �2(y)

(
−x2 dτ 2 + dx2

x2
+ �2(y)(du + x dτ )2

)
+ F2(y) dy2 (38)

is precisely AdS4 only if �2 = 1. This follows easily from inspection of the curvature.
The other two functions, �2(y) and F2(y), are uniquely determined up to a diffeomorphism
y �→ y′(y), e.g., with F = � and �2 = �2 cosh2 (

y/�2
)
. However, the NHEK solution (30) can

have �2 = 1 only if r̄2 = −�2 and L = 0. In these coordinates, the AdS4 metric becomes

ds̄2 = y2 − �2

4

(
−x2 dτ 2 + dx2

x2
+ (du + x dτ )2

)
+ 1

�2(y2 − �2)
dy2. (39)

Since the parameter r̄ is a positive real number, the NHEK geometry seems to be ‘disconnected’
from AdS4. On the other hand, we can ask when does a metric of the form (38) satisfy
the Einstein equations of motion. We find that up to diffeomorphisms of y �→ y′(y), the
most general solution is determined uniquely by two integration constants; see appendix E.
Therefore, by replacing the parameters L and r̄2 with any real value, the NHEK geometry (29)
with metric functions (30) is locally the most general Einstein solution of the form (38).

Polar limit

Next, we consider the extremal limit where we blow up the double root y = ȳ of �y at
extremality L = L∗. With

�y = 1

β2
(y − ȳ)2 + O(r − r̄)3, (40)

where

β2 = 1 + ȳ2

�2

−1 + 6 ȳ2

�2 + 3 ȳ4

�2

, (41)

the metric is

ds2 = − �r

r2 + y2
(dt+ + (y2 − ȳ2) dψ+)2 + �y

r2 + y2
(dt+ − (r2 + ȳ2) dψ+)2

+ r2 + y2

�r
dr2 + r2 + y2

�y
dy2. (42)

We define the diffeomorphism (t+, r, ψ+, y) �→ (t+, r, ψ̄, x) for any ε > 0 by

εx = y − ȳ, (43)

εψ+ = β2ψ̄. (44)

After taking the limit ε → 0+, we arrive at the metric

ds̄′2 = �2(r)

(
+x2 dψ̄2 + dx2

x2
− �2(r)

(
1

2ȳβ2
dt+ + x dψ̄

)2
)

+ ȳ2 + r2

�r
dr2, (45)

with

�2 = β2(ȳ2 + r2), (46)

�2�2 = �r

ȳ2 + r2
4ȳ2β4. (47)

10
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By combining (43) and (24), we find that the extremal limit inherits the periodicity

(t+, ψ̄ ) = (t+ + (ȳ2 − y2
−)2π T−, ψ̄ ). (48)

In this case, the polar extremal limit has a well-defined coordinate range. Recall that this was
not the case for the NHEK unless L = 0.

At constant r, the metric in (45) becomes

ds̄′2∣∣
r = �2

(
+x2 dψ2 + dx2

x2
− �2(du + x dψ̄ )2

)
. (49)

For u ∈ R, this describes the so-called timelike-warped AdS3. For �2 = 1, this is again
precisely AdS3. However, the coordinates of AdS3 in (49) are different from those used for
the AdS3 in (31) for �2 = 1. The coordinates of AdS3 used to describe timelike or spacelike
‘warping’ should not intimidate the uninitiated reader. We give a brief classification of the
various AdS3 coordinates in appendix D. Timelike-warped AdS3 and by extension the polar
limit (45) are preserved by only four Killing vectors of AdS3: r0, r1, r2 and l0. Again, the
extremal polar limit is locally AdS4 only if �2 = 1, which can be obtained from the polar
limit with r̄2 = a2 = �2 and M = 0.

Limits for a positive cosmological constant

The extremal limits can also be performed for a positive cosmological constant. When
a2g2 < 7 − 4

√
3, the near-horizon limit gives

ds̄2 = �2

(
−x2 dτ 2 + dx2

x2
+ �2(Tu dφ̄ + x dτ )2

)
+ r̄2 + y2

�y
dy2, (50)

where

�2 = β2(r̄2 + y2), �2�2 = �y

r̄2 + y2
4r̄2β4, (51)

Tu = r̄2 + y2
±

2r̄β2
T±, β2 = 1 + g2r̄2

1 − 6g2r̄2 − 3g4r̄4
. (52)

Here, β2 and �2 can now be of either sign, corresponding to the two extremal masses M = M±,
where the sign of �′′

r (r̄) is different. Similar to the case of a negative cosmological constant,
unless L = 0, the coordinates are not well defined by the limit. The extremal polar limit can
also be performed in the unphysical region a2g2 > 7 − 4

√
3, when |L| = L± but we will

not pursue this here. We simply note that in all cases, the (positive cosmological constant)
extremal limits can be obtained from the negative cosmological constant extremal limits with
the substitution g2 = −1/�2.

We will focus on the negative cosmological constant case. The aim of the subsequent
sections is to show that in the near-horizon limit

ds̄2 = �2(y)

(
−x2 dτ 2 + dx2

x2
+ �2(y) (du + x dτ )2

)
+ F2(y) dy2 (53)

the space of CKY two-forms is not enhanced from dimension 2. Our result can be easily
repeated for the polar limit

ds̄′2 = �2(r)

(
+x2 dψ2 + dx2

x2
− �2(r) (du + x dψ)2

)
+ F2(r) dr2. (54)

11
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5. Holonomy of extremal limits

A parallel two-form, ∇μKνρ = 0, solves trivially the conformal KY equation. Although the
black hole metrics do not allow parallel p-forms, the situation could potentially change for
the—highly symmetric—extremal limits. In this section, we cast away with such doubt and
show that this is not the case. We will work primarily with the near-horizon geometry, but the
result also applies to the polar extremal limit.

If there is a parallel two-form K, then one has the integrability condition

[∇μ,∇ν]Kρσ = Rμνρ
τ Kστ + Rμνσ

τ Kτρ = 0. (55)

That is, parallel two-forms are stabilized by the curvature at any point and, more generally,
by the holonomy algebra of the Lévi-Cività connection. Our main task is to show that the
holonomy algebra, which to first order is generated by the curvature, is not special but spans
so(1, 3). Since the curvature acts on two-forms in the adjoint representation and so(1, 3) has
no central elements, there can be no parallel two-forms.

Let us first introduce the set of one-forms:

θ0 = −x cosh u dτ + sinh u

x
dx, (56)

θ1 = cosh u

x
dx − x sinh u dτ, (57)

θ2 = du + x dτ. (58)

A relation we shall use soon is the Maurer–Cartan structure equation

dθa − 1
2εa

bcθ
b ∧ θ c = 0. (59)

Here, θa forms a basis for the right-invariant Maurer–Cartan one-forms of SL(2, R). In
particular, the metric of spacelike-warped AdS3 is equal to

ds2
wAdS3

= �2(−θ0 ⊗ θ0 + θ1 ⊗ θ1 + �2θ2 ⊗ θ2). (60)

Here, θa is dual to the right-invariant Killing vectors of AdS3 by θa(lb) = δa
b . Note how

the right action of ra leaves the basis θa invariant, whereas l2 preserves separately the first
two and the last combination in the summand of the spacelike-warped AdS3 metric. When
�2 = 1, the metric of AdS3 can also be written similarly to (60) in terms of the left-invariant
Maurer–Cartan one-forms θ̃a, for which θ̃a(rb) = δa

b . This implies that θ̃a = M̃a
bθ

b for a
matrix M̃a

b that is an element of O(1, 2). Since M̃acM̃c
b = ηab, we have also M̃ab = θb(ra).

It is convenient to define an orthonormal basis θ̂A for a metric of the form

ds̄2 = e2ω(y)

(
−x2 dτ 2 + dx2

x2
+ e2λ(y)(du + x dτ )2

)
+ e2 f (y) dy2 (61)

by using the one-forms of AdS3:

θ̂0 = eωθ0, θ̂1 = eωθ1, θ2 = eω+λθ2, θ̂ y = e f dy. (62)

For future use we collect the first three relations in θ̂a = M̂a
bθ

b by defining the diagonal matrix
M̂a

b. We first calculate the spin coefficients from

dθ̂A + ω̂A
B ∧ θ̂B = 0 (63)

and then calculate the curvature.
By using (59), the solution to (63) is found to be

ω̂0
1 = (− e−ω−λ + 1

2 e−ω+λ
)
θ̂2, ω̂2

0 = 1
2 e−ω+λθ̂1,

ω̂1
2 = 1

2 e−ω+λθ̂0, ω̂0
z = ω̇ e− f θ̂0, (64)

ω̂1
z = ω̇ e− f θ̂1, ω̂2

z = (ω̇ + λ̇) e− f θ̂2.
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The curvature two-form R∇
AB is calculated from the right-hand side of

R∇
AB = 1

2 RABMN dxM ∧ dxN = dω̂AB + ω̂AC ∧ ω̂C
B.

We find the following components:

R∇1
0 = λ̇ e−ω+λ− f θ̂ y ∧ θ̂2 −

(
e−2ω − 3

4
e−2ω+2λ + ω̇2 e−2 f

)
θ̂1 ∧ θ̂0, (65a)

R∇2
y = λ̇ e−ω+λ− f θ̂0 ∧ θ̂1 + (ω̈ + λ̈ + (ω̇ + λ̇)(ω̇ + λ̇ − ḟ )) e−2 f θ̂ y ∧ θ̂2, (65b)

R∇0
y = λ̇

2
e−ω+λ− f θ̂1 ∧ θ̂2 + (ω̈ + ω̇2 − ω̇ ḟ ) e−2 f θ̂ y ∧ θ̂0, (65c)

R∇2
1 = − λ̇

2
e−ω+λ− f θ̂ y ∧ θ̂0 +

(
ω̇(ω̇ + λ̇) e−2 f + 1

4
e−2ω+2λ

)
θ̂1 ∧ θ̂2, (65d)

R∇2
0 = λ̇

2
e−ω+λ− f θ̂ y ∧ θ̂1 −

(
1

4
e−2ω+2λ + ω̇(ω̇ + λ̇) e−2 f

)
θ̂0 ∧ θ̂2, (65e)

R∇1
y = λ̇

2
e−ω+λ− f θ̂0 ∧ θ̂2 + (ω̈ + ω̇(ω̇ − ḟ )) e−2 f θ̂ y ∧ θ̂1. (65f)

Note that the metric is locally AdS4, R∇
AB = − 1

4�2 θ̂
A ∧ θ̂B, only if λ̇ = 0.

The curvature two-form acts on two-forms linearly through the adjoint action,

θ̂A ∧ θ̂B : θ̂C ∧ θ̂D �−→ ηBC θ̂A ∧ θ̂D − ηBDθ̂A ∧ θ̂C − ηAC θ̂B ∧ θ̂D + ηADθ̂B ∧ θ̂C,

as is consistent with the integrability condition (55). From the form (65), the span of R∇
cy and

R∇
ab, where a, b and c are all different, is either the direct sum of 〈θ̂a ∧ θ̂b〉 and 〈θ̂a ∧ θ̂ y〉 or a

one-dimensional subspace thereof, depending on the determinant of the matrix transformation
in (

R∇
cy

R∇
ab

)
=

(
Rcyab Rcycy

Rabab Rabcy

)(
θ̂a ∧ θ̂b

θ̂a ∧ θ̂ y

)
. (66)

All together, R∇
AB span �2 = so(1, 3) if and only if

RababRcycy − (Rabcy)
2 	= 0 (67)

for all permutations of (a, b, c) = (0, 1, 2). So far we have not used the specific functions
(λ, ω, f ) of the NHEK geometry. We can check (67) at any point using the NHEK solution
(30) and a computer calculation confirms its validity. Since so(1, 3) is centerless, there can
be no two-form that is stabilized by the curvature two-form. Whence there are no parallel
two-forms in the NHEK geometry. This result applies only to the NHEK solution, i.e. the most
general Einstein solution of this form.

The derivation can be repeated for the polar limit, which is of the form

ds̄′2 = e2ω(y)

(
x2 dψ2 + dx2

x2
− e2λ(y)(du + x dψ)2

)
+ e2 f (y) dy2. (68)

As we commented earlier, the geometry at constant y is the so-called timelike-warped AdS3,
so we can similarly use the right-invariant one-forms θa adapted to the timelike warping. The
equivalent orthonormal frame to (62) is now

θ̂0 = eω+λ (du + x dψ) , θ̂1 = eω

(
cos ux dψ + sin u

dx

x

)
, (69)
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θ̂2 = eω

(
− sin ux dψ + cos u

dx

x

)
, θ̂ y = e f dy. (70)

We simply remark here that the curvature two-form components are the same as in (65) with
the interchange of flat indices 2 ↔ 0. This explains why we chose, perhaps mysteriously,
to present the curvature two-form in (65) with some flat indices up and others down. The
algebraic relation (67) can then be used in place, giving the same result that there are no
parallel two-forms in the extremal limit.

6. Larger than 2 is 8

In [7], Rasmussen showed that the KY two-form of the Kerr–(A)dS black hole, including the
NUT charge, survives the near-horizon limit. Its Hodge dual is the so-called principal CKY
two-form of the geometry Kp. That is, it is given by Kp = db, where

b = −y2 + r̄2

2
x dt − y2

2
du. (71)

A similar result holds for the extreme polar limit: there are two CKY two-forms, Kp = db and
∗Kp, where

b = − r2 + ȳ2

2
x dψ̄ − r2

2
du. (72)

For definiteness, we will work with the near-horizon limit, but the section can be read for the
polar limit instead.

In this section, we shall prove that there are either only two linearly independent CKY
two-forms, Kp and ∗Kp, or else the space of CKY two-forms K is eight dimensional. In the
latter case, the rank of K is the maximal allowed, i.e. twice the number of independent Killing
vectors, ra and ∂u. Our ultimate aim is to show that the maximal case, dimK = 8, is not
realized.

Recall that all CKY two-forms are mapped to a pair of Killing vectors. An explicit
calculation shows that

∗ d ∗ db = 3 T 2
u g(∂u,−), (73)

and so we find that the known CKY two-forms are such that ∗Kp
π�→ (T 2

u ∂u, 0) and
Kp

π�→ (0,−T 2
u ∂u). Since the space of CKY two-forms K is a vector space, either these

two CKY two-forms span the entire space or the space is bigger. If dimK > 2, then there is
at least one CKY two-form K such that K

π�→ (r̃, r) with

r̃ = Ãr0 + B̃r1 + C̃r2, (74)

r = Ar0 + Br1 + Cr2. (75)

ra transforms in the adjoint (vector) representation V of so(1, 2). It will then follow that the
image π

(
K/〈Kp, ∗Kp〉

)
is the entire V ⊕ V .

Assume a CKY two-form K as before, K
π�→ (r̃, r). If r and r̃ are linearly dependent,

r = c r̃ with c 	= 0, then we also have the CKY two-form

K′ = 1

c2 + 1
(K − c ∗ K)

π�→ (r̃, 0).

If on the other hand r and r̃ are nonzero and linearly independent, the CKY two-form K′ = LrK
is such that K′ π�→ (r′, 0) with r′ = [r, r̃] nonzero6. Finally, if either r or r̃ is zero, the action of

6 It follows from the properties of so(1, 2) that r′ cannot be zero, stab(r) = 〈r〉.
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the Hodge duality allows us to consider the case, where K
π�→ (r̃, 0) in any case. The vector

representation V is irreducible, though. Whence through the action of so(1, 2) and linearity,
all r̃ ∈ V can be obtained.

We can be more explicit by using the properties of V . The action of so(1, 2) can be
integrated on both sides of Lξ K

π�→ (Lξ r̃, 0). Then, any r̃ as in (74) can be transformed into a
Killing vector r̃′ proportional to r0, r2 or r0 ±r2, depending on whether the length Ã2 − B̃2 −C̃2

is, respectively7, positive, negative, or zero. We can then act on K′ π�→ (r̃′, 0) with any of ra

so that we obtain all of the characteristic elements of V under the action of so(1, 2). By the
action of the Hodge duality, the same is true for the closed conformal KY two-forms.

To summarize, either there are two CKY two-forms as found in [7], or the space of CKY
two-formsK is augmented so that its image under the map π spans the entire double copy of the
space of Killing vectors V ⊕R. In the latter case, we showed that the KY two-forms transform
in the same representation as V ⊕R, as do the the closed conformal KY two-forms. Explicitly,
if there are more than two independent CKY two-forms, then there are three independent KY
two-forms Ka with Ka

π�→ (ra, 0) for each a = 0, 1, 2. This will allow us to write down an
ansatz for the most general K ∈ K/〈Kp, ∗Kp〉 that fails to satisfy the CKY equation.

Part of these results can be immediately generalized. Given a four-dimensional Einstein
manifold (M4, g) and a reductive isometry algebra g = ⊕N

i gi, i.e. each gi is a simple Lie
algebra, the space of conformal KY two-forms modulo the space of parallel two-forms can
be decomposed under g into a direct sum of a subset of the prime ideals ⊕i∈Sg

K
i , where each

gKi is either gi ⊕ gi or gi. The first case, gKi = gi ⊕ gi, is when the CKY two-forms can be
decomposed into KY and closed conformal KY two-forms. The second case, gKi = gi, is
when the two-forms cannot be decomposed like that, while Goursat’s lemma associates with
each such case an automorphism gi → gi. However, we cannot always decompose the CKY
two-forms into KY forms and closed conformal KY forms as we did for the extremal limits.

7. No more CKY two-forms

In this section, we work with the assumption that there is a closed conformal KY two-form Ka

such that

Ka
π�→ (0, ra). (76)

The CKY two-form equation (1) becomes

∇X Ka = X 	 ∧ (ra)
	 . (77)

We first work with (76) in order to derive an ansatz for Ka that fails to pass the test of (77).
This is an ansatz in the sense that if Ka satisfies (76), then it has to be of this form. The failure
of the ansatz to pass the test proves that there are only two CKY two-forms: Kp and its Hodge
dual.

Birth of an ansatz

The nth action of the Lie derivative on Ka along a Killing vector r, where r is a linear
combination of the right action as in (75), is also a CKY two-form with Ln

r Ka
π�→ (0,Ln

r ra). If
we integrate this, we arrive at

eεLr K
π�→ (0, eεLr ra). (78)

7 It is useful to think of the familiar Lorentz transformations acting on the three-dimensional Minkowski space
〈ra〉 = R

1,2, with sl(2, R) = so(1, 2).
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We can exponentiate the adjoint action [ra, rb] = −εab
crc and define the matrix Sεa

b ∈ SO(1, 2)

by eεLr ra = Sεa
brb. Subtracting (78) from Sεa

b times (76), we obtain

eεLr Ka − Sεa
bKb

π�→ (0, 0). (79)

We have shown that there are no parallel two-forms and so

eεLr Ka = Sεa
bKb. (80)

In order to proceed, we make the observation that ra act transitively at constant y on
the near-horizon geometry. The orbit is the space known as spacelike-warped AdS3, which
is diffeomorphic (as a manifold) to SL(2, R). The infinitesimal action on a group can be
integrated for all ε ∈ R, which defines the flow φε : wAdS3 → wAdS3 according to
r( f )|p = d

dt ( f ◦ φε )
∣∣
t=0

for any function f and at any point p; see, e.g., [30]. On a vector
field X and a one-form a, the exponential of the Lie derivative is related to the pushforward
and pullback of φε , respectively, by

eεLr X |p = φ−ε∗ X |φε (p), (81)

eεLr a|p = φε
∗ a|φε (p). (82)

We henceforth fix a slice y = y0 and a point p ∈ wAdS3. At any other point φε(p) ∈ wAdS3

of the same slice of y, (80) implies that Ka is given by

Ka|φε (p) = Sεa
bφ−ε

∗ Kb|p . (83)

This equation is what allows us to write an ansatz for Ka.
Next, we need an expression for the transformation matrix Sεa

b. ra transform the same as
their dual one-forms, θ̃a(rb) = δa

b , whereas according to the discussion above (60), we have
the relation θ̃a = M̃a

bθ
b, where M̃ab is an O(1, 2) matrix and θa is invariant under the action

of ra. By contracting the relation with rc, we arrive at M̃ab = θb(ra). Now consider the relation
θ̃a|p = M̃p

a
bθ

b|p at a fixed point p. It transforms as Sεa
bθ̃b|p = M̃φε (p)

a
bθ

b|p. We hence deduce
that

Sεa
b = M̃φε (p)a

cM̃p
b

c = θ c(ra)|φε (p) M̃p
b

c, (84)

which we can insert into (83).
At fixed y and fixed p ∈ wAdS3, we write Ka as

Ka|p = H(y)ab
1
2εb

cd θ̂
c|p ∧ θ̂d|p + G(y)abθ̂

y|p ∧ θ̂b|p. (85)

At any other point φε(p) of the same slice of y, Ka is given by (83):

Ka|φε (p) = Sεa
b
(
H(y)bc

1
2εc

deφ−ε
∗θ̂d |p ∧ φ−ε

∗θ̂ e|p + G(y)bcφ−ε
∗θ̂ y|p ∧ φ−ε

∗θ̂ c|p
)
. (86)

However, the orthonormal basis θ̂A is given by (62), and in particular, it is right invariant. If
we also use the expression for Sεa

b in (84) and absorb the matrix M̃p
a

b multiplying the left of
H(y)ab and G(y)ab in their definition, then (86) becomes

Ka = θb(ra)
(

H(y)bc
1
2εc

deθ̂
d ∧ θ̂ e + G(y)bcθ̂

y ∧ θ̂ c
)
, (87)

which is valid at any point of the fixed slice y. Furthermore, the equality should vary smoothly
over y. Our ansatz is thus that Ka is given by (87), with the unknown functions of y: the matrices
H(y)ab and G(y)ab. It should hold for any CKY two-form that satisfies our initial assumption
(76).
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Death of the ansatz

We have come a long way since we wrote down the CKY defining equation. So far we have
shown that there are either two independent CKY two-forms in the NHEK background, or else
there are three more linearly independent KY two-forms of the form (87). It is a straightforward
calculation to check whether (87) satisfies the CKY equation. We will explicitly demonstrate
here that, unless a background of the form (61) is precisely (locally) AdS4, there is no solution
to the matrices H(y)bc and G(y)bc.

We begin with taking the derivative of Ka with respect to X = ∂y, in which case the
right-hand side of the CKY equation (77) becomes

∇yKa = θ̂b(ra) e f θ̂ y ∧ θ̂b. (88)

Let us use the diagonal matrix M̂ by θ̂a = M̂a
bθ

b, i.e. from (62):

M̂a
b = eω

⎛
⎝1 0 0

0 1 0
0 0 eλ

⎞
⎠. (89)

We observe that the spin connection has no y-component, ωAB(∂y) = 0, so ∇y acts in the
orthonormal basis as ∂y. By using the ansatz (87) and comparing to (88), we find

∂yHbc = 0, (90a)

∂yGbc = e f M̂cb. (90b)

At this point, Hbc is a constant matrix and the y-dependence of Gbc is fixed.
Next, we take the covariant derivative of Ka with respect to lb. We can use the spin

connection as found in (64) and θa(lb) = δa
b . The right-hand side of the CKY equation is

∇lbKa = (lb)
	 ∧ (ra)

	 = θ e(ra)M̂cbM̂deθ̂
c ∧ θ̂d . (91)

In order to calculate the derivative ∇lbKa, we make use8 of dM̃ab = d (θb(ra)) = M̃adε
d

bcθ
c.

We thus calculate the left-hand side of (91) as

∇lbKa = M̃a
c
(
εcdb

1
2 Hd

eε
e

f g − Hcdε
d

egω̂
e

f (lb) − Gcgω̂
y

f (lb)
)
θ̂ f ∧ θ̂g

+ M̃a
c
(
εcdbGd

e − Hcdε
d

f eω̂
f
y(lb) − Gcdω̂

d
e(lb)

)
θ̂ y ∧ θ̂ e. (92)

Equating (91) and (92) gives two sets of equations9

εabdHd
c − Hadω̂c

d(lb) − Gadω̂
y

e(lb)ε
ed

c = M̂adM̂ebε
ed

c, (93)

εadcGd
b − Hadε

d
ebω̂

e
y(lc) − Gadω̂

d
b(lc) = 0. (94)

Setting b = c in these two equations, we find that the off-diagonal components of Gab

and Hab are zero. It is easy to see this. The elements ω̂e
y(lb) are nonzero only when e = b

and ω̂e
d(lb) are nonzero only when e, d and b are all different. So with b = c only the first

terms, εadcGd
b and εabdHd

c, survive and they give that the off-diagonal Gab and Hab are zero.
The same result is obtained whenever one or more of a, b and c are the same. The rest of the
equation components are

H22 + H00
1
2 eλ + G00ω̇ eω− f = −e2ω, (95a)

− H11 − H00
(
1 − 1

2 e2λ
) − G00(ω̇ + λ̇) e− f+ω+λ = e2ω+λ, (95b)

8 This follows from d f (Y ) = LY f with Y = la and f = M̃ab = θb(ra).
9 We use εabcεabd = −2δc

d and εabcεa′b′c = 2δ
[a
a′ δ

b]
b′ .
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− H22 + H11
1
2 eλ + G11ω̇ e− f+ω = e2ω, (95c)

− H00 − H11
(
1 − 1

2 e2λ
) − G11(ω̇ + λ̇) e− f+ω+λ = −e2ω+λ, (95d)

H11 − H22
1
2 eλ − G22ω̇ e− f+ω = −e2ω+λ, (95e)

H00 + H22
1
2 eλ + G22ω̇ e− f+ω = e2ω+λ, (95f)

G00 − H11(ω̇ + λ̇) e− f+ω+λ + G11
(
1 − 1

2 e2λ
) = 0, (95g)

G22 + H11ω̇ e− f+ω − G11
1
2 eλ = 0, (95h)

− G00 + H22ω̇ e− f+ω − G22
1
2 eλ = 0, (95i)

− G11 − H22ω̇ e− f+ω + 1
2 G22 eλ = 0, (95j)

G11 − H00(ω̇ + λ̇) e− f+ω+λ + G00
(
1 − 1

2 e2λ
) = 0 (95k)

and

− G22 + H00ω̇ eω− f − 1
2 G00 eλ = 0. (95l)

Rather than attempt to solve these, we make the following observation. First, it is easy to
show that H00 = −H11 and G00 = −G11. Combining (95d) and (95g), we obtain

1
2 H11 e2λ + 2H11(ω̇ + λ̇)2 e−2 f+2ω = −e2ω+λ. (96)

However, H11 is a constant and e2ω, e2λ and e2 f are rational polynomials of y. The left-hand
side of (96) is then a rational polynomial and so should be its right-hand side. However, this
is true only when eλ is a rational polynomial. This is not true for the NHEK geometry, but it
is true for AdS4, in which case eλ = 1. This concludes what we sought to confirm.

Since the NHEK geometry is the most general solution to the Einstein equations for a
metric of such a form (61), it is difficult to generalize this result. For instance, we can take a
metric of the NHEK form so that it does not satisfy the Einstein equations of motion. We must
still impose the condition RσμKσ

ν + RσνKσ
μ = 0 for a CKY two-form so that K still maps

to a doublet of Killing vectors. We then ask if the image of the map covers sl(2, R) or not.
Modulo parallel two-forms we arrive at the same set of equations given in (95). One can then
carry on and show that these equations are consistent only if λ = 0 and the space is conformal
to AdS4.
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Appendix A. Conformal KY transport

In this section, we rewrite the definition of a conformal KY tensor into a form of parallel
transport equation. By the definition of a conformal KY p-form K, there exist a (p + 1)-form
A and a (p − 1)-form B, which satisfy

∇μKν1···νp = Aμν1···νp + gμ[ν1 Bν2···νp ].

We thus have that Aμν1···νp = ∇[μKν1···νp ] and

Bν2···νp = p

d − (p − 1)
∇μKμν2···νp, (A.1)

where d is the spacetime dimension. Our aim is to add a p-form C and write the definition
of K using a covariant derivative DμO, where O will be a section K + A + B + C ∈
�p ⊕ �p+1 ⊕ �p−1 ⊕ �p.

From the B components of the transport equation, we will see that in the case of p = 2,
Bμ is a Killing vector for a large class of manifolds, which is an ingredient in the main part.
A possible application of the full transport equation is to put it on a computer and search for
CKY tensors.

A.1. A identity

We begin by writing

∇μAνν1···νp − ∇νAμν1···νp = [∇μ,∇ν]Kν1···νp − 2∇[μgν][ν1 Bν2···νp ].

We do the same with indices exchanged

∇νAμν1 ν2···νp − ∇ν1 Aμνν2···νp = −[∇ν,∇ν1 ]Kμν2···νp + 2∇[νgν1][μBν2···νp ], (A.2)

∇ν1 Aμνν2···νp + ∇μAνν1···νp = [∇ν1 ,∇μ]Kνν2···νp − 2∇[ν1 gμ][νBν2···νp ], (A.3)

and add the three equations together to obtain

2∇μAνν1···νp = [∇μ,∇ν]Kν1···νp − [∇ν,∇ν1 ]Kμν2···νp + [∇ν1 ,∇μ]Kνν2···νp

− 2∇[μgν][ν1 Bν2···νp ] + 2∇[νgν1][μBν2···νp ] − 2∇[ν1 gμ][νBν2···νp ]. (A.4)

In the following, we often use the identity

X[a1···ak] = 1

k

(
X|a1|[a2···ak] − X[a2|a1|a3···ak] + · · · + (−1)k+1X[aka2···ak−1]a1

)
and any other symmetries of the expression for X . Using them, we write (A.4) as

2∇μAνν1···νp

dxνν1···νp

(p + 1)!
=

{
pRμνν1

σ Kσ ν2···νp

− Rνν1μ
σ Kσ ν2···νp − (p − 1)Rνν1ν2

σ Kμσ ν3···νp + pRν1μν
σ Kσ ν2···νp

+ gμν1∇νBν2···νp + 2

p
gν1μ∇νBν2···νp − gμν∇ν1 Bν2···νp

} dxνν1···νp

(p + 1)!
. (A.5)

Using the algebraic Bianchi identity, we collect our first main identity

∇μAνν1···νp

dxνν1···νp

(p + 1)!
=

(
− p + 1

2
Rνν1μ

σ Kσ ν2···νp − p + 1

p
gμν∇ν1 Bν2···νp

)
dxνν1···νp

(p + 1)!
.
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We can also write this as

∇μA = − p + 1

2
Rνν1μ

σ Kσ ν2···νp

dxνν1···νp

(p + 1)!
− 1

p2
gμνdxν ∧ dB.

We also want one more expression for this. It is

∇μAνν1···νp = −Rμσν[ν1 Kσ
ν2···νp ] − p − 1

2
Rμσ [ν1ν2 Kσ |ν|ν3···νp ]

− 1

p2
gμν dBν1···νp + 1

p
gμ[ν1 dB|ν|ν2···νp ].

Using this last expression, we derive

∇μAμ
ν1···νp = −Rσ [ν1 Kσ

ν2···νp ] + p − 1

2
Rμσ [ν1ν2 Kμσ

ν3···νp ] − d − p

p2
dBν1···νp . (A.6)

A.2. B identity

We also need to find an expression for the derivative on B. We begin from (A.1) to obtain

∇ν1 Bν2···νp = p

d − (p − 1)
∇ν1∇μKμ

ν2···νp

= p

d − (p − 1)
[∇ν1 ,∇μ]Kμ

ν2···νp + p

d − (p − 1)
∇μ∇ν1 Kμν2···νp

= p

d − (p − 1)
[∇ν1 ,∇μ]Kμ

ν2···νp + p

d − (p − 1)
∇μ(−Aμν1···νp + gν1[μBν2···νp ]).

(A.7)

However, we also have

[∇ν1 ,∇μ]Kμ
ν2···νp = Rν1μ

μσ Kσ ν2···νp + (p − 1)Rν1μ[ν2|σ |Kμσ
ν3···νp ] (A.8)

= −Rσν1 Kσ
ν2···νp + p − 1

2
Rμσν1[ν2 Kμσ

ν3···νp ] (A.9)

where we used the algebraic Bianchi identity. Using identity (A.6), and putting it all together,
we arrive at

∇ν1 Bν2···νp = p

d − (p − 1)

(
−Rσν1 Kσ

ν2···νp + p − 1

2
Rμσν1[ν2 Kμσ

ν3···νp ]

)

− p

d − (p − 1)

(
−Rσ [ν1 Kσ

ν2···νp ] + p − 1

2
Rμσ [ν1ν2 Kμσ

ν3···νp ]

)

+ 1

d − (p − 1)

(
(d − p)∇[ν1 Bν2···νp ] + ∇ν1 Bν2···νp

)
− p − 1

d − (p − 1)
gν1[ν2∇|μ|Bμ

ν3···νp ]. (A.10)

The trace part with respect to ν1 and ν2 gives ∇μBμ
ν3···νp = 0, and collecting terms, we obtain

the B identity

∇μBν2···νp = +∇[μBν2···νp ] + p

d − p

(
Rσ [μKσ

ν2···νp ] − RσμKσ
ν2···νp

)
+ p(p − 1)

2(d − p)

(
Rστμ[ν2 Kστ

ν3···νp ] − Rστ [μν2 Kστ
ν3···νp ]

)
. (A.11)

20



Class. Quantum Grav. 29 (2012) 045004 Y Mitsuka and G Moutsopoulos

A.3. dB identity

Define now C = dB. We have

Cμν2···νp = p∇μBν2···νp − p2

d − p

(
Rσ [μKσ

ν2···νp ] − RσμKσ
ν2···νp

)
− p2(p − 1)

2(d − p)

(
Rστμ[ν2 Kστ

ν3···νp ] − Rστ [μν2 Kστ
ν3···νp ]

)
. (A.12)

Next define

�μνρν3···νp = ∇μCνρν3···νp − ∇νCμρν3···νp

so that

2∇μCνρν3···νp = �μνρν3···νp + �ρνμν3···νp + �ρμνν3···νp .

In calculating �μν1ν2 ν3···νp , we treat the ν2 index separately from the ν3, . . . , νp indices for
later use. When ∇ acts on Kν1···νp , we exchange it for A and B using the CKY equation. The
end formula is

�μν1ν2 ν3···νp

[ν3 ···νp ]= p[∇μ,∇ν1 ]Bν2···νp + p(p − 1)

d − p
((∇μRσν1 )K

σ
ν2···νp − (μ ↔ ν1))

+ p

d − p

( (∇μRσν2

)
Kσ

ν1 ν3···νp + (p − 2)
(∇ν1 Rσν3

)
Kσ

μν2 ν4···νp − (μ ↔ ν1)
)

+ p(p − 1)

d − p
Rσ

ν1
Aμσ ν2···νp − (μ ↔ ν1)

− p − 1

d − p

(
Rσ

ν1
gμν2 Bσ ν3···νp + (p − 2)Rσ

μgν1ν3 Bσν2 ν4···νp − (μ ↔ ν1)
)

+ p

d − p

(
2Rσν2 Aμ

σ
ν1 ν3···νp − 2(p − 2)Rσν3 Aμ

σ
ν1ν2 ν4···νp

)
+ 1

d − p

(
Rμν2 Bν1 ν3···νp + (p − 2)Rν1ν3 Bμν2 ν4···νp + (p − 2)Rσ

ν2
gμν3 Bσν1 ν4···νp

+ (p − 2)Rσ
ν3

gν1ν2 Bσμν4···νp + (p − 2)(p − 3)Rσ
ν3

gμν4 Bσν1ν2 ν5···νp − (μ ↔ ν1)
)

− p(p − 2)

2(d − p)

( (∇μRστν1ν2

)
Kστ

ν3···νp + (p − 2)
(∇ν1 Rστμν3

)
Kστ

ν2 ν4···νp

− 2
(∇μRστν2ν3

)
Kστ

ν1 ν4···νp − (p − 3)
(∇μRστν3ν4

)
Kστ

ν1ν2 ν5···νp − (μ ↔ ν1)
)

− p(p − 2)

2(d − p)

(
Rστν1ν2 Aμ

στ
ν3···νp + (p − 2)Rστμν3 Aν1

στ
ν2 ν4···νp − (μ ↔ ν1)

)
+ p(p − 2)

2(d − p)

(
4Rστν2ν3 Aμ

στ
ν1 ν4···νp + 2(p − 3)Rστ ν3ν4 Aμ

στ
ν1ν2 ν5···νp

)
− p − 2

2(d − p)

(
2Rστ

ν1ν2 gμσ Bτ ν3···νp − 2(p − 2)Rστ
ν1ν3 gσμBτν2 ν4···νp

+ (p − 2)Rστ
ν1ν2 gμν3 Bστ ν4···νp − (p − 2)Rστ

ν1ν3 gμν2 Bστ ν4···νp

− (p − 2)(p − 3)Rστ
ν1ν4 gμν3 Bστν2 ν5···νp − 4Rστ

ν2ν3 gμσ Bτν1 ν4···νp

+ 2(p − 3)Rστ
ν4ν3 gμσ Bτν1ν2 ν5···νp − 2(p − 3)Rστ

ν2ν3 gμν4 Bσν1τ ν5···νp

+ (p − 3)Rστ
ν4ν3 gμν2 Bσν1τ ν5···νp + (p − 3)(p − 4)Rστ

ν5ν3 gμν4 Bσν1τν2 ν6···νp

− (μ ↔ ν1)
)
, (A.13)

where
[ν3 ···νp ]= indicates that we antisymmetrize the right-hand side with respect to ν3, . . . , νp.

By alternating indices, and calculation of a few pages, we derive a differential condition for
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Cν1···νp ,

∇μCν1···νp

[ν1 ···νp ]= − p2

2
Rν1ν2μ

σ Bσ ν3···νp − p2

d − p
∇ν1 Rσ

μKσ ν2···νp − p2

d − p
∇ν1 Rσ

ν2
Kσμν3···νp

+ p2

d − p
Rσ

μAσ ν1···νp − p2

d − p
Rσ

ν1
Aμσ ν2···νp

+ p

d − p
gμν1 Rσ

ν2
Bσ ν3···νp − p

d − p
Rμν1 Bν2···νp

+ p2(p − 2)

4(d − p)
∇μRστν1ν2 Kστ

ν3···νp

+ p2(p − 2)

2(d − p)
Rστν1ν2 Aμ

στ
ν3···νp − p2(p − 2)

2(d − p)
Rστμν1 Aστ

ν2···νp

+ p(p − 2)

2(d − p)
Rμ

τ
ν1ν2 Bτ ν3···νp − p(p − 2)

2(d − p)
gμν1 Rστν2ν3 Bστ

ν4···νp . (A.14)

A.4. CKY two-forms

In the case of p = 2, a CKY two-form by definition satisfies

∇μKνρ = Aμνρ + 1
2 gμνBρ − 1

2 gμρBν (A.15)

and is in one-to-one correspondence with a section K ⊕ A ⊕ B ⊕C that is parallel with respect
to a connection D. This connection is given by the equation above, plus

∇μAν1ν2ν3

[ν1ν2ν3]= − 3
2 Rν1ν2μ

σ Kσν3 − 3
4 gμν1Cν2ν3 , (A.16)

∇μBν = 1
2Cμν − 1

d − 2
(RσμKσ

ν + RσνKσ
μ), (A.17)

∇μCν1ν2 = − 2Rν1ν2μ
σ Bσ

+ 2

d − 2

(∇ν2 Rσν1 Kσ
μ − ∇ν1 Rσν2 Kσ

μ + ∇ν2 RσμKσ
ν1 − ∇ν1 RσμKσ

ν2

)
+ 1

d − 2

(
4RσμAσ

ν1ν2 + 2Rσν1 Aσ
μν2 − 2Rσν2 Aσ

μν1

)
+ 1

d − 2

(
Rσν2 Bσ gμν1 − Rσν1 Bσ gμν2 + Rμν2 Bν1 − Rμν1 Bν2

)
. (A.18)

Equation (A.17) implies that Bμ is a Killing vector if RσμKσ
ν is antisymmetric with respect to

μ and ν. This is realized, for instance, if

Rμν = σ (x) gμν,

where σ (x) is an arbitrary function.

Appendix B. Massless Kerr is anti-de Sitter

We give here, for reference, the isometry of the massless, NUT-less, Kerr black hole into AdS4.
For simplicity, we rescale here t̂ and ψ by � so that the metric becomes

ds2 = �2

{
(r2 + a2)(r2 + �̃2)

r2 + y2
(dt̃ + y2 dψ̃ )2 + r2 + y2

(r2 + a2)(r2 + �̃2)
dr2

+ (y2 − a2)(y2 − �̃2)

r2 + y2
(dt̃ − r2 dψ̃ )2 + r2 + y2

(y2 − a2)(y2 − �̃2)
dy2

}
(B.1)
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with �̃ = �. It appears that a/�̃ is a physical parameter, while both a and �̃ can be scaled with
the coordinates freely. However, for |y| � a, the metric is isometric to the whole of AdS4,

ds2 = �2

{
−(1 + R2) dT 2 + R2 sin2 �2 d�2 + dR2

1 + R2
+ R2 d�2

}
,

by using the diffeomorphisms

t̃ = �̃

�̃2 − a2
T − a

�̃2 − a2
�, (B.2)

ψ = 1

a(�̃2 − a2)
� − 1

�̃(�̃2 − a2)
T, (B.3)

R2 sin2 � = (r2 + a2)(a2 − y2)

a2(�̃2 − a2)
, (B.4)

1 + R2 = (�̃2 − y2)(r2 + �̃2)

�̃2(�̃2 − a2)
. (B.5)

For |y| > �̃, we simply exchange a for �̃. However, in this case, the diffeomorphism covers
only half of the two-sphere cos � > 0.

Appendix C. Profiles in de Sitter Kerr

We give here a derivation of the profiles of �y and �r for a positive cosmological constant.
These results supplement the numerics of [31]. As with a negative cosmological constant, our
tool is the deformation of their graphs by varying M and L.

For M = 0, there are always two roots and one bounded region, where �r is positive.
Whether there is one or three extrema depends, respectively, on 1 < a2g2 or 1 � a2g2. As
we turn on M, there will be a change in the number of roots of �r when an extremum of �r

crosses the horizontal axis: �r = �′
r = 0. Eliminating M from the two equations gives

3g2r4 − (1 − a2g2)r2 + a2 = 0,

with the solutions of positive r2 only when 1 − a2g2 > 0. The two solutions are

r̄2
± = 1

6g2
(1 − a2g2 ±

√
(1 − a2g2)2 − 12a2g2),

and the determinant is non-negative when |a2g2 − 7| � 4
√

3. So there is no change in roots,
unless a2g2 � 7 − 2

√
12, in which case there are two transitions at M− and M+.

The extremal parameters (a, M) are parametrized in terms of r̄ as

M = r̄
(1 − g2r̄2)2

1 + g2r̄2
, a2 = r̄2 1 − 3g2r̄2

1 + g2r̄2
. (C.1)

However, the function r̄ �→ a2 is not one-to-one; see figure C1. That is, for any a, there are
two critical values of M and M±, where �r has a double root. The profile of �r is shown in
figure C2. The parametric plot of (M2, a) as a function of r̄ is drawn in figure 3.
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a g

r̄g

Figure C1. Extremal �r , a as a function of r̄.

(a) always two roots (b) M < M−

(c) M < M < M+ (d) M > M+

Figure C2. Graph of �r(r) in Kerr–dS for fixed a. (a) The graph for the case a2g2 > 7 − 4
√

3 and
(b)–(d) the graphs for a2g2 < 7 − 4

√
3.

Appendix D. AdS3 coordinates

Anti-de Sitter space in d = 3 has isometry algebra

so(2, 2) = sl(2, R)L ⊕ sl(2, R)R = 〈la〉a=0,1,2 ⊕ 〈ra〉a=0,1,2, (D.1)

where we choose a basis such that [ra, rb] = −εab
crc and [la, lb] = −εab

clc.
The (universal cover of) AdS3 metric ds2

AdS3
can be described in the coordinates (x, u, τ )

so that ∂u and ∂τ are manifest commuting isometries and x is hypersurface orthogonal. Up
to isometries, diffeomorphisms x �→ x′(x), parity transformations and GL(2, R) matrix
transformations on (u, τ ), the classification of sl(2, R) elements results in the following
choices.

(1) Global coordinates, for which ∂τ = 1
2 (r0 + l0) and ∂φ = 1

2 (r0 − l0),

ds2
AdS3

= −(1 + x2) dτ 2 + dx2

x2 + 1
+ x2 du2, (D.2)

with u = u + 2π , τ ∈ R and x � 0.
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(2) Spacelike self-dual global coordinates, for which ∂u = l2 and ∂τ = r0,

ds2
AdS3

= 1

4

(
−(x2 + 1) dτ 2 + dx2

x2 + 1
+ (du + x dτ )2

)
, (D.3)

with x, u, τ ∈ R. It covers the space globally.
(3) Spacelike self-dual non-extremal coordinates, for which ∂u = l2 and ∂τ = r2,

ds2
AdS3

= 1

4

(
−(x2 − 1) dτ 2 + dx2

x2 − 1
+ (du + x dτ )2

)
, (D.4)

with x, u, τ ∈ R.
(4) Spacelike self-dual extremal coordinates, for which ∂u = l2 and ∂τ = r0 + r2,

ds2
AdS3

= 1

4

(
−x2 dτ 2 + dx2

x2
+ (du + x dτ )2

)
, (D.5)

with x, u, τ ∈ R. These are the relevant coordinates that we used in the NHEK.
(5) Timelike self-dual coordinates, for which ∂τ = r0 + l2 and ∂u = l0,

ds2
AdS3

= 1

4

(
x2 dτ 2 + dx2

x2
− (du + x dτ )2

)
, (D.6)

with x, u, τ ∈ R. These are the relevant coordinates we used in the polar limit.
(6) The Poincaré coordinates, for which ∂τ = r0 + r2 and ∂u = l0 + l2,

ds2
AdS3

= dx2

x2
+ x2 du dτ, (D.7)

with u, τ ∈ R and x > 0.

In the above, we have set the cosmological length R = 1.
A parametrization of the quadric

(X−1)2 + (X0)2 − (X1)2 − (X2)2 = R2

in terms of the extremal spacelike self-dual coordinates, b = 0, can be achieved by
(−∞ < τ < ∞,−∞ < u < ∞, 0 < x)

A+ ≡ X−1 + X1 = R
√

x sinh
u

2
,

A− ≡ X−1 − X1 = −R

(
τ
√

x cosh
u

2
+ 1√

x
sinh

u

2

)
,

B+ ≡ X0 + X2 = R

(
τ
√

x sinh
u

2
+ 1√

x
cosh

u

2

)
,

B− ≡ X0 − X2 = R
√

x cosh
u

2
,

and the four-dimensional metric gMN = diag (−1,−1,+1,+1). Note that this parametrization
covers only the region with B+ > 0 and B+ > A+. A parametrization of the global spacelike
self-dual coordinates, b = 1 in (D.5), was given in [29]. This can be related to the above
embedding after an infinite boost b → 0; see for instance [28]. The right-invariant 1-forms θa

and the left-invariant 1-forms θ̂a are expressed as

θ0 = − 2

R2
[X−1 dX0 − X0 dX−1 + X1 dX2 − X2 dX1],

θ1 = − 2

R2
[X−1 dX1 − X1 dX−1 + X0 dX2 − X2 dX0],

θ2 = − 2

R2
[X−1 dX2 − X2 dX−1 − X0 dX1 + X1 dX0],

25



Class. Quantum Grav. 29 (2012) 045004 Y Mitsuka and G Moutsopoulos

θ̃0 = 2

R2
[X−1 dX0 − X0 dX−1 − X1 dX2 + X2 dX1],

θ̃1 = 2

R2
[X−1 dX1 − X1 dX−1 − X0 dX2 + X2 dX0],

θ̃2 = 2

R2
[X−1 dX2 − X2 dX−1 + X0 dX1 − X1 dX0],

regardless of what metric we choose in 2+2 dimensions.

Appendix E. Einstein solutions of NHEK type

Let us assume a metric of NHEK type

ds2 = e2ω(y)

[
−x2 dτ 2 + dx2

x2
+ e2λ(y) (du + x dτ )2

]
+ e2 f (y) dy2. (E.1)

We can make use of the computation of the curvature tensor in section 5 in order to derive its
Ricci tensor. The non-trivial components of the Einstein equation RAB = − 3

�2 ηAB come from
the diagonal flat components, which are

e−2ω − 1

2
e−2ω+2λ + (ω̈ + 3ω̇2 + ω̇(λ̇ − ḟ )) e−2 f = 3

�2
, (E.2)

− e−2ω + 1

2
e−2ω+2λ − (ω̈ + 3ω̇2 + ω̇(λ̇ − ḟ )) e−2 f = − 3

�2
, (E.3)

− 1

2
e−2ω+2λ − (ω̈ + 3ω̇2 + ω̇(4λ̇ − ḟ ) + λ̈ + λ̇2 − λ̇ ḟ ) e−2 f = − 3

�2
, (E.4)

− (3ω̈ + 3ω̇2 + ω̇(2λ̇ − 3 ḟ ) + λ̈ + λ̇2 − λ̇ ḟ ) e−2 f = − 3

�2
. (E.5)

The first and the second equations are the same. A further simplification is made by taking the
gauge f (y) = 0. Thus, the equations of motion are reduced to the following three equations:

e−2ω − 1

2
e−2ω+2λ + (

ω̈ + 3ω̇2 + ω̇λ̇
) = 3

�2
, (E.6)

1

2
e−2ω+2λ + (ω̈ + 3ω̇2 + 4ω̇λ̇ + λ̈ + λ̇2) = 3

�2
, (E.7)

3ω̈ + 3ω̇2 + 2ω̇λ̇ + λ̈ + λ̇2 = 3

�2
.

The triplet (ω, ω̇, ω̈) can be algebraically solved in terms of λ and its derivatives:

ω = f1(λ, λ̇, λ̈), (E.8)

ω̇ = f2(λ, λ̇, λ̈), (E.9)

ω̈ = f3(λ, λ̇, λ̈). (E.10)

Since ω̇ appears quadratically, there are two branches of this solution. However, the gauge
f = 0 is preserved by y �→ −y, and in fact, the two branches are seen to be equivalent. Whence
ω is given in terms of λ and its derivatives, provided that the solution for λ is consistent with
the three aforementioned equations. That is, we have ḟ1 = f2 and ḟ2 = f3. By computer
algebra, we find that these two differential equations are identical.
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At this point, the solution to (E.1) is given by a third-order highly nonlinear differential
equation ˙̈λ = f (λ, λ̇, λ̈). It is difficult to solve even more due to the gauge we chose. We
make the observation that the gauge f = 0 is also preserved by y �→ y + b for any constant
b, and thus, the differential equation has only two rather than three gauge-invariant degrees
of freedom. This is the same number of parameters as for the NHEK geometry, r̄2 and L.
Therefore, up to subtleties on the range of the parameters, the NHEK solution is the most
generic Einstein solution to (E.1).
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