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In this work we investigate the existence of traveling wave solu-
tions for a class of diffusive predator–prey type systems whose
each nonlinear term can be separated as a product of suitable
smooth functions satisfying some monotonic conditions. The pro-
file equations for the above system can be reduced as a four-
dimensional ODE system, and the traveling wave solutions which
connect two different equilibria or the small amplitude traveling
wave train solutions are equivalent to the heteroclinic orbits or
small amplitude periodic solutions of the reduced system. Applying
the methods of Wazewski Theorem, LaSalle’s Invariance Principle
and Hopf bifurcation theory, we obtain the existence results. Our
results can apply to various kinds of ecological models.
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1. Introduction

This work concerns with the existence of traveling wave solutions for the following diffusive
predator–prey type system:

{
ut = d1uxx − h(u)

(
g(w) − p(u)

)
,

wt = d2 wxx − �(w)q(u),
(1.1)
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where d1 > 0, d2 > 0, p(u), g(w), h(u), �(w) and q(u) are smooth functions satisfying some mono-
tonic conditions which will be mentioned later. System (1.1) is a general form of the diffusive
predator–prey system which contains many known models. Indeed, system (1.1) describes not only
the interspecies relations for ecological and social models, but also the base block of more compli-
cated food web, food chain and biochemical network structure. In ecology, the functions u(x, t) and
w(x, t) represent the species densities of the prey and predator, respectively; the constants d1 and d2
are the spatial diffusion rates of the two species; the function h(u)p(u) is the net growth rate of the
prey in the absence of predator; the function h(u) is the predator functional response which describes
consumption rate of prey by a unit number of predators; the graphs g(w) − p(u) = 0 and q(u) = 0
are the prey nullcline and predator nullcline on the phase portrait, respectively. In the sequel, we will
illustrate some models where the existence of traveling wave solutions has been studied in the past
decades.

In 1983, Dunbar [4,5] considers the existence of traveling wave solutions for the following
reaction–diffusion system based on the Lotka–Volterra differential equation model of a predator–prey
interaction:

⎧⎨
⎩ ut = d1uxx + Au

(
1 − u

K

)
− Buw,

wt = d2 wxx − C w + Duw,

(1.2)

where d1, d2, A, B , C , D , K are positive constants. A is the intrinsic rate of increasing for the prey
species; C is the death rate for the predator in the absence of the prey; K is the carrying capacity
of the environment; the predator functional response here is the identity function of u. By using the
Wazewski Theorem (an extension of shooting argument in higher dimension) together with a Lya-
punov function and LaSalle’s Invariance Principle, he proves the existence of traveling wave solutions.

Dunbar [6] further considered the existence of traveling wave solutions for system (1.2) but with
Holling type II functional response H2(u) = u

1+Eu , i.e.,

⎧⎨
⎩ ut = d1uxx + Au

(
1 − u

K

)
− B H2(u)w,

wt = d2 wxx − C w + D H2(u)w,

(1.3)

where E > 0. System (1.3) includes the effects of predation satiation: the consumption rate of prey
by a unit number of predators cannot continue to grow linearly with the number of prey available
but must “saturate” at some value (see [8,9]). The parameter 1/E here is the satiation rate of predation.
Assume d1 = 0, Dunbar uses the method similar to that in [4,5] and the invariant manifold theory to
prove the existence of traveling wave train and traveling front solutions for system (1.3). The case for
d1 �= 0 is then considered by Huang, Lu and Ruan [12]. Using the same shooting argument and the
Hopf bifurcation theory, they establish the existence of the traveling wave solutions connecting two
rest states as well as the existence of small amplitude traveling wave train solutions.

Later, Li and Wu [16] also consider the system (1.3) but with Holling type III functional response
H3(u) = u2

1+Eu2 , i.e.,

⎧⎨
⎩ ut = d1uxx + Au

(
1 − u

K

)
− B H3(u)w,

wt = d2 wxx − C w + D H3(u)w.

(1.4)

By using the similar methods of [4,5], they establish the existence of traveling wave solutions of (1.4)
for the case d1 = 0. In this work, we generalize the results of [16] to the case d1 �= 0.

In addition to the previous Holling types of functional responses, Ivlev in 1961 [14] introduces
another functional response H4(u) = E(1− e−Mu) where E represents the maximum rate of predation
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and M is a constant representing the decrease in motivation to hunt. The diffusive predator–prey
model with logistic growth rate of prey and Ivlev type functional response is described by⎧⎨

⎩ ut = d1uxx + Au

(
1 − u

K

)
− B H4(u)w,

wt = d2 wxx − C w + D H4(u)w.

(1.5)

If d1 = d2 = 0, system (1.5) is studied by many authors, see [1,2,15,17,18,20,22,24,25]. Most of these
papers concentrate on the existence and stability of limit cycle. Recently, in [23], Wang, Shi and Wei
also study the global bifurcation of a class of more general predator–prey models with a strong Allee
effect in prey population. On the other hand, if d1 �= 0 and d2 �= 0, there seems no results for the
existence of traveling wave solution of system (1.5). In Section 5.4 of this work, we will apply our
main theorem to obtain the new existence results for traveling wave solutions of system (1.5).

For other examples, Owen and Lewis [19] consider the following general system{
ut = εα0uxx + α1u f1(u) − α2 w f2(u),

wt = α0 wxx + α3 w f2(u) − α4 w,
(1.6)

where ε ≈ 0 and αi ’s are positive constants. They study the mechanism for which predation pressure
can slow, stall or reverse a spatial invasion of prey. Some numerical results of traveling wave solutions
are demonstrated in [19] for specific f i ’s described below. The function f1 is given by f1(u) = (1 − u)

or f1(u) = k(1 − u)(u −a) for some constants k and a; while f2 is given by Holling type I ( f2(u) = u),
type II, or type III functional response. However there is no theoretical proof for their numerical
results.

Motivated by the above models, throughout this article, we consider p(u), g(w), h(u), �(w) and
q(u) to be C1 functions satisfying the following assumptions:

(A1) p′(u) < 0 for u > 0, and p(K ) = 0 for some u = K > 0.
(A2) q′(u) < 0 for u > 0, and q(u∗) = 0 for some u∗ ∈ (0, K ).
(A3) g′(w) > 0, �′(w) > 0, �′′(w) � 0 for w ∈ R, g(0) = �(0) = 0 and g(∞) = �(∞) = ∞.
(A4) h(0) = 0 and h′(u) > 0 for u ∈ R.

Note that (A1)–(A4) hold for the systems (1.2)–(1.6) provided the corresponding parameters lying in
suitable regions. For example, let p(u) = A(1 − u/K ), g(w) = B w , h(u) = u, �(w) = w and q(u) =
C − Du for (1.2), then (A1)–(A4) hold if C/D < K .

For further simplification, we introduce the parameter d = d1/d2 and rescale the spatial variable x
by x̃ = x/

√
d2. Then system (1.1) is recast as (still using x instead of x̃)

{
ut = duxx − h(u)

(
g(w) − p(u)

)
,

wt = wxx − �(w)q(u).
(1.7)

According to assumptions (A1)–(A4), it is easy to see that system (1.7) has three spatially uniform
equilibria: E0 = (0,0), E1 = (K ,0), and E2 = (u∗, w∗) where

w∗ = g−1 ◦ p(u∗) > 0.

Note that E0 corresponds to the absence of both species; E1 corresponds to the prey being at the
environment carrying capacity in the absence of the predator; and E2 corresponds to the coexistence
of the two species. The purpose of this work is to establish the traveling wave solutions of system
(1.7) connecting the equilibria E1 and E2, which is called the “wave of invasion”, cf. [3].

A traveling wave solution of (1.7) is a solution of the form

u(x, t) = u(x + ct) = u(s) and w(x, t) = w(x + ct) = w(s), (1.8)
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where the constant c > 0 is the wave speed; s = x + ct is called the moving coordinate. Substitut-
ing (1.8) into (1.7), we have the following profile equations:

{
cu′ = du′′ − h(u)

(
g(w) − p(u)

)
,

cw ′ = w ′′ − �(w)q(u),
(1.9)

where ′ denotes the differentiation with respect to s. It is required that u and w of system (1.7)
are nonnegative for natural ecological restriction. Then we look for the nonnegative solutions of (1.9)
connecting the equilibria E1 and E2, i.e., satisfying the following boundary conditions:

u(−∞) = K , w(−∞) = 0, u(∞) = u∗, and w(∞) = w∗. (1.10)

Our main results are stated as follows.

Theorem 1.1. Assume (A1)–(A4) hold, and let d < 1, c∗ := √−4�′(0)q(K ).

(i) If 0 < c < c∗ , then there is no nonnegative traveling wave solution of system (1.7) connecting the equilibria
E1 and E2 .

(ii) If c > c∗ , �(w) = αg(w) and q(u) = β(h(u) − h(u∗)) for some α > 0 and β < 0, then there is a nonneg-
ative traveling wave solution of (1.7) connecting the equilibria E1 and E2 .
Furthermore, there exists a σ ∗ > 0 such that
(1) if |αβ| < σ ∗ , then the traveling wave solutions approach E2 monotonically for large s;
(2) if |αβ| > σ ∗ , then the traveling wave solutions have exponentially damped oscillations about E2 for

large s.

Extending the ideas of [4,5], we apply the Wazewski Theorem (see Theorem 2.3) together with
LaSalle’s Invariance Principle (see [11]) to prove Theorem 1.1. Note that although we apply the tech-
niques similar to those of [4,5], there are some differences. First, the model that we consider is more
general, and our results contain (or extend) all the results of [4,5,12,19] and some other models, e.g.,
the predator–prey model with Ivlev’s functional response (1.5) and some typical S.I.R. models, such
as Kermack–McKendrick model (cf. [7]). Second, due to the general setting of system (1.1), the con-
struction of Wazewski set is more complicated than those of [4,5], and it’s more difficult to find an
invariant orbit of system (1.9) in the Wazewski set. Third, we construct the Lyapunov function for
system (1.1) more generally to prove the existence results.

According to Theorem 1.1, we know that

c∗ = 2
√

D K − C ,2
√

D H2(K ) − C,2
√

D H3(K ) − C

for systems (1.2), (1.3) and (1.4) respectively. Note that for specific form of system (1.2), Dunbar [4]
pointed out that c∗ is a distinguished speed dividing the positive traveling wave solutions into two
types: wave of speed c < c∗ being one type connecting E0 and E2, wave of speed c � c∗ being of
the other type connecting E1 and E2. In our case, the existence of positive traveling wave solutions
connecting E0 and E2 is still open, and will be in our further study.

This paper is organized as follows. In Section 2, we recall a variant of Wazewski Theorem and
construct the Wazewski set. Then we use the standard Stable Manifold Theorem to investigate the
behavior of solutions for system (1.9) in the 4-dimensional phase space and prove that there is an
invariant solution orbit in the Wazewski set. In Section 3, we construct the Lyapunov function for the
invariant orbit. In Section 4, we prove Theorem 1.1 by using LaSalle’s Invariance Principle. In Section 5,
we apply our main theorem to systems (1.2)–(1.5). We further investigate the existence of traveling
wave train solutions for these systems by using the Hopf bifurcation theory. The technical proofs for
Proposition 2.4 and Lemma 2.18 are given in Appendices A and B respectively.
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2. Construction of Wazewski set and invariant orbit

In this section, we will apply the Wazewski Theorem to prove that there is an orbit invariant in a
bounded region containing E1 and E2. First, let’s rewrite system (1.9) as a system of first order ODEs
in R4,

⎧⎪⎨
⎪⎩

u′ = v,

dv ′ = cv + h(u)
(

g(w) − p(u)
)
,

w ′ = z,
z′ = cz + �(w)q(u).

(2.1)

Then the boundary conditions (1.10) yield

{
u(−∞) = K , v(−∞) = 0, w(−∞) = 0, z(−∞) = 0,

u(∞) = u∗, v(∞) = 0, w(∞) = w∗, z(∞) = 0.
(2.2)

It’s obvious that

H := {
(u, v, w, z): u = v = 0

}
and V := {

(u, v, w, z): w = z = 0
}

are invariant manifolds of (2.1). The eigenvalues of the linearization of (2.1) at (K ,0,0,0) are

λ1 = c + √
c2 − 4dh(K )p′(K )

2d
> 0, λ2 = c + √

c2 + 4�′(0)q(K )

2
,

λ3 = c − √
c2 + 4�′(0)q(K )

2
, λ4 = c − √

c2 − 4dh(K )p′(K )

2d
< 0.

The corresponding eigenvectors are given by

e1 = (−1,−λ1,0,0),

e2 = (−1,−λ2,−ψ(λ2),−λ2ψ(λ2)
)
,

e3 = (−1,−λ3,−ψ(λ3),−λ3ψ(λ3)
)
,

e4 = (−1,−λ4,0,0), (2.3)

where

ψ(λ) = 1

g′(0)h(K )

(
dλ2 − cλ + h(K )p′(K )

)
. (2.4)

Note that λ1 and λ4 satisfy the equation

dλ2 − cλ + h(K )p′(K ) = 0; (2.5)

λ2 and λ3 satisfy the equation

λ2 − cλ − �′(0)q(K ) = 0.

Let d < 1. If c2 < −4�′(0)q(K ), then λ2 and λ3 are complex conjugate eigenvalues and λ1 > Reλ2 =
Reλ3 > 0 > λ4. Thus there is a 1-dimensional strongest unstable manifold, which is tangent to e1 at
(K ,0,0,0). This manifold is actually contained in the invariant manifold V . Therefore a solution of
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(2.1)–(2.2) cannot lie in the strongest unstable manifold. It follows that a solution of (2.1)–(2.2) must
tend spirally to (K ,0,0,0). Hence w(s) < 0 for some s. Therefore, there is no nonnegative solution of
(2.1)–(2.2). The part (i) of Theorem 1.1 is then proved.

On the other hand, if c2 > −4�′(0)q(K ), then it’s obvious that λ1 > λ2 > λ3 > 0 > λ4. Note that
ψ(λ2) < 0 and ψ(λ3) < 0.

To investigate the structure of the eigenvalues at (u∗,0, w∗,0), we recall the Routh–Hurwitz Sta-
bility Criterion. Consider the polynomial equation

anxn + an−1xn−1 + · · · + a1x + a0 = 0.

The Routh array for the above equation is defined by

⎛
⎜⎜⎜⎜⎝

an an−2 an−4 an−6 . . .

an−1 an−3 an−5 an−7 . . .

b1 b2 b3 b4 . . .

c1 c2 c3 c4 . . .
...

...
...

... . . .

⎞
⎟⎟⎟⎟⎠

where

bk = − 1

an−1

∣∣∣∣ an an−2k
an−1 an−2k−1

∣∣∣∣ , ck = − 1

b1

∣∣∣∣an−1 an−2k−1
b1 bk+1

∣∣∣∣
and so on. For example, the Routh array for a four-degree polynomial (n = 4) is given by

⎛
⎜⎜⎜⎝

a4 a2 a0 0
a3 a1 0 0
b1 b2 0 0
c1 c2 0 0
d1 0 0 0

⎞
⎟⎟⎟⎠

where

b1 = − 1

a3

∣∣∣∣a4 a2
a3 a1

∣∣∣∣ , b2 = − 1

a3

∣∣∣∣a4 a0
a3 0

∣∣∣∣ ,
c1 = − 1

b1

∣∣∣∣a3 a1
b1 b2

∣∣∣∣ , c2 = − 1

b1

∣∣∣∣a3 0
b1 0

∣∣∣∣ = 0, d1 = − 1

c1

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ .
With the Routh array, the Routh–Hurwitz Stability Criterion [10,13,21] tells us how many roots having
positive real parts.

Proposition 2.1. The number of sign changes in the first column of the Routh array equals to the number of
roots with positive real parts.

Now we consider the characteristic equation of the linearization of (2.1) at (u∗,0, w∗,0), i.e.,

λ4 −
(

c + c

d

)
λ3 + c2 − ξ∗

d
λ2 + cξ∗

d
λ + ζ∗

d
= 0, (2.6)

where ξ∗ = −h(u∗)p′(u∗) > 0 and ζ∗ = −�(w∗)h(u∗)q′(u∗)g′(w∗) > 0. Applying Proposition 2.1, we
have the following lemma.
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Lemma 2.2. Eq. (2.6) has two eigenvalues with positive real parts and two eigenvalues with negative real
parts.

Proof. After simple computation, we have the following Routh array for Eq. (2.6)

⎛
⎜⎜⎜⎝

1 (c2 − ξ∗)/d ζ∗/d 0
−c − c/d cξ∗/d 0 0

(c2 − ξ∗)/d − ξ∗/(d + 1) ζ∗/d 0 0
cξ∗/d + c(1 + d)ζ∗/(b1d2) 0 0 0

ζ∗/d 0 0 0

⎞
⎟⎟⎟⎠ ,

where b1 = (c2 − ξ∗)/d − ξ∗/(d + 1). It can be verified that the signs of first column always change
twice. Hence Eq. (2.6) has two roots with positive real parts. On the other hand, if we replace λ by
iω in Eq. (2.6) then we have

ω2 = −ξ∗/(1 + d) < 0,

which is a contradiction. Hence there is no pure imaginary roots. The proof is complete. �
2.1. Wazewski Theorem

We now recall a variant of Wazewski Theorem which is a formalization and extension of the
shooting method in higher dimension (see Proposition 2 of [5]).

Let us consider the differential equation:

y′(s) = f
(

y(s)
)
, (2.7)

where f : Rn → Rn is a Lipschitz continuous function. Denote y(s; y0) as the unique solution of (2.7)
with initial value y(0) = y0. For convenience, the notation y0 · s stands for y(s; y0) and y0 · S for the
set of points y · s with s ∈ S ⊂ R. Now we define the following sets.

◦ Given W ⊆ Rn , we define the immediate exit set W − of W by

W − = {
y0 ∈ W : ∀s > 0, y0 · [0, s) � W

}
.

◦ Given Σ ⊆ W , we set Σ0 = {y0 ∈ Σ: ∃s0 > 0 such that y0 · s0 /∈ W }.
◦ For y0 ∈ Σ0, we define the exit time T (y0) of y0 by

T (y0) = sup
{

s: y0 · [0, s] ⊂ W
}
.

Note that y0 · T (y0) ∈ W − and T (y0) = 0 if and only if y0 ∈ W − . The Wazewski Theorem is stated as
the following.

Theorem 2.3. Consider Eq. (2.7). Suppose that

(i) if y0 ∈ Σ and y0 · [0, s] ⊆ c�(W ), then y0 · [0, s] ⊆ W ;
(ii) if y0 ∈ Σ , y0 · s ∈ W and y0 · s /∈ W − , then there is an open set V s about y0 · s disjoint from W −;
(iii) Σ = Σ0 , Σ is a compact set and intersects a trajectory of y′ = f (y) only once.

Then the mapping F (y0) = y0 · T (y0) is a homeomorphism from Σ to its image on W − .

A set W ⊆ Rn satisfying the conditions (i) and (ii) of Theorem 2.3 is called a Wazewski set.
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Fig. 1. The projection of P , Q , R , and S in the uw-plane.

2.2. The exit set W −

According to Theorem 2.3, the idea for choosing a Wazewski set for (2.1) is to exclude the region
where the trajectories will go to infinity. The vector field of system (2.1) leads us to exclude the region
where v and v ′ (or z and z′ , resp.) are both positive or negative. Thus, we set W (see Fig. 1) by

W = R+ ⊕ R3 \ (P ∪ Q ∪ R ∪ S), (2.8)

where

P = {
(u, v, w, z): 0 < u < u∗, w > w∗, z > 0

}
,

Q = {
(u, v, w, z): u > u∗, w < w∗, z < 0

}
,

R = {
(u, v, w, z): 0 < u < u∗, g(w) − p(u) < 0, v < 0

}
,

S = {
(u, v, w, z): u > u∗, g(w) − p(u) > 0, v > 0

}
.

Note that in the block P (or Q ∩ {w > 0}, resp.) z → ∞ (or z → −∞, resp.); in the block S (or R ,
resp.) v → ∞ (or v → −∞, resp.); the set W is the complement of the four blocks P , Q , R , S in
R+ ⊕ R3. It is easy to see that

∂W = (∂ P \ R) ∪ (∂ Q \ S) ∪ (∂ S \ Q ) ∪ (∂ R \ P ),

since P ∩ R �= ∅, and Q ∩ S �= ∅. Using the phase space analysis, the structure of W − is described in
the following proposition.

Proposition 2.4. The exit set W − is given by

W − = ∂W \ (
(u∗,0, w∗,0) ∪ (K ,0,0,0) ∪ J1 ∪ J2

)
,

where

J1 = J10 ∪ J11 ∪ J12 ∪ J13,

J10 = {
(u, v, w, z): u � u∗, v > 0, w = z = 0

}
,

J11 = {
(u, v, w, z): u = u∗, v > 0, w < 0, z = 0

}
,
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J12 = {
(u, v, w, z): u > u∗, v < 0, w < 0, z = 0

}
,

J13 = {
(u, v, w, z): u > u∗, v � 0, w < 0, z = 0, g(w) − p(u) < 0

}
,

J2 = {
(u, v, w, z): u = v = 0, w ∈ R, z ∈ R

}
.

Proof. The proof is tedious and illustrated in Appendix A. �
2.3. Construction of Σ

By the standard Stable Manifold Theorem, there is a 1-dimensional strongest unstable manifold Ω1
tangent to e1 at (K ,0,0,0), and a parametric representation for this manifold in a small neighborhood
of (K ,0,0,0) given by

F1(ε1) = (K ,0,0,0) + ε1e1 + O
(|ε1|2

)
.

There is also a 2-dimensional strongly unstable manifold Ω2 tangent to the linear subspace spanned
by e1 and e2 at (K ,0,0,0), and a parametric representation for this manifold in a small neighborhood
of (K ,0,0,0) given by

F2(ε1, ε2) = (K ,0,0,0) + ε1e1 + ε2e2 + O
(|ε1|2 + |ε2|2

)
.

Finally, the 3-dimensional unstable manifold Ω3 at (K ,0,0,0) has a parametric representation in a
small neighborhood of (K ,0,0,0) given by

F3(ε1, ε2, ε3) = (K ,0,0,0) + ε1e1 + ε2e2 + ε3e3 + O
(|ε1|2 + |ε2|2 + |ε3|2

)
.

Throughout the rest of this article, y(s;y0) stands for the solution of (2.1) with initial value y0 =
(u0, v0, w0, z0); u(s;y0) stands for the u coordinate of y(s;y0), and similarly for the other three
coordinates of y.

For y0 ∈ Ω1, we have the following properties.

Lemma 2.5. Let y(s;y0) be the solution of (2.1) with y0 ∈ Ω1 and 0 < u0 < K . Then there is a finite s0 > 0
such that u(s0;y0) < u∗ and v(s;y0) < 0 for s ∈ [0, s0]. That is, the solution enters region R.

Proof. Since e1 ∈ V is an invariant manifold, it follows that Ω1 ⊂ V . Thus, to investigate the dynamics
of solutions on Ω1, we may let w = z = 0 in (2.1). Let us fix a y0 ∈ Ω1 closed to (K ,0,0,0). The
parametrization F1 of Ω1 implies that there exists m > n > 0 such that y0 lies between the two
curves: v = m(h(u)−h(K )) and v = n(h(u)−h(K )). If m and n are large and small enough respectively,
then we claim that y(s;y0) always lies between those two curves until u = u∗ . We prove the claim
by contradiction. Suppose that there is an s1 > 0 such that v = m(h(u) − h(K )) and (v − m(h(u) −
h(K )))′ � 0 at s = s1 (where u∗ < u(s1) < K ), then we have

0 � v ′(s1) − mh′(u(s1)
)

v(s1)

= cv(s1) − h
(
u(s1)

)
p
(
u(s1)

) − mh′(u(s1)
)

v(s1)

= −h′(u(s1)
)(

h
(
u(s1)

) − h(K )
)
m2 + c

(
h
(
u(s1)

) − h(K )
)
m − p

(
u(s1)

)
h
(
u(s1)

)
.

However, the above inequality cannot hold when m is large enough. Therefore, the trajectory y(s;y0)

with s > 0 cannot lie below the curve v = m(h(u) − h(K )) whenever u∗ < u(s;y0) < K .
Similarly, suppose that there is an s2 > 0 such that v = n(h(u)−h(K )) and (v −n(h(u)−h(K )))′ � 0

at s = s2 (where u∗ < u(s2) < K ), then we have
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0 � v ′(s2) − nh′(u(s2)
)

v(s2)

= cv(s2) − h
(
u(s2)

)
p
(
u(s2)

) − nh′(u(s2)
)

v(s2)

= −h′(u(s2)
)(

h
(
u(s2)

) − h(K )
)
n2 + c

(
h
(
u(s2)

) − h(K )
)
n − h

(
u(s2)

)
p
(
u(s2)

)
.

The above inequality also cannot hold when n is small enough. Therefore, y(s;y0) with s > 0 cannot
lie above the curve v = n(h(u) − h(K )) whenever u∗ < u(s;y0) < K .

Since y(s;y0) is bounded by the curves v = m(h(u)− h(K )) and v = n(h(u)− h(K )), it follows that
v(s;y0) < 0 and u(s;y0) decreases until u(s;y0) < u∗ . The proof is complete. �

Since the invariant manifold Ω1 has w = 0 and z = 0, we immediately have the following lemma.

Lemma 2.6. Any trajectory y(s;y0) with y0 ∈ Ω1 , u0 > K and v0 > 0 will stay in the region {u > K , v > 0}
for s > 0.

Proof. Let y0 ∈ Ω1 be near (K ,0,0,0), then w(s;y0) = 0 for all s. Since u0 > K and v0 > 0, we have
v ′(s;y0) > 0 for s > 0. Hence the assertion follows. �
Lemma 2.7. Any trajectory y(s;y0) with 0 < u0 < K , w0 > 0, and z0 > c

2 w0 will stay in the region
{w > 0, z > c

2 w} whenever 0 < u(s;y0) < K .

Proof. Assume the assertion of this lemma is false. Let s1 > 0 be the first time that y(s;y0) leaves
the region {w > 0, z > c

2 w} with 0 < u(s1,y0) < K . Then for s ∈ [0, s1), we have

w ′(s) = z(s) >
c

2
w(s) with w(0) > 0,

which implies w(s1) > 0. Since

z(s1) = cw(s1)/2 and z′(s1) − (c/2)w ′(s1) � 0,

we have

0 � cz(s1) + �
(

w(s1)
)
q
(
u(s1)

) − c

2
z(s1)

� c2

4
w(s1) + �

(
w(s1)

)
q(K ) �

(
c2

4
+ �′(0)q(K )

)
w(s1).

This contradicts the assumption c > c∗ . The proof is complete. �
On Ω2, let’s parameterize a small circle centered at (K ,0,0,0) by

G(θ) = F2
(
ε cos(θ + ψ0), ε sin(θ + ψ0)

)
, (2.9)

where θ ∈ [0,2π ] and the constant phase ψ0 is chosen such that G(0) lies in Ω1 with u < K . Set

A := {
θ ∈ [0,2π): ∃s0 > 0 satisfying u

(
s0; G(θ)

) = u∗ and v
(
s; G(θ)

)
< 0 on s ∈ (0, s0]

}
.

By Lemma 2.5, A is nonempty since θ = 0 ∈ A. Denote

θ1 := sup
{
θ ∈ A: [0, θ) ⊂ A

}
and y1 := G(θ1).
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Remark 2.8.

(i) ψ0 is close to zero provided ε ≈ 0.
(ii) According to Lemma 2.5, there exists an s0 > 0 such that u(s0; G(0)) < u∗ and v(s; G(0)) < 0 for

s ∈ [0, s0]. The continuous dependence of a solution on initial condition implies that θ1 > 0.
(iii) Since v(0; G(θ)) � 0 for θ ∈ A, we have A ⊂ [0,3π/4 − ψ0). If θ ∈ [0,3π/4 − ψ0), then the

components u and w of G(θ) satisfy 0 < u < K and w > 0. Thus, we have w(0;y1) > 0.

Lemma 2.9. Let ε > 0 be small enough. If θ ∈ [0,3π/4 − ψ0), then the trajectory y(s; G(θ)) with s � 0 will
stay in the region {w > 0, z > cw/2} whenever 0 < u(s; G(θ)) < K .

Proof. Let y0 = G(θ) ∈ Ω2. From (2.9), the w and z coordinates of y0 satisfy w > 0 and z ≈ λ2 w >

cw/2. Then the assertion follows by Lemma 2.7. �
Lemma 2.10. Suppose y0 = G(θ) for some θ ∈ (0, θ1). Then y(s;y0) will leave W and enter the region R or P .

Proof. Fix a θ ∈ (0, θ1), then there exists s0 such that

u
(
s0; G(θ)

) = u∗ and v
(
s; G(θ)

)
< 0 for s ∈ (0, s0].

If (g(w) − p(u))s=s0 < 0, we have

dv ′(s0) = (
cv + h(u)

(
g(w) − p(u)

))
s=s0

< 0,

which implies v(s+
0 ) < 0 and u(s+

0 ) < u∗ . That is, the trajectory enters region R .
If (g(w) − p(u))s=s0 � 0, then w(s0) � w∗ by u(s0) = u∗ . Since v(s0) < 0, we have u(s+

0 ) < u∗ .
By Lemma 2.9, we have w(s0) > 0 and z(s0) > c

2 w(s0) > 0. Thus w(s+
0 ) > w∗ . That is, the trajectory

enters region P . The proof is complete. �
The next lemma shows that there is a “last” trajectory on Ω2 such that u(s) decreases to the value

u = u∗ .

Lemma 2.11. There exists an s0 > 0 such that u(s0;y1) = u∗ and v(s0;y1) = 0, see Fig. 2. Moreover, we have

g
(

w(s0;y1)
) − p

(
u(s0;y1)

)
> 0 and w(s0;y1) > w∗.

Proof. Recall that u∗ < u(0;y1) < K , v(0;y1) � 0 and w(0;y1) > 0. The proof consists of several steps
as follows.

(1) We claim that u(s;y1) � u∗ or v(s;y1) � 0 for some s > 0.

Suppose the claim is false, i.e., u(s;y1) > u∗ and v(s;y1) < 0 for all s > 0. Then u(s;y1) decreases
monotonically to u(∞;y1) � u∗ and v(∞;y1) = 0. By Lemma 2.9, we have

w ′(s;y1) = z(s;y1) > c/2w(s;y1),

which implies w(∞;y1) = ∞. Then it follows that

dv ′(s;y1) = cv(s;y1) + h
(
u(s;y1)

)(
g
(

w(s;y1)
) − p

(
u(s;y1)

)) → ∞,

as s → ∞. However, this fact contradicts v(∞;y1) = 0. Hence the claim follows.
(2) Let s0 be the first time that u(s;y1) = u∗ or v(s;y1) = 0. We claim that v(s0;y1) = 0,

v(s;y1) < 0 for s ∈ (0, s0), and u(s0;y1) � u∗.
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Fig. 2. Projection of the trajectory y(s;y1) in the uw-plane.

Suppose the claim is false, i.e.,

v(s;y1) < 0 for s ∈ (0, s0] and u(s0;y1) = u∗.

Then, by the Implicit Function Theorem, there exists a function s0(θ) with θ ≈ θ1 such that

u
(
s0(θ); G(θ)

) = u∗.

By the continuous dependence of the solution on θ , we have for θ ≈ θ1

v
(
s; G(θ)

)
< 0 on s ∈ (

0, s0(θ1) + δ
]
.

Also, by continuity of the function s0(θ), we have s0(θ) ∈ (0, s0(θ1) + δ] for θ ≈ θ1. Therefore, there
are θ � θ1 satisfying

v
(
s0; G(θ)

)
< 0 on

(
0, s0(θ)

]
and u

(
s0(θ); G(θ)

) = u∗.

This fact contradicts the definition of θ1. Thus the claim follows.
(3) We claim that g(w(s0;y1)) − p(u(s0;y1)) > 0 and v ′(s0;y1) > 0.
Indeed, since v(s0;y1) = 0 and v(s;y1) < 0 on s ∈ (0, s0), we have v ′(s0;y1) � 0 and

dv ′(s0;y1) = h
(
u(s0;y1)

)(
g
(

w(s0;y1)
) − p

(
u(s0;y1)

))
� 0.

Thus g(w(s0;y1)) − p(u(s0;y1)) � 0. Suppose g(w(s0;y1)) − p(u(s0;y1)) = 0, then

dv ′′(s0;y1) � h
(
u(s0;y1)

)
g′(w(s0;y1)

)
z(s0;y1),

which leads to

dv ′′(s0;y1) > h
(
u(s0;y1)

)
g′(w(s0;y1)

)
cw(s0;y1)/2 > 0

by Lemma 2.9. This implies that v(s;y1) � 0 for s ≈ s0, which contradicts the definition of s0. There-
fore g(w(s0;y1)) − p(u(s0;y1)) > 0 and v ′(s0;y1) > 0.

(4) We claim that u(s0;y1) = u∗ .
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Since v(s0;y1) = 0 and v ′(s0;y1) > 0, by the Implicit Function Theorem, there exists a function
s0(θ) for θ ≈ θ1 such that v(s0(θ); G(θ)) = 0. Suppose u(s0;y1) > u∗ . Then, the continuous depen-
dence of the solution on θ implies

v
(
s0(θ); G(θ)

) = 0, v ′(s0(θ); G(θ)
)
> 0; v

(
s; G(θ)

)
< 0 on s ∈ (

0, s0(θ)
);

and u(s0(θ), G(θ)) > u∗ for θ ≈ θ1. Thus θ /∈ A for θ ≈ θ1, a contradiction. Hence u(s0;y1) = u∗ . It
follows from g(w(s0;y1)) − p(u(s0;y1)) > 0 that w(s0;y1) > w∗ . The proof is complete. �
Lemma 2.12. There exists a θ2 ∈ [θ1,3π/4 − ψ0) such that the v coordinate of y2 := G(θ2) is equal to zero.

Proof. By (2.9), the v coordinate of G(θ) is given by

v = −ε

√
λ2

1 + λ2
2 sin(θ + ψ0 + ψ1) + O

(
ε2),

where sinψ1 = λ1/

√
λ2

1 + λ2
2 and ψ1 ∈ (π/4,π/2). Obviously v = 0 at

θ2 := π − ψ0 − ψ1 + O (ε) ∈ (0,3π/4 − ψ0).

Recall that the v coordinate of G(θ1) is non-positive. It follows that θ2 � θ1. The proof is complete. �
On Ω3, we consider a small sphere centered at (K ,0,0,0) with radius ε, which is parameterized

by

U (θ,φ) = F3
(
ε cos(θ + ψ0) sinφ,ε sin(θ + ψ0) sinφ,ε cosφ

)
, (2.10)

where θ ∈ [0,2π ] and φ ∈ [0,π ]. The constant phase ψ0 is the one in (2.9). This sphere contains the
arc G(θ) = U (θ,π/2). According to Lemma 2.12 we know that the sphere intersects the hyperplane
v = 0 at least one point U (θ2,π/2). The next lemma shows that the intersection is a smooth closed
curve.

Lemma 2.13. The intersection of the sphere defined by (2.10) and the hyperplane v = 0 is a smooth closed
curve.

Proof. The equation for the intersection of the sphere with v = 0 is given by

M(θ,φ) := λ1 cos(θ + ψ0) sinφ + λ2 sin(θ + ψ0) sin φ + λ3 cosφ + O (ε) = 0.

Since the v coordinate of G(θ2) is zero, we have M(θ2,π/2) = 0. Furthermore,

∂M

∂φ

∣∣∣∣
(θ2,π/2)

= −λ3 + O (ε) �= 0,

when ε is small enough. By the Implicit Function Theorem, there exists a C1 function φ(θ), θ near
π/2 solving M(θ,φ) = 0. The points solving M(θ,φ) = 0 in a neighborhood of the curve can be
defined by

cot φ = − 1 (
λ1 cos(θ + ψ0) + λ2 sin(θ + ψ0)

)
.

λ3
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Moreover, the points where ∂M
∂φ

= 0 in a neighborhood of the curve are defined by

tanφ = 1

λ3

(
λ1 cos(θ + ψ0) + λ2 sin(θ + ψ0)

)
.

Since the two curves are disjoint, by the Implicit Function Theorem, the function φ(θ) can be extend
to θ ∈ [0,2π ]. The proof is complete. �
Lemma 2.14. The intersection of the sphere defined by (2.10) and the hyperplane z = 0 is a smooth closed
curve.

Proof. The equation for the intersection of the sphere with z = 0 is given by

N(θ,φ) := λ2ψ(λ2) sin(θ + ψ0) sinφ + λ3ψ(λ3) cosφ + O (ε) = 0. (2.11)

Since the z coordinate of G(0) is zero, we have N(0,π/2) = 0. Furthermore,

∂N

∂φ

∣∣∣∣
(0,π/2)

= −λ3ψ(λ3) + O (ε) �= 0,

when ε is small enough. By the Implicit Function Theorem, there exists a C1 function φ(θ), with θ

near 0 solving N(θ,φ) = 0. The points solving N(θ,φ) = 0 in a neighborhood of the curve can be
defined by

cotφ = − 1

λ3ψ(λ3)
λ2ψ(λ2) sin(θ + ψ0).

Furthermore, the points where ∂N
∂φ

= 0 in a neighborhood of the curve are defined by

tanφ = 1

λ3ψ(λ3)
λ2ψ(λ2) sin(θ + ψ0).

Since the two curves are disjoint, by the Implicit Function Theorem, we can extend the domain of
φ(θ) to θ ∈ [0,2π ]. The proof is complete. �
Lemma 2.15. There exists a point y3 lying on the sphere defined by (2.10) such that the v and z coordinates of
y3 are both zero.

Proof. Let θ(φ) be the function solving (2.11), which defines the smooth curve of the intersection of
the sphere with {z = 0}. It follows that

θ(π/2) + ψ0 = 0 + O (ε) or π + O (ε).

Substituting θ(φ) into N(θ(π/2),π/2) = 0 gives the v coordinate of the smooth curve of the in-
tersection of the sphere with {z = 0} at φ = π/2. Indeed, we have N(0 + O (ε),π/2) > 0 and
N(π + O (ε),π/2) < 0. Therefore the v coordinate takes both positive and negative values on the
close curve of the intersection of the sphere with {z = 0}. The proof is complete. �

Now we are ready to give the definition of Σ . First, the range of φ is restricted to make cosφ � 0
so that the hemisphere of the sphere defined by (2.10) is under our consideration. Then we will define
Σ as a subset of the hemisphere. The following notations and Fig. 3 can help us to understand the
set Σ .
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Fig. 3. The topological quadrangle Σ .

Notation 2.16.

(1) Let y0 := G(θ0) be the intersection of the sphere with Ω1 in the region 0 < u < K .
(2) Denote by ŷ0yi , i = 1,2, the portion of the circle defined in (2.9) with θ ∈ (0, θi).
(3) Denote by ŷ2y3 the portion of the intersection of the hemisphere with {v = 0} lying between (not

including) y2 and y3.
(4) Denote by ŷ3y0 the portion of the intersection of hemisphere with {z = 0} lying between (not

including) y3 and y0.
(5) Let B be a small ball around y0 in the space spanned by e1, e2 and e3. Let y4 and y5 be the in-

tersection points of B with ŷ3y0 and ŷ2y2 respectively. Denote by ŷ4y5 the portion of intersection
of the hemisphere with B (not including y4, y5).

Now we define the set Σ as the closed topological quadrangle in the hemisphere, whose sides
consist of the closure of the arcs ŷiyi+1, i = 1,2,3,4, and ŷ5y1.

2.4. Existence of an invariant orbit

According to previous construction, the set Σ is obviously simply connected. Under the hypothesis
Σ0 = Σ , it can be shown that the image of Σ under the mapping F defined in Theorem 2.3 is not
simply connected.

Lemma 2.17. If Σ0 = Σ , then the set F (Σ) is not simply connected, where F (·) is defined in Theorem 2.3.

Proof. The result can be proved by following the ideas of [5] with slight modifications. Since the
detail is tedious, we illustrate it in Appendix B. �

Next, we prove the existence of an invariant orbit in the set W by using the Wazewski Theorem.

Lemma 2.18. There exists a y ∈ Σ such that y · s ∈ W for s � 0.

Proof. Suppose that no such y exists in Σ , i.e., Σ0 = Σ ; we will show that it contradicts the result
of Theorem 2.3.
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Obviously the condition (i) of Theorem 2.3 holds since W is closed. The condition (iii) of Theo-
rem 2.3 also holds by the construction of Σ . Next, we show that the condition (ii) in Theorem 2.3
holds.

First, we claim that if y ∈ Σ then

y · s /∈ J1 ∪ J2 ∪ {
(u∗,0, w∗,0), (K ,0,0,0)

}
, for all s � 0. (2.12)

Obviously, y · s �= (u∗,0, w∗,0), (K ,0,0,0) since they are equilibria. Furthermore, y · s /∈ J2 since J2 =
H is an invariant manifold, and y cannot be in J2 (y is close to (K ,0,0,0)). Also y · s /∈ J10 since J10
is a subset of the invariant manifold V while y cannot be in V .

If y · s1 ∈ J12 ∪ J13 for some s1 < T (y), then

z′(s1) = �
(

w(s1)
)
q
(
u(s1)

)
> 0,

which implies z(s−
1 ) < 0 and y · s−

1 ∈ Q . This fact contradicts s1 < T (y). Thus y · s /∈ J12 ∪ J13.
If y · s1 ∈ J11 for some s1 < T (y), then

u(s1) = u∗, v(s1) > 0, w(s1) < 0, z(s1) = 0,

which implies z′(s1) = 0 and z′′(s1) > 0. Therefore,

u
(
s−

1

)
< u∗, v

(
s−

1

)
> 0, w

(
s−

1

)
< 0 and z

(
s−

1

)
> 0.

Let s2 := inf{s: u(t) < u∗, w(t) < 0, on (s, s1)}. Then s2 > 0 since u(0) > u∗ . It follows that

dv ′ � cv and z′ � cz, for s ∈ (s2, s1). (2.13)

At time s2, there are two possibilities:

(a) u(s2) = u∗, v(s2) � 0 or (b) w(s2) = 0, z(s2) � 0.

By (2.13), case (a) yields v(s) � 0 on (s2, s1) and which contradicts v(s−
1 ) > 0. Similarly, by (2.13),

case (b) yields z(s) � 0 on (s2, s1) and which contradicts z(s−
1 ) > 0. Thus we conclude that y · s /∈ J11.

Hence the assertion of the claim (2.12) follows.
Now we verify the condition (ii) in Theorem 2.3. Let y ∈ Σ , y · s ∈ W and y · s /∈ W − . According

to (2.12), y · s must be in the interior of W . Hence there is an open set about y · s disjoint from W − .
Since all the conditions in Theorem 2.3 hold, it follows that F (Σ) is homeomorphic to Σ . Then

we have a contradiction since F (Σ) is not simply connected. The proof is complete. �
3. Lyapunov function for the invariant orbit

Let ȳ(s) be the orbit which is positively invariant in W . Our purpose is to construct a Lyapunov
function for ȳ(s). Some prior estimations for ȳ(s) are needed for the construction of Lyapunov func-
tion.

Lemma 3.1. The coordinate functions ū(s) and w̄(s) of ȳ(s) are positive for all s.

Proof. Since ȳ(0) ∈ Ω3 \ Ω2 (see Claim II of Appendix B) and 0 < λ3 < λ2 < λ1, ȳ(s) will approach
(K ,0,0,0) along the direction of e3 as s → −∞. The construction of Σ implies that the components
of ȳ(s) satisfy 0 < ū(s) < K and w̄(s) > 0 for s → −∞.

Suppose s1 := sup{s: ū(s) > 0} < ∞. Then ū(s1) = 0 and v̄(s1) � 0. Since ȳ(s) /∈ H and v̄(s1) < 0,
then ū(s+

1 ) < 0 and ȳ(s+
1 ) /∈ W , which leads to a contradiction. Thus s1 must be ∞, i.e., ū(s) > 0 for

all s.
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Suppose s2 := sup{s: w̄(s) > 0} < ∞. Then w̄(s2) = 0 and z̄(s2) � 0. Since ȳ(s) /∈ V , Q and R , we
have z̄(s2) < 0, ū(s2) ∈ (0, u∗] and v̄(s2) � 0 respectively. If v̄(s2) = 0 then

dv̄ ′(s2) < −h
(
ū(s2)

)
p
(
ū(s2)

)
< 0,

which implies v̄(s+
2 ) < 0, ū(s+

2 ) < u∗ and ȳ(s+
2 ) ∈ R , a contradiction. Hence, v̄(s2) > 0 and ū(s+

2 ) > u∗ ,
which leads to ȳ(s+

2 ) ∈ Q , also a contradiction. Thus, s2 must be ∞, i.e., w̄(s) > 0 for all s. The proof
is complete. �
Lemma 3.2. The coordinate functions ū(s) and w̄(s) of ȳ(s) are bounded above. In fact, ū(s) < K and
w̄(s) < M for some constant M > 0.

Proof. The proof consists of the following six steps.
(1) We prove that ū(s) < K for all s > 0.
Suppose s1 := sup{s > 0: ū(s) < K } < ∞, then v̄(s1) � 0. Since w̄(s) > 0 for all s, we have

ū(s1) = K > u∗, g
(

w̄(s1)
) − p

(
ū(s1)

)
> 0 and v̄(s1) � 0.

Then v̄ ′(s1) > 0, v̄(s+
1 ) > 0, ū(s+

1 ) = K > u∗ , g(w̄(s+
1 )) − p(ū(s+

1 )) > 0 and ȳ(s+
1 ) ∈ S , a contradiction.

Thus, s1 must be ∞, i.e., ū(s) < K for all s > 0.
(2) Let’s study the behavior of ȳ(s) projected in uw-plane, cf. Fig. 1.
First, we have the following observations:

◦ since ȳ(s) does not enter region P , we have z̄(s) < 0 whenever 0 < ū(s) < u∗ and w̄(s) > w∗;
◦ since ȳ(s) does not enter region R , we have v̄(s) > 0 whenever 0 < ū(s) < u∗ and 0 < w̄(s) < w∗;
◦ since ȳ(s) does not enter region Q , we have z̄(s) > 0 whenever ū(s) > u∗ and 0 < w̄(s) < w∗;
◦ since ȳ(s) does not enter region S , we have v̄(s) < 0 whenever ū(s) > u∗ and w̄(s) > w∗ .

Therefore, we know that

◦ w̄(s) is decreasing in the region {0 < u < u∗, w > w∗} and increasing in the region {u > u∗, 0 <

w < w∗};
◦ ū(s) is increasing in the region {0 < u < u∗, 0 < w < w∗} and decreasing in the region {u >

u∗, w > w∗}.

Thus, to prove that w̄(s) is bounded above, it suffices to prove that w̄(s) is bounded above in the
region {u > u∗}.

(3) Now we prove that it is impossible that ū(s) > u∗ for all sufficiently large s and lims→∞ w̄(s) =
∞.

Indeed, since ȳ(s) does not enter region S , we have v̄(s) � 0 and which implies that ū(s) is mono-
tonically decreasing to ū(∞) � u∗ and lims→∞ v̄(s) = 0. Then it follows that

dv̄(s)′ � cv̄(s) + h
(
ū(s)

)(
g
(

w̄(s)
) − p

(
ū(s)

)) → ∞,

which contradicts lims→∞ v̄(s) = 0.
(4) We claim that if ȳ(s) enters the region

Γ := {
u > u∗, w > 0, g(w) − p(u) < 0

}
,

then z̄(s) � cw∗ whenever ȳ(s) remains in region Γ .
If ȳ(s) ∈ Γ then z̄′(s) � cz̄(s) and z̄(s) � 0 (since ȳ(s) /∈ Q ). This yields w̄ ′(s) = z̄(s) � z′(s)/c and

dz̄/dw̄ � c. Integrating dz̄/dw̄ � c with respect to w̄ from 0 to w∗ gives z̄(s) � cw∗ . Hence the claim
follows.
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(5) We claim that if ȳ(s) enters into the region Γ and crosses the boundary g(w) − p(u) = 0 into
the region {u > u∗, w > 0, g(w) − p(u) > 0}, then the component v̄ is uniformly bounded below as
it reaches the boundary g(w) − p(u) = 0.

Suppose s1 is the first time that g(w̄(s1)) − p(ū(s1)) = 0, then (g(w̄(s1)) − p(ū(s1)))
′ � 0, which

leads to

g′(w̄(s1)
)
z(s1) − p′(ū(s1)

)
v̄(s1) � 0

or

v̄(s1) � z̄(s1)g′(w̄(s1))

p′(ū(s1))
� cw∗g′(w̄(s1))

p′(ū(s1))
.

The above last term is uniformly bounded below since g(w) and p(u) are C1 functions and the
closure of Γ is a compact set. Then the claim follows.

(6) We prove that M := sup{w̄(s): u∗ < ū(s) < K } < ∞.
Take γn ∈ R such that limn→∞ γn = ∞. If M = ∞, then there exists a sequence sn such that

g(w̄(sn)) − p(ū(sn)) = γn . Let

τn := max
{

t < sn: g
(

w̄(t)
) − p

(
ū(t)

) = 0
}
.

By step (2), v(τn) � 0 is uniformly bounded below for all n. Steps (2) and (3) also imply that ȳ(s)
must enter the regions {0 < u < u∗, w > w∗} and {u > u∗, 0 < w < w∗} infinitely many times. It
follows that

tn := min
{

t > sn: z̄(t) = 0
}

< ∞ and ū(tn) � u∗.

Without loss of generality, we may assume lim(w̄(tn) − w̄(sn)) �= 0 (by suitable selecting γn). Since
w̄ ′(s) = z̄(t+

n ) = 0 �= ∞, we have limn→∞(tn − sn) �= 0. Integrating

dv ′(s) = cv + h
(
u(s)

)(
g
(

w(s)
) − p

(
u(s)

))
from s = τn to s = tn gives

e− c
d tn v(tn) = e− c

d τn v(τn) +
tn∫

τn

e− c
d sh

(
u(s)

)(
g
(

w(s)
) − p

(
u(s)

))
ds

� v(τn) +
tn∫

sn

e− c
d sh

(
u(s)

)(
g
(

w(s)
) − p

(
u(s)

))
ds

� v(τn) + c

d

(
e− c

d sn − e− c
d tn

)
h(u∗)γn.

The last term of the above inequalities is positive for sufficiently large n since limn→∞ γn = ∞ and
limn→∞(tn − sn) �= 0. It follows that v(tn) > 0, and which contradicts that ȳ(s) does not enter region S ,
see Fig. 4. Thus M < ∞ and the proof is complete. �

Next, we show that the coordinate functions v̄(s) and w̄(s) of ȳ(s) are also bounded.
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Fig. 4. Phase plane for the proof of step (6) of Lemma 3.2.

Lemma 3.3. There exist positive constants Ki , i = 1,2,3,4, such that the coordinate functions of ȳ(s) satisfy-
ing

−K1h
(
ū(s)

)
< v̄(s) < K2ū(s) and −K3�

(
w̄(s)

)
< z̄(s) < K4 w̄(s) (3.1)

for all s � 0.

Proof. Since ȳ(s) approaches (K ,0,0,0) along the direction of e3 as s → −∞, the construction of Σ

implies that the components of ȳ(s) satisfy

0 < ū(s) < K , v̄(s) < 0, w̄(s) > 0 and z̄(s) > 0, for s → −∞.

Therefore, we may assume 0 < ū(0) < K , v̄(0) < 0, w̄(0) > 0 and z̄(0) > 0. Then (3.1) holds for s = 0
provided each Ki is sufficiently large. In the following four steps, we prove that (3.1) holds for s > 0.

(1) We claim that there is a K1 > 0 such that −K1h(ū(s)) < v̄(s) for s > 0.
Suppose the claim is false, then for any K1 > 0 there is an s1 > 0 such that

v̄(s1) = −K1h
(
ū(s1)

)
and v̄ ′(s1) � −K1h′(ū(s1)

)
ū′(s1).

If v̄(s) < −K1h(ū(s)) for s > s1 and K1 is large enough, then the boundedness of ū(s) and w̄(s)
implies that

dv̄ ′ = cv̄ + h(ū)
(

g(w̄) − p(ū)
)
� h(ū)

(−cK1 + g(w̄) − p(ū)
)
< 0

for s > s1. This yields

ū′(s) = v̄(s) < v̄(s1) = −K1h
(
ū(s1)

)
< 0

for s > s1, which contradicts the positivity of ū(s). Therefore, there exists an s2 > s1 such that

v̄(s2) = −K1h
(
ū(s2)

)
and v̄ ′(s2) � −K1h

(
ū(s2)

)
u′(s2).

However, this fact also leads to the following contradiction:
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0 � cv̄(s2) + h
(
ū(s2)

)(
g
(

w̄(s2)
) − p

(
ū(s2)

)) + dK1h′(ū(s2)
)

v̄(s2)

� h
(
ū(s2)

)(−cK1 + g
(

w̄(s2)
) − p

(
ū(s2)

) − dK 2
1h′(ū(s2)

))
< 0,

provided K1 is large enough. Hence the claim follows.
(2) We claim that there is a K2 > 0 such that v̄(s) < K2ū(s) for s > 0.
Suppose the claim is false, then for any K2 > 0 there is an s1 > 0 such that

v̄(s1) = K2ū(s1) and v̄ ′(s1) � K2ū′(s1).

Then, at s = s1, we have the following contradiction:

0 � cv̄ + h(ū)
[

g(w̄) − p(ū)
] − dK2 v̄ �

(
cK2 − dK 2

2

)
ū + h(ū)

(
g(w̄) − p(ū)

)
< 0,

provided K2 is large enough. Hence the claim follows.
(3) We claim that there is a K3 > 0 such that z̄(s) > −K3 w̄(s) for s > 0.
Suppose the claim is false, then for any K3 > 0 there is an s1 > 0 such that

z̄(s1) = −K3�
(

w̄(s1)
)

and z̄′(s1) � −K3�
′(w̄(s1)

)
.

If z̄(s) < −K3�(w̄(s)) for all s > s1, then the boundedness of ū(s) and w̄(s) implies that

z̄′ = cz̄ + �(w̄)q(ū) < �(w̄)
(−cK3 + q(ū)

)
< 0 for s > s1,

provided K3 > 0 is large enough. This yields

w̄ ′(s) = z̄(s) < z̄(s1) < 0,

which contradicts the positivity of w̄ . Hence, there is an s2 > s1 such that

z̄(s2) = −K3�
(

w̄(s2)
)

and z̄′(s2) � −K3�
′(w̄(s2)

)
w̄ ′(s2).

However, this fact also leads to the following contradiction:

0 � cz̄(s2) + �
(

w̄(s2)
)
q
(
ū(s2)

) + K3�
′(w̄(s2)

)
z̄(s2)

� �
(

w̄(s2)
)(−cK3 − K 2

3�′(w̄(s2)
) + q

(
ū(s2)

))
< 0,

provided K3 > 0 is large enough. Hence the claim follows.
(4) We claim that there is a K4 > 0 such that z̄(s) < K4 w̄(s) for s > 0.
Suppose the claim is false, then for any K4 > 0 there is an s1 > 0 such that

z̄(s1) = K4 w̄(s1) and z̄′(s) � K4 w̄ ′(s).

Then, at s = s1, we have the following contradiction:

0 � cz̄ + �(w̄)q(ū) − K4 z̄ = w̄
(
cK4 − K 2

4

) + �(w̄)q(ū) < 0,

provided K4 > 0 is large enough. Hence the claim follows, and the proof is complete. �
According to Lemmas 3.1–3.3, ȳ(s) is positively invariant in the set D defined by

D := {
0 < u < K , 0 < w < M, −K1h(u) < v < K2u, −K3�(w) < z < K4 w

}
.
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Now we define the Lyapunov function V (u, v, w, z) on D by

V (u, v, w, z) = αβ

(
dv − cu − h(u∗)

dv

h(u)
+ ch(u∗)H(u)

)

−
(

z − cw − �(w∗)
z

�(w)
+ c�(w∗)L(w)

)
, (3.2)

where α > 0, β < 0,

H(u) :=
u∫

u∗

dx

h(x)
and L(w) :=

w∫
w∗

dx

�(x)
.

It is easy to verify that V (y) is bounded below on D . Moreover, the derivative of V along any trajec-
tory y(s) of (2.1) lying in D is equal to

dV

ds
= −αβ

(
h(u) − h(u∗)

)(
p(u) − p(u∗)

) + αβh(u∗)
dv2h′(u)

h2(u)
− �(w∗)

z2�′(w)

�2(w)
.

4. Proof of the main results

First, we recall the following LaSalle’s Invariance Principle.

Proposition 4.1 (LaSalle’s Invariance Principle). (Cf. [11].) Consider the following initial value problem:

y′ = f (y), y ∈ Rn. (4.1)

Let D ⊆ Rn be an open set in Rn. Suppose y(s) is a solution of (4.1) which is positively invariant in D . If there
is a continuous and bounded below function V :D → R such that the orbital derivative of V along y(s) is
non-positive, i.e.,

dV

ds
= ∇V (y) · f (y) � 0,

then the ω-limit set of y(s) is contained in I , where I be the largest invariant set in {y ∈ D: dV /ds = 0}.

Proof of Theorem 1.1. According to the discussion in Section 2, we only need to prove part (ii) of the
theorem. By Lemma 3.3, ȳ(s) is positively invariant in D . It’s obvious that the Lyapunov function V (y)

defined by (3.2) is continuous, bounded below and has non-positive orbital derivative along ȳ(s). By
the LaSalle’s Invariance Principle, the ω-limit set of ȳ(s) is contained in the largest invariant subset of
{y ∈ D: dV /ds = 0}, which is the singleton (u∗,0, w∗,0). It follows that ȳ(∞) = (u∗,0, w∗,0). On the
other hand, since ȳ(0) lies in the unstable manifold of (K ,0,0,0), we have ȳ(−∞) = (K ,0,0,0). By
Lemma 3.1, ū(s) and w̄(s) are positive for all s. Thus, there is a nonnegative traveling wave solution
of (1.1) connecting the equilibria E1 and E2.

Next, according to Eq. (2.6), the characteristic equation of the linearization of (2.1) at (u∗,0, w∗,0)

is given by

P (λ) = dλ4 − (dc + c)λ3 + (
c2 − ξ∗

)
λ2 + cξ∗λ + ζ∗

= λ2(λ − c)(dλ − c) − ξ∗λ(λ − c) − αβg(w∗)h(u∗)h′(u∗)g′(w∗).
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By Proposition 2.1, P (λ) always has two roots with positive real parts and two roots with
negative real parts. Regard P (λ) as the constant shift of the polynomial λ2(λ − c)(dλ − c) −
ξ∗λ(λ − c) which has two distinct positive real roots and two distinct negative real roots. Since
−αβg(w∗)h(u∗)h′(u∗)g′(w∗) > 0, it’s easy to see that there exists a σ ∗ > 0 such that P (λ) has
two distinct negative real eigenvalues when |αβ| < σ ∗; repeated negative real eigenvalues when
|αβ| = σ ∗; and a complex conjugate pair of eigenvalues with negative real part when |αβ| > σ ∗ .
Hence, by the Stable Manifold Theorem, we prove the assertion of the theorem for the behavior of
traveling wave solutions for large s. The proof is complete. �
5. Applications and Hopf bifurcation

In this section, we will apply our main theorem to systems (1.2)–(1.5). We further investigate the
existence of traveling wave train solutions for systems (1.3) and (1.4) via the mechanism of Hopf
bifurcation. These results generalize the works [12,16].

5.1. Applications to system (1.2)

After rescaling (see [4]), we may consider system (1.2) in the form

{
ut = duxx − u

(
w − (1 − u)

)
,

wt = wxx − αw(b − u),
(5.1)

where α > 0 and b > 0 are positive constants. Then

h(u) = u, g(w) = w, �(w) = αw, p(u) = 1 − u, q(u) = b − u,

K = 1, u∗ = b, w∗ = 1 − b.

Therefore, the assumptions (A1)–(A4) hold if b < 1. By Theorem 1.1, we have the following results.

Theorem 5.1. Assume 0 < b < 1. If c > 2
√

α(1 − b), then there is a nonnegative traveling wave solution of
(5.1) connecting the equilibria (1,0) and (u∗, w∗).

Note that the result of Theorem 5.1 is consistent with the work of [4].

5.2. Applications to system (1.3)

After rescaling (see [12]), we may consider system (1.3) in the form⎧⎪⎪⎨
⎪⎪⎩

ut = duxx − u

1 + u

(
w − a(b − u)(1 + u)

)
,

wt = wxx − w

(
1 − ru

1 + u

)
,

(5.2)

where b > 0, a > 0 and r > 0 are positive constants. Then

h(u) = u

1 + u
, g(w) = w, �(w) = w,

p(u) = a(b − u)(1 + u), q(u) = 1 − ru

1 + u
,

K = b, u∗ = 1

r − 1
, w∗ = a

(
b − 1

r − 1

)(
1 + 1

r − 1

)
.
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Therefore, the assumptions (A1)–(A4) hold if

b < 1 and
b + 1

b
< r. (5.3)

By Theorem 1.1, we have the following results.

Theorem 5.2. Assume (5.3). If c > 2
√

(rb − 1 − b)/(1 + b), then there is a nonnegative traveling wave solu-
tion of (5.2) connecting the equilibria (b,0) and (u∗, w∗).

Next, we investigate the phenomena of Hopf bifurcation for the following reduced system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′ = v,

dv ′ = cv + u

1 + u

(
w − a(b − u)(1 + u)

)
,

w ′ = z,

z′ = cz + w − ru

1 + u
.

(5.4)

According to Eq. (2.6), we know that

ξ∗ = −h(u∗)p′(u∗) = −a

r

(
b − 1 − 2

r − 1

)
,

ζ∗ = −�(w∗)h(u∗)q′(u∗)g′(w∗) = ab(r − 1) − a

r
.

If b > 1 and r > (b + 1)/(b − 1) then ξ∗ < 0 and ζ∗ > 0. Substituting λ = ki into Eq. (2.6), we have

k4 − c2 − ξ∗
d

k2 + ζ∗
d

= 0 and k2 = − ξ∗
1 + d

.

Then, a pair of pure imaginary eigenvalues of (2.6) exists if the parameters satisfy the following
condition:

c2 = ξ∗
1 + d

− (1 + d)
ζ∗
ξ∗

. (5.5)

Let us fix the parameters d, a, b and consider λ, ξ∗ and ζ∗ as functions of r. Then, differentiating
Eq. (2.6) with respect to r gives

dλ

dr
= ξ̇∗λ2 − cξ̇∗λ − ζ̇∗

4dλ3 − 3λ2(cd + c) + 2(c2 − ξ∗)λ + cξ∗
. (5.6)

Substituting λ = ki into Eq. (5.6), we obtain

dλ

dr

∣∣∣∣
λ=ki

= − (ξ̇∗k2 + ζ̇∗) + cξ̇∗ki

(3k2(cd + c) + cξ∗) + (2k(c2 − ξ∗) − 4dk3)i
,

Re
dλ

dr

∣∣∣∣
λ=ki

= −cξ∗
(

ξ∗ξ̇∗(3 − d)

(1 + d)2
− 2ζ̇∗ + (ξ∗ − 2c2)ξ̇∗

1 + d

)

= −cξ∗
(

4ξ∗ − 2c2(1 + d)

(1 + d)2
ξ̇∗ − 2ζ̇∗

)
. (5.7)
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Since ζ̇∗ = a(b + 1)/r2 > 0, ξ∗ < 0, if ξ̇∗ > 0, i.e.,

ξ̇∗ = a

r2

(
b − 1 − 2(2r − 1)

(r − 1)2

)
> 0 or r >

b + 1 + √
2(b + 1)

b − 1
,

then Re dλ
dr |λ=ki < 0. Therefore, we obtain the following results.

Theorem 5.3. Assume b > 1. If r >
b+1+√

2(b+1)
b−1 , then as r crosses the curve

c2 = ξ∗(r)
1 + d

− (1 + d)
ζ∗(r)
ξ∗(r)

in the (r, c)-plane, the system (5.4) undergoes a Hopf bifurcation at the equilibrium (u∗,0, w∗,0) and there is
a small amplitude periodic solution, which corresponds to a small traveling wave train solution of system (5.2).

Remark 5.4.

(1) Since we construct the Lyapunov function more generally, the result of Theorem 5.2 extends the
result of Theorem 2.2 of [12].

(2) Here we point out the difference between our result of Theorem 5.3 with Theorem 2.3 of [12].
In [12], there is a typing error for r(β) (see p. 149). Hence our result of Theorem 5.3 provides the
correct region of parameters for Hopf bifurcation.

5.3. Applications to system (1.4)

After rescaling (see [16]), we may consider system (1.4) in the form

⎧⎪⎪⎨
⎪⎪⎩

ut = duxx − au(b − u) − u2 w

1 + u2
,

wt = wxx − w

(
1 − ru2

1 + u2

)
,

(5.8)

where a > 0, r > 0 and b > 0 are positive constants. Then

h(u) = u2

1 + u2
, g(w) = w, �(w) = w,

p(u) = a(b − u)
1 + u2

u
, q(u) = 1 − ru2

1 + u2
,

K = b, u∗ = 1√
r − 1

, w∗ = a

(
b − 1√

r − 1

)
r√

r − 1
.

Therefore, the assumptions (A1)–(A4) hold if

b < 3
√

3 and
b2 + 1

b2
< r. (5.9)

By Theorem 1.1, we have the following results.
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Theorem 5.5. Assume (5.9). If c > 2
√

(rb2 − 1 − b2)/(1 + b2), then there is a nonnegative traveling wave
solution of (5.8) connecting the equilibria (b,0) and (u∗, w∗).

Next, we investigate the phenomena of Hopf bifurcation for the following reduced system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′ = v,

dv ′ = cv − au(b − u) + u2 w

1 + u2
,

w ′ = z,

z′ = cz + w

(
1 − ru2

1 + u2

)
.

(5.10)

According to Eq. (2.6), we know that

ξ∗ = −h(u∗)p′(u∗) = −a

r

(
(2 − r)b − 2√

r − 1

)
,

ζ∗ = −�(w∗)h(u∗)q′(u∗)g′(w∗) = 2
a

r
(r − 1)

(
b − 1√

r − 1

)
.

By elementary computation, we have

ξ∗ < 0 ⇔ (r − 2)b + 2√
r − 1

< 0, (5.11)

ξ̇∗ > 0 ⇔ 2b >
3r − 2

(r − 1)
√

r − 1
, (5.12)

ζ̇∗ > 0 ⇔ 2b
√

r − 1 + r − 2 > 0 ⇔ √
r − 1 >

√
b2 + 1 − b. (5.13)

If r > (b2 + 1)/b2 then ζ̇∗ > 0. Assume b > 3
√

3, then there exists

(
b2 + 1

)
/b2 < r1(b) < r2(b) < 2

such that ξ∗ < 0 holds if 0 < r1(b) < r < r2(b). Furthermore, there exists 0 < r3(b) < r2(b) such that
ξ̇∗ > 0 when r > r3(b). Similarly, let us fix the parameters d,a,b and consider λ, ξ∗ and ζ∗ as functions
of r. According to (5.7), if

r�(b) := max
{

r1(b), r3(b)
}

< r < rr(b) := r2(b) (5.14)

then Re dλ
dr |λ=ki < 0. Therefore, we obtain the following results.

Theorem 5.6. Assume b > 3
√

3. If r�(b) < r < rr(b), then as r crosses the curve

c2 = 1

1 + d
− (1 + d)

ζ∗(r)
ξ∗(r)

in the (r, c)-plane, the system (5.10) undergoes a Hopf bifurcation at the equilibrium (u∗,0, w∗,0) and there is
a small amplitude periodic solution, which corresponds to a small traveling wave train solution of system (5.8).

Remark 5.7. In [16], the authors only consider system (1.4) in special case: d1 = 0. Therefore, in
Theorems 5.5 and 5.6, we provide the new results for the case d1 �= 0.
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5.4. Applications to system (1.5)

After rescaling, we may consider system (1.5) in the simple form

{
ut = duxx − au(b − u) − w

(
1 − e−mu)

,

wt = wxx − w
(
1 − r

(
1 − e−mu))

,
(5.15)

where a > 0, b > 0, r > 0 and m > 0 are positive constants. Then

h(u) = 1 − e−mu, g(w) = w, �(w) = w,

p(u) = au(b − u)

1 − e−mu
, q(u) = 1 − r

(
1 − e−mu)

,

K = b, u∗ = −1

m
ln

(
1 − 1

r

)
, w∗ = rau∗(b − u∗).

It can be verified that if mb < 2 and r(1−e−mb) > 1 then assumptions (A1)–(A4) hold. By Theorem 1.1,
we have the following results.

Theorem 5.8. Assume mb < 2 and r(1 − e−mb) > 1. If c > 2
√

r(1 − e−mb) − 1, then there is a nonnegative
traveling wave solution of (5.15) connecting the equilibria (1,0) and (u∗, w∗).

Appendix A. Proof of Proposition 2.4

To start with the proof of Proposition 2.4, we first illustrate the following claim which holds obvi-
ously and will be used in the proof.

Claim I.

(1) If z = 0, u �= u∗ , then z′ = �(w)q(u) has the same sign with −w · (u − u∗).
(2) If z = 0, u = u∗ , then z′ = 0 and z′′ = �(w)q′(u)v has the same sign with −v.
(3) If v = 0, g(w) − p(u) �= 0, u �= 0, then dv ′ = h(u)(g(w) − p(u)) has the same sign with g(w) − p(u).
(4) If v = 0, g(w) − p(u) = 0, u �= 0, then v ′ = 0 and dv ′′ = h(u)g′(w)z has the same sign with z.
(5) If v �= 0, g(w) − p(u) = 0, then

(
g(w) − p(u)

)′ = g′(w)z − p′(u)v > 0, if z � 0, v � 0, (z, v) �= (0,0);(
g(w) − p(u)

)′ = g′(w)z − p′(u)v < 0, if z � 0, v � 0, (z, v) �= (0,0).

Now we establish the exit set W − . Since W − is a subset of ∂W , it’s required to analyze the
dynamics of (2.1) on each portion of ∂W .

For the portion ∂ R \ P , let’s set ∂ R = R0 ∪ R1 ∪ R2 ∪ R3 with

R0 = {
(u, v, w, z): u = 0, g(w) − p(u) � 0, v � 0

}
,

R1 = {
(u, v, w, z): u = u∗, g(w) − p(u) � 0, v � 0

}
,

R2 = {
(u, v, w, z): u < u∗, g(w) − p(u) = 0, v � 0

}
,

R3 = {
(u, v, w, z): u < u∗, g(w) − p(u) < 0, v = 0

}
.

Then, we investigate the behavior of solutions on each Ri in the sequel.
On region R0, we consider the following two subsets.



3066 C.-H. Hsu et al. / J. Differential Equations 252 (2012) 3040–3075
(1) Assume u = 0 and v < 0. Since v < 0, we know that u+ < 0 and this implies this set belongs
to W − .

(2) Assume u = 0 and v = 0. In this case, (0,0, w, z) will stay at W for any (w, z) ∈ R2. Thus,
(0,0, w, z) ∈ J2.

On region R1, we consider the following four subsets.

(1) Assume u = u∗ , w = w∗ and v < 0. If z � 0, we have

(
g(w) − p(u)

)′ = g′(w)z − p′(u)v � −p′(u)v < 0.

Then any trajectory of solutions will enter the region R . On the other hand, if z > 0 then w+ > w∗
and this implies that any trajectory of solutions will enter the region P .

(2) Assume u = u∗ , w < w∗ and v < 0. In this case, it’s easy to see that any trajectory of solutions
will enter region R .

(3) Assume u = u∗ , w = w∗ and v = 0. If z = 0 then it’s obvious that (u∗,0, w∗,0) /∈ W −. If z > 0
then w+ > w∗ , v ′ = 0, (g(w) − p(u))′ = g′(w)z > 0 and

dv ′′ = cv ′ + h′(u)v
(

g(w) − p(u)
) + h(u)

(
g(w) − p(u)

)′

= h(u)
(

g(w) − p(u)
)′

> 0.

Thus, v+ > 0, u′ > 0 and u+ > u∗. Therefore, any trajectory of solutions will enter the region S .
If z < 0, similar to case of z > 0, we can obtain w+ < w∗ and u+ < u∗ . Hence, any trajectory of
solutions will enter the region R .

(4) Assume u = u∗ , w < w∗ and v = 0. In this case, we have

dv ′ = cv + h(u∗)
(

g(w) − p(u∗)
)
< cv + h(u∗)

(
g(w∗) − p(u∗)

)
< 0.

Thus v+ < 0. Since u′ = v < 0, then u+ < u∗ and g(w) − p(u∗) < g(w∗) − p(u∗) = 0. Hence, any
trajectory of solutions will enter the region R .

On region R2, we consider the following two subsets.

(1) Assume 0 < u < u∗ , g(w) − p(u) = 0 and v < 0. If z > 0 then u < u∗ and g(w) − p(u) = 0 imply
that w > w∗ . Hence, any trajectory of solutions will enter the region P . If z = 0 then

z′ = cz + l(w)q(u) > 0 + l(w)q(u∗) = 0,

and this implies z+ > 0 and w+ > w∗ . Hence, any trajectory of solutions will enter the region P .
If z < 0, it is easy to check that

(
g(w) − p(u)

)′ = g′(w)z − p′(u)v < g′(w)z < 0.

Hence (g(w) − p(u))+ < 0 and any trajectory of solutions will enter the region R .
(2) Assume 0 < u < u∗ , g(w) − p(u) = 0 and v = 0. If z � 0, by the same arguments as (1), any

trajectory of solutions will enter the region P . If z < 0, we have

(
g(w) − p(u)

)′ = g′(w)z < 0 ⇒ (
g(w) − p(u)

)+
< 0,

dv ′ = cv + g(w) − p(u) = 0,
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dv ′′ = cv ′ + h′(u)v
(

g(w) − p(u)
) + h(u)

(
g′(w)z − p′(u)v

)
= 0 + 0 + h(u)g′(w)z + 0 < 0.

Hence v+ < 0, and any trajectory of solutions will enter the region R .

On region R3, we have 0 < u < u∗ , g(w) − p(u) < 0 and v = 0. Thus,

dv ′ = cv + h(u)
(

g(w) − p(u)
) = 0 + h(u)

(
g(w) − p(u)

)
< 0.

Hence, any trajectory of solutions will enter the region R .
For the portion ∂ S \ Q , let’s set ∂ S = S1 ∪ S2 ∪ S3 with

S1 = {
(u, v, w, z)

∣∣ u = u∗, g(w) − p(u) � 0, v � 0
}
,

S2 = {
(u, v, w, z)

∣∣ u > u∗, g(w) − p(u) = 0, v � 0
}
,

S3 = {
(u, v, w, z)

∣∣ u > u∗, g(w) − p(u) > 0, v = 0
}
.

Then we investigate the behavior of solutions on each Si .
On region S1, we consider the following four subsets.

(1) Assume u = u∗ , w = w∗ and v > 0. If z � 0 then

(
g(w) − p(u)

)′ = g′(w)z − p′(u)v � −p′(u)v > 0.

Hence, any trajectory of solutions will enter the region S . On the other hand, if z < 0 then
w+ < w∗ and this implies that any trajectory of solutions will enter the region Q .

(2) Assume u = u∗ , w > w∗ and v > 0. In this case, it’s easy to see that any trajectory of solutions
will enter region S .

(3) Assume u = u∗ , w = w∗ and v = 0. If z = 0, it’s obvious that (u∗,0, w∗,0) /∈ W −. If z > 0 then
w+ > w∗ , v ′ = 0, (g(w) − p(u))′ = g′(w)z > 0 and

dv ′′ = h(u)
(

g(w) − p(u)
)′

> 0.

Thus, v+ > 0, u′ > 0 and u+ > u∗. Then, any trajectory of solutions will enter the region S . If
z < 0, similar to case of z > 0, we can obtain w+ < w∗ and u+ < u∗ . Hence, any trajectory of
solutions will enter the region R .

(4) Assume u = u∗ , w > w∗ and v = 0. In this case, we have

dv ′ = cv + h(u∗)
(

g(w) − p(u∗)
)
> cv + h(u∗)

(
g(w∗) − p(u∗)

) = 0,

and this implies v+ > 0. Since u′ = v < 0, then u+ > u∗ and g(w) − p(u∗) > g(w∗) − p(u∗) = 0.
Hence, any trajectory of solutions will enter the region S .

On region S2, we consider the following two subsets.

(1) Assume u > u∗ , g(w) − p(u) = 0 and v > 0. If z < 0 then u > u∗ and g(w) − p(u) = 0. Thus
w < w∗ , and any trajectory of solutions will enter the region Q . If z = 0 then

z′ = cz + l(w)q(u) < 0 + l(w)q(u∗) = 0,
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and this implies z+ < 0 and w+ < w∗ . Then any trajectory of solutions will enter the region Q .
If z > 0, it is easy to check that

(
g(w) − p(u)

)′ = g′(w)z − p′(u)v > g′(w)z > 0.

Hence (g(w) − p(u))+ > 0 and any trajectory of solutions will enter the region S .
(2) Assume u > u∗ , g(w)− p(u) = 0 and v = 0. If z � 0, by the same arguments as (1), any trajectory

of solutions will enter the region Q . If z > 0, we have

(
g(w) − p(u)

)′ = g′(w)z > 0 ⇒ (
g(w) − p(u)

)+
> 0,

dv ′ = cv + g(w) − p(u) = 0 and dv ′′ = h(u)g′(w)z > 0.

Hence v+ > 0, and any trajectory of solutions will enter the region S .

On region S3, we have u > u∗ , g(w) − p(u) > 0 and v = 0. Thus,

dv ′ = cv + h(u)
(

g(w) − p(u)
) = 0 + h(u)

(
g(w) − p(u)

)
> 0.

Hence, any trajectory of solutions will enter the region S .
For the portion ∂ P \ R , let’s set

∂ P = P0 ∪ P1 ∪ P12 ∪ P2 ∪ P3 ∪ P13 ∪ P123,

where

P0 = {
(u, v, w, z)

∣∣ u = 0, w � w∗, z � 0
}
,

P1 = {
(u, v, w, z)

∣∣ u = u∗, w > w∗, z > 0
}
,

P12 = {
(u, v, w, z)

∣∣ u = u∗, w = w∗, z > 0
}
,

P2 = {
(u, v, w, z)

∣∣ u ∈ (0, u∗), w = w∗, z > 0
}
,

P3 = {
(u, v, w, z)

∣∣ u ∈ (0, u∗), w � w∗, z = 0
}
,

P13 = {
(u, v, w, z)

∣∣ u = u∗, w > w∗, z = 0
}
,

P123 = {
(u, v, w, z)

∣∣ u = u∗, w = w∗, z = 0
}
.

Now we investigate the behavior of solutions on each Pi .
On region P0, we consider the following three subsets.

(1) Assume v < 0. Since v < 0, we have u+ < 0 and this implies this set belongs to W − .
(2) Assume v = 0. In this case, (0,0, w, z) will stay at W for any (w, z) ∈ R2. Thus, (0,0, w, z) ∈ J2.
(3) Assume v > 0. Since v > 0, we have u+ > 0. Then part (1) of Claim I implies z+ > 0 and

w+ > w∗ . Thus, the trajectory of solutions will enter the region P .

On region P1, we have g(w) − p(u) > 0. Then we consider the following three subsets.

(1) Assume v < 0. Since v < 0, we have u+ < u∗ and this implies the trajectory of solutions will
enter the region P .

(2) Assume v = 0. Then part (3) of Claim I implies v+ > 0 and u+ > u∗ . Thus, the trajectory of
solutions will enter the region S .
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(3) Assume v > 0. Since v > 0, we have u+ > u∗ . Thus, the trajectory of solutions will enter the
region S .

On region P12, we have g(w) − p(u) = 0 and w+ > w∗ . Then we consider the following three
subsets.

(1) Assume v < 0. Since v < 0, we have u+ < u∗ and this implies the trajectory of solutions will
enter the region P .

(2) Assume v = 0. Then part (4) of Claim I implies v+ > 0 and u+ > u∗ , and part (5) of Claim I
implies [g(w) − p(u)]+ > 0. Thus, the trajectory of solutions will enter the region S .

(3) Assume v > 0. Since v > 0, we have u+ > u∗ . Then part (5) of Claim I implies [g(w)− p(u)]+ > 0.
Thus, the trajectory of solutions will enter the region S .

On region P2, we have w+ > w∗ . Hence, the trajectory of solutions will enter the region P .
On region P3, part (1) of Claim I implies z+ > 0 and w+ > w∗ . Hence, the trajectory of solutions

will enter the region P .
On region P13, we have g(w) − p(u) > 0. Then we consider the following three subsets.

(1) Assume v < 0. Since v < 0, we have u+ < u∗ . Then part (2) of Claim I implies z+ > 0. Hence, the
trajectory of solutions will enter the region P .

(2) Assume v = 0. Then part (3) of Claim I implies v+ > 0 and u+ > u∗ . Thus, the trajectory of
solutions will enter the region S .

(3) Assume v > 0. Since v > 0, we have u+ > u∗ . Thus, the trajectory of solutions will enter the
region S .

For the portion ∂ Q \ S , let’s set

∂ Q = Q 0 ∪ Q 1 ∪ Q 12 ∪ Q 2 ∪ Q 3+ ∪ Q 3− ∪ Q 13+ ∪ Q 13− ∪ P123,

where

Q 0 = {
(u, v, w, z)

∣∣ u � u∗, w = 0, z = 0
}
,

Q 1 = {
(u, v, w, z)

∣∣ u = u∗, w < w∗, z < 0
}
,

Q 12 = {
(u, v, w, z)

∣∣ u = u∗, w = w∗, z < 0
}
,

Q 2 = {
(u, v, w, z)

∣∣ u > u∗, w = w∗, z < 0
}
,

Q 3+ = {
(u, v, w, z)

∣∣ u > u∗, 0 < w < w∗, z = 0
}
,

Q 3− = {
(u, v, w, z)

∣∣ u > u∗, w < 0, z = 0
}
,

Q 13+ = {
(u, v, w, z)

∣∣ u = u∗, 0 < w < w∗, z = 0
}
,

Q 13− = {
(u, v, w, z)

∣∣ u = u∗, w < 0, z = 0
}
.

Now we investigate the behavior of solutions on each Pi .
On region Q 0, the trajectory of solutions are invariant in V and included in J10.
On region Q 1, we have g(w) − p(u) < 0. Then we consider the following three subsets.

(1) Assume v > 0. Since v > 0, we have u+ > u∗ and this implies the trajectory of solutions will
enter the region Q .

(2) Assume v = 0. Then part (3) of Claim I implies v+ < 0 and u+ < u∗ . Thus, the trajectory of
solutions will enter the region R .
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(3) Assume v < 0. Since v < 0, we have u+ < u∗ . Thus, the trajectory of solutions will enter the
region R .

On region Q 12, we have g(w)− p(u) = 0, w+ < w∗ . Then we consider the following three subsets.

(1) Assume v > 0. Since v > 0, we have u+ > u∗ and this implies the trajectory of solutions will
enter the region Q .

(2) Assume v = 0. Then part (4) of Claim I implies v+ < 0 and u+ < u∗ , and part (5) of Claim I
implies (g(w) − p(u))+ < 0. Thus, the trajectory of solutions will enter the region R .

(3) Assume v < 0. Since v < 0, we have u+ < u∗ . Then part (5) of Claim I implies (g(w)− p(u))+ < 0.
Thus, the trajectory of solutions will enter the region R .

On region Q 2, we have w+ < w∗ . Hence, the trajectory of solutions will enter the region Q .
On region Q 3+ , part (1) of Claim I implies z+ < 0 and w+ < w∗ . Hence, the trajectory of solutions

will enter the region Q .
On region Q 3− , part (1) of Claim I implies z+ > 0. Then the trajectory will not enter Q immedi-

ately. Furthermore, the trajectory will not enter P or R immediately since u > u∗ . Thus we consider
the following four subsets.

(1) Assume v < 0. Since v > 0, the trajectory cannot enter S immediately. Thus, the trajectory of
solutions cannot exit W immediately, and included in J12.

(2) Assume v � 0 and g(w) − p(u) < 0. Since g(w) − p(u) < 0, the trajectory cannot enter S imme-
diately. Thus, the trajectory of solutions cannot exit W immediately, and included in J12.

(3) Assume v = 0 and g(w) − p(u) > 0. Then part (3) of Claim I implies v+ > 0. Thus, the trajectory
of solutions will enter the region S .

(4) Assume v = 0 and g(w) − p(u) = 0. We have (g(w) − p(u))′ = 0 and (g(w) − p(u))′′ = g′(w)z′ .
By part (1) of Claim I, (g(w) − p(u))+ > 0. On the other hand, dv ′ = dv ′′ = 0 and dv ′′′ =
h(u)g′(w)z′ > 0. Then v+ > 0, and the trajectory of solutions will enter the region S .

On region Q 13+ , we have g(w) − p(u) < 0. Then we consider the following three subsets.

(1) Assume v > 0. Since v > 0, we have u+ > u∗ . Then part (2) of Claim I implies z+ < 0. Thus, the
trajectory of solutions will enter the region Q .

(2) Assume v = 0. Then part (3) of Claim I implies v+ < 0 and u+ < u∗ . Thus, the trajectory of
solutions will enter the region R .

(3) Assume v < 0. Since v < 0, we have u+ < u∗ . Thus, the trajectory of solutions will enter the
region R .

On region Q 13− , we have g(w) − p(u) < 0. Then we consider the following three subsets.

(1) Assume v > 0. It’s obvious g(w) − p(u) < 0. Thus the trajectory cannot enter S immediately.
Since v > 0, then u+ > u∗ and the trajectory cannot enter P or R immediately. Furthermore, the
part (2) of Claim I implies z+ > 0 and the trajectory cannot enter Q immediately. Therefore, the
trajectory of solutions cannot exit W immediately and included in J11.

(2) Assume v = 0. Then part (3) of Claim I implies v+ < 0 and u+ < u∗ . Thus, the trajectory of
solutions will enter the region R .

(3) Assume v < 0. Since v < 0, we have u+ < u∗ . Thus, the trajectory of solutions will enter the
region R .

According to previous results, the proof of this appendix is complete.

Appendix B. Proof of Lemma 2.17

First, we prove the following claim.
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Claim II.

(1) If y ∈ ŷ5y1 , then y · s will exit W from the boundary of R or P .
(2) If y ∈ ŷ1y2 , then y · s will exit W from the boundary of region R, P , or S.
(3) If y ∈ ŷ2y3 , then y · s will exit W from the boundary of region S.
(4) If y ∈ ŷ3y4 , then y · s will exit W from the boundary of region Q .
(5) If y ∈ ŷ4y5 , then y · s will exit W from the boundary of region R.

Proof. (1) The assertion of (1) follows directly by Lemma 2.10.
(2) Let y(0) = G(θ) ∈ ŷ1y2 with θ ∈ (θ1, θ2), then u(0) > u∗ , v(0) < 0, w(0) > 0 and z(0) > 0.

For θ ∈ (θ1, θ2), let s1(θ) be the first time that u(s; G(θ)) = u∗ and s2(θ) be the first time that
v(s; G(θ)) = 0. By Lemma 2.11, s1(θ) and s2(θ) are finite.

If s1(θ) < s2(θ), similar to Lemma 2.10, y(s; G(θ)) will enter region R or P .
If s1(θ) � s2(θ) then v(s) < 0 for s ∈ (0, s2), v(s2) = 0 and u(s2) � u∗ . Thus v ′(s2) � 0. If v ′(s2) > 0,

then g(u(s2)) − p(w(s2)) > 0. It follows that u(s+
2 ) > u∗ , v(s+

2 ) > 0, g(w(s+
2 )) − p(u(s+

2 )) > 0 and
y(s+

2 ) entering region S . If v ′(s2) = 0, then g(w(s2)) − p(u(s2)) = 0, v ′′(s2) = h(u(s2))g(w(s2))z(s2)

and (g(w) − p(u))′(s2) = g′(w(s2))z(s2). By Lemma 2.9, w(s2) > 0 and z(s2) > 0. It follows that
v ′′(s2) > 0 and (g(w) − p(u))′(s2) > 0. Thus we also have u(s+

2 ) > u∗ , v(s+
2 ) > 0, g(w(s+

2 )) −
p(u(s+

2 )) > 0 and y(s+
2 ) entering region S .

(3) We are going to show that g(w) − p(u) > 0 for y ∈ ŷ2y3. By Mean Value Theorem, we have

g(w) − p(u)

ε
= g′(w0)w − p′(u0)(u − K )

= g′(w0)
(−ψ(λ2)c2 − ψ(λ3)c3

) − p′(u0)(−c1 − c2 − c3) + O (ε), (B.1)

for some u0, w0, where (u0, w0) tends to (K ,0) as ε tends to 0. Since v = 0,

−c1 = λ3

λ1
c3 + λ2

λ1
c2 + O (ε). (B.2)

Substituting Eq. (B.2) into Eq. (B.1), we have

g(w) − p(u)

ε
=

(
−g′(w0)ψ(λ2) − p′(u0)

λ2 − λ1

λ1

)
c2

+
(

−g′(w0)ψ(λ3) − p′(u0)
λ3 − λ1

λ1

)
c3 + O (ε). (B.3)

By (2.5) and (2.4), we have

−g′(0)ψ(λ2) − p′(K )
λ2 − λ1

λ1
= −λ2

(
dλ2 − c + h(K )p′(K )

1

λ1

)
/h(K )

> −λ2

(
dλ1 − c + h(K )p′(K )

1

λ1

)
/h(K ) = 0,

which implies that

−g′(w0)ψ(λ2) − p′(u0)
λ2 − λ1

λ1
> 0

for ε sufficiently small. Since z > 0, λ3ψ(λ3)c3 < −λ2ψ(λ2)c2 + O (ε), which leads to
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Fig. 5. The projection of Λ on the uvz-space for the case w < w∗ . All the dash lines lie on the plane z = 0.

g(w) − p(u)

ε
> c3

{(
−g′(w0)ψ(λ2) − p′(u0)

λ2 − λ1

λ1

)
λ3ψ(λ3)

−λ2ψ(λ2)

+
(

−g′(w0)ψ(λ3) − p′(u0)
λ3 − λ1

λ1

)}
+ O (ε). (B.4)

From (2.5) and (2.4), we have

λ3ψ(λ3)

(
−g′(0)ψ(λ2) − p′(K )

λ2 − λ1

λ1

)
− λ2ψ(λ2)

(
−g′(0)ψ(λ3) − p′(K )

λ3 − λ1

λ1

)

= d2λ2λ3

h(K )
(λ1 − λ3)(λ1 − λ2)(λ2 − λ3) > 0,

which implies the following term

λ3ψ(λ3)

(
−g′(w0)ψ(λ2) − p′(u0)

λ2 − λ1

λ1

)
− λ2ψ(λ2)

(
−g′(w0)ψ(λ3) − p′(u0)

λ3 − λ1

λ1

)

is positive for sufficiently small ε. Thus, g(w) − p(u) > 0 for y ∈ ŷ2y3.
If y(0) ∈ ŷ2y3 then u(0) > u∗ , v(0) = 0 and g(w(0)) − p(u(0)) > 0. Hence, v ′(0) > 0, v(0+) > 0,

and y(s) enters region S immediately.
(4) Let y(0) ∈ ŷ3y4. Obviously, u(0) > u∗ . Denote by ci the coefficient of ei in (2.10) then z(0) =

−λ2c2ψ2 − λ3c3ψ3 and w(0) = −c2ψ2 − c3ψ3. Since z(0) = 0, c3 > 0 and λ3 < λ2, we have w(0) > 0.
It follows that z′(0) < 0 and z(0+) < 0. Thus y(s) enters region Q immediately.

(5) Let y(0) ∈ ŷ4y5. According to Lemma 2.5, y0 ∈ Ω implies that y0 · s will enter region R , which
is an open set. Since the whole ŷ4y5 is very close to y0, it follows that y(s) will also enter region R .

The proof of Claim II is complete. �
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Fig. 6. The projection of Λ on the uvz-space for the case w = w∗ . All the dash lines lie on the plane z = 0.

Fig. 7. The projection of Λ on the uvz-space for the case w > w∗ . All the dash lines lie on the plane z = 0.
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Fig. 8. Compression of Figs. 5, 6 and 7 in the subspace v = 0.

Fig. 9. The deformation retrace of Λ in the uwz-space.

Basing on the results of Claim II, now we proof that the set F (Σ) is not simply connected.

Proof of Lemma 2.17. Following the idea of Dunbar (see Appendix II of [5]) with a slight modification,
we prove the results as follows.

Let Λ =: P ∪ Q ∪ R ∪ S . For any fixed w , the projection of the sets of Λ on the uvz-space is shown
in Fig. 5 for w < w∗ , Fig. 6 for w = w∗ , and Fig. 7 for w > w∗ . The coordinate v of each figure is
then “compressed” in the subspace v = 0 respectively by a strong deformation retraction, as shown
in Fig. 8. Synthesizing the three cases of Fig. 8 in uwz-space yields Fig. 9, where the deformation
retraction of ∂Λ is the boundary of the two wedges

{
u > u∗, g(w) − p(u) < 0, z > 0

}
and

{
0 < u < u∗, g(w) − p(u) > 0, z < 0

}
.

The deformation retraction of F (∂Σ) must lie in the boundary of the two wedges. The results of
Claim II imply that the boundary ∂Σ will be mapped to a closed curve visiting R , P , S , and Q in
turns at least once. It follows that the deformation retraction of F (∂Σ) surrounds the straight line
{u = u∗, w = w∗, z ∈ R} in uwz-space, and cannot be homotopic to a point in W − since W − does
not contain the point (u = u∗, w = w∗, v = 0, z = 0). Hence, F (Σ) is not simply connected. The
proof is complete. �
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