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a b s t r a c t

We propose a novel power efficient adaptive hybrid dynamic power management (AH-DPM)
algorithm. To adapt well to bursty request arrival patterns with self-similarity and a service
provider (SP, i.e., hard disk or WLAN NIC, in this paper) with multiple inactive states, the
proposed AH-DPM first derives the average idle time of the SP in the bursty (ON) period
and non-bursty (OFF) period separately. Then, to achieve better power saving, we use
the average idle time in the ON period to adjust the timeout value more precisely and
use the average idle time in the OFF period to decide which inactive state the SP should
be switched to. Experimental results based on real traces show that, for the hard disk,
the average power consumption of the proposed AH-DPM is better than that of the Adap-
tive Timeout (ATO), Machine Learning (ML), Predictive, Static Timeout (STO), and Stochas-
tic algorithms. In addition, the average response time of the proposed AH-DPM algorithm is
still lower than that specified in a typical hard disk specification. As to the WLAN NIC,
experimental results show that the average power consumption of the proposed
AH-DPM is comparable to that of the Oracle (theoretically optimal), ATO, and Predictive
algorithms, and is better than that of the ML, STO, and Stochastic algorithms. However,
the average packet transmission delay of the proposed AH-DPM is better than that of
the ATO and Predictive algorithms. Therefore, by providing a better tradeoff between aver-
age power consumption and average response time (or average packet transmission delay),
the proposed AH-DPM algorithm is very feasible for extending the battery lifetime of ever
increasing mobile devices that are equipped with hard disks and WLAN NICs.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, mobile devices such as smart phones
are getting more pervasive and popular due to a wider
spread of wireless internet. Because mobile devices have
the characteristic of mobility, their power sources must
rely on battery power. Due to increasing demands of users
on performance and functionality of mobile devices, the
power consumption of these devices will enlarge. Battery
lifetime in mobile devices can be prolonged in two ways:
. All rights reserved.
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increasing battery capacity per unit weight and reducing
power consumption with minimal performance loss [1].
Since the battery capacity per unit weight has only
improved by a factor of two to four over the last 30 years
while the computational power of digital ICs has increased
by more than four orders of magnitude, reducing the
power consumption of components, such as hard disks
and WLAN NICs, in mobile devices becomes a vital research
issue. That is, in order to extend the battery lifetime,
managing the power consumption of components in a
mobile device is essential. Since not all components in a
mobile device are active at the same time, we can switch
some components to low power consumption states when
they are idle for a certain period of time. The concept of
dynamically switching between different states with
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different power consumption levels, called dynamic power
management (DPM), has been introduced to the design of
components in mobile devices. With this capability, we
can dynamically switch a component’s current working
state to a low power consumption state for power saving.

1.1. Overview of the DPM

DPM is an effective approach for mobile devices to
reduce power consumption without significantly degrad-
ing their performance. The DPM shuts down components
when they are not being used and wakes them up when
necessary [2]. With careful observation of components’
state transition patterns, the DPM can predict when an idle
period will likely occur. The operating system (OS) in a
DPM-enabled mobile device has a module called Power
Manager (PM). The PM is responsible for monitoring all
components in a mobile device and controlling the work-
ing state of each component [1]. The PM has several power
management policies, possibly one policy for one compo-
nent according to its working pattern. These policies are
used by the PM to decide at what time and which state a
component should be transferred to. It is important that
power management policies have to be adaptive because
arrival patterns of service requests are usually non-
stationary [16]. If we use a fixed power management policy
for all possible arrival patterns, the effect of power man-
agement will not be good.

Fig. 1 is an example of a component’s working pattern.
When the PM decides to switch the state of the component
from busy to idle for power saving, the PM has to consider
the extra power consumption needed during a state transi-
tion. Take the transition from Busy 1 to Idle 1 as an exam-
ple. Because the length of Idle 1 is long enough, the PM
decides to switch the component to a deeper sleeping
state. Since switching to a deeper sleeping state will con-
sume more state transition energy compared to switching
to a shallower sleeping state, the PM must carefully evalu-
ate the power consumption when performing a state tran-
sition. When the PM decides to switch a component to a
new state, the component will not enter the new state
immediately because performing a state transition takes
time. The time spent during a state transition is called state
transition time. The power consumed by a component
during a state transition is a waste because there will be
no request served during the state transition. In order to
compensate the extra power dissipation caused by the
Power
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Fig. 1. An example of a compo
state transition, the time which the component stays in
an inactive state must be long enough. The minimum inac-
tive time required to compensate the extra power con-
sumed during the state transition is called break-even
time, which is denoted as TBE [1]. In general, the goal of
the DPM is maximizing power saving while meeting the
response time (delay) requirement of a component.

1.2. Self-similarity characteristic of hard disk and WLAN NIC
workloads

A self-similar stochastic process is a stochastic process
that all statistical properties remain unchanged at various
observation time scales. That is, the stochastic process
‘‘looks the same’’ if one zooms in time ‘‘in and out’’ in the
process [3]. The observed shape of a self-similar stochastic
process in a time scale of milliseconds would be still sim-
ilar to that in a time scale of seconds, hours, or even days.
According to the studies of Xiang et al. [4] and Gomez et al.
[5,6], both hard disk access patterns and WLAN NIC traffic
are bursty and self-similar. That is, the patterns of hard disk
access and WLAN NIC traffic are bursty no matter how long
we observe them. Bursty arrival patterns with self-
similarity can be modeled by the ON-OFF model [5,6]. In
ON (bursty) periods, the hard disk (WLAN NIC) idle time
is short compared with that in OFF (non-bursty) periods.
If we compare the hard disk (WLAN NIC) idle time with
the break-even time, we can see that there will be periods
that the hard disk (WLAN NIC) idle time are shorter than
the break-even time. We define these periods as ON peri-
ods. The other periods with the hard disk (WLAN NIC) idle
time longer than or equal to the break-even time are called
OFF periods. In the OFF periods, the hard disk (or WLAN
NIC) has to be switched to a low power consumption state
in order to save power.

1.3. Motivation and main contribution of this work

Based on the observation that hard disk access and
WLAN NIC traffic are bursty and self-similar, it motivates
us to propose a DPM algorithm to reduce the power con-
sumption of these two components and to extend the bat-
tery of mobile devices. Related work on dynamic power
management (DPM) mostly focuses on hard disks and han-
dles only one inactive state. The uniqueness of our work is
that we have developed a DPM algorithm to predict the
working states of components, such as WLAN NICs as well
Time
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as hard disks, embedded in mobile devices that have multi-
ple inactive states. The proposed AH-DPM algorithm can
adapt to the bursty request arrival patterns with self-
similarity of the components in order to enhance power
saving, while not affecting the average transmission delay
or average response time too much. The proposed DPM
algorithm handles the lengths of idle time in ON and OFF
periods separately in order to adjust the timeout value
more precisely and decides which inactive state the SP
should be switched to, and thus it achieves better power
saving. That is, the proposed AH-DPM algorithm can fully
utilizes the self-similarity characteristic of disk access (or
WLAN access) to predict request arrival patterns and adap-
tively adjust the timeout value and select an appropriate
inactive state to switch to.

The main contribution of this paper is that the proposed
AH-DPM algorithm can provide a better tradeoff between
average power consumption and average response time
(or average packet transmission delay) for hard disks and
WLAN NICs and thus it is very feasible to mobile devices
for extending their battery lifetime.

The remaining of this paper is organized as follows. Sec-
tion 2 reviews related work of DPM algorithms. Section 3
depicts our design approach and shows the flowcharts
and pseudo codes of the proposed DPM algorithm. Experi-
mental setup, experimental results, and discussion are pre-
sented in Section 4. We give concluding remarks in Section
5.

2. Related work

Four categories of DPM policies have been proposed:
timeout, predictive, stochastic, and machine learning policies
[1]. Fig. 2 classifies existing DPM algorithms based on these
four categories. In the following, we briefly introduce the
characteristics of each category.

2.1. Timeout-based algorithms

Timeout-based algorithms can be divided into two clas-
ses: static timeout (STO) and adaptive timeout (ATO) [1]. The
STO scheme turns off a component after a fixed period of
idle time. Because the timeout value is fixed, the STO
scheme, shown as a dotted block in Fig. 2, is not a DPM
algorithm. In this scheme, the user has to decide the best
timeout period manually. The ATO scheme is more
Dynamic Power M

Timeout Predictive

Static

Chung [12]
Ramanathan 

[13]

Adaptive

Douglis [7]
Olsen [8]

Shutdown

Srivastava [10]
Huang [11]
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D

Fig. 2. The classification of ex
efficient because it changes the timeout value according
to the latest idle time. There are several adaptive timeout
algorithms. In [7], it adjusts the timeout value by using
the ratio of the length of the previous idle period divided
by the wakeup delay. If the ratio is small, the timeout value
is increased. If the ratio is large, the timeout value is
decreased.

In [8], the authors proposed an OS power management
technique called PowerNap that modifies the timing mech-
anism of the OS to achieve better power saving [8]. They
observed that when the OS is idle, the widely used periodic
timing (PT) scheme, which a timer will issue interrupts to
the OS periodically, will cause unnecessary power dissipa-
tion [8]. The solution to this phenomenon is to eliminate
the periodic timer tick whenever the OS is idle. A scheme
called Work Dependent Timing (WDT) was proposed, which
will switch the system to a low power state when there is
no task to execute [8]. The WDT will determine the nearest
timeout value, write it into the hardware timer, and switch
the system state to a low power consumption state. When
the timer expires, the hardware will issue a hardware
interrupt to wake up the whole system [8]. Generally
speaking, timeout schemes have two main advantages.
They are general and the throughput of serving requests
can be guaranteed simply by increasing the timeout value
[9]. They also have two main disadvantages. They waste a
lot of energy because of waiting the timeout value to
expire and they always result in performance penalty
when components wakeup [9].
2.2. Predictive-based algorithms

The predictive-based algorithms can be classified into
two categories: predictive shutdown and predictive wakeup
[9]. They were proposed to deal with the disadvantages
of timeout schemes [9]. The predictive shutdown scheme
predicts the length of an idle period when the PM detects
that a component is going to enter the idle state. If the
PM assesses that the length of the idle period will be longer
than the break-even time [9], the component will be
switched to a lower power consumption state immediately
to eliminate the unnecessary waste of energy usually
caused by timeout schemes. The predictive wakeup
scheme predicts the expiration of an idle period. If the
PM predicts that the idle period of a component is going
to be ended in a short time, the component will be
anagement

Stochastic

iscrete time

Benini [14]
Chung [16]

Ren [17]

Continuous
time

Qiu [18]
Rong [19]

Machine learning

Expert-based

Dhiman [20]
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switched to an active state to avoid an incoming request
waiting the component to switch from an inactive state
to an active state.

Representative predictive-based algorithms are
reviewed as follows. Srivastava et al. [10] proposed two
approaches which belong to predictive shutdown [9] for
a component. The first approach uses regression analysis
to arrive at a model for predicting the length of idle periods
[10]. The second approach is based on the observation of
the phenomenon that a long duration of an active state is
followed by a short duration of an idle state with a very
high probability, and the probability of an idle state fol-
lowed by a short duration of an active state is fairly evenly
distributed [10]. In this case, the component will be shut
down when the PM observes that an idle period is about
to begin. These two approaches strongly rely on offline
analysis of the component behavior; thus they are not
adaptive.

Huang et al. [11] addressed three predictive methods:
predictive shutdown using exponential average, correction
of prediction misses, and pre-wakeup. In the predictive
shutdown, the formula of exponential average is as
follows:
Inþ1 ¼ a � in þ ð1� aÞ � In ð1Þ
Service Queue

Power Manager

Service 
Requester

Service 
Provider

Observe

Command

Service 
Requests

System

Observe

Observe

Fig. 3. Overall system architecture for the DPM [14].
where In+1 is the new predicted value, In is the last pre-
dicted value, in is the latest idle period, and a is a constant
attenuation factor in the range between 0 and 1 [11]. In the
correction of prediction misses, there are two sub-issues:
under-prediction and over-prediction. Under-prediction
happens when a long idle period occurs after a series of
short, uniformly distributed idle periods. Over-prediction
happens when a short idle period occurs after a series of
long, uniformly distributed idle periods. The former situa-
tion is resolved by setting a watchdog to periodically mon-
itor the current idle period. The latter situation is resolved
by adding a saturation condition to the original algorithm.
The pre-wakeup scheme is used to deal with the perfor-
mance penalty due to the wakeup delay. This can be
accomplished by predicting the occurrence of the next
wakeup signal [11].

Chung et al. [12] proposed a DPM method using an
adaptive learning tree [12]. Using the tree, the PM can
accurately predict the most appropriate low-power sleep
state at the start of an idle period [12]. They also proposed
an enhanced scheme which adopts a fixed timeout filter in
order to eliminate the unnecessary shutdown when a very
short idle period occurred [12]. Ramanathan et al. [13]
used the previous request inter-arrival time s to predict
the next idle period [13]. If s is greater than the shutdown
threshold k, the component will be shut down immediately
because the algorithm assumes that the next idle time will
be greater than k time units [13]. If s is less than k, it keeps
the component idle for a period of k unless a new request
arrives [13]. This approach is similar to the algorithm pro-
posed by Huang et al. [11] and it is a combination of STO
and predictive shutdown algorithms [13]. Nevertheless,
the above predictive-based algorithms suffer from the pre-
diction accuracy of the length of idle time.
2.3. Stochastic-based algorithms

The stochastic-based algorithm proposed by Benini
et al. [14] uses stochastic processes to model the behaviors
of the Service Requester (SR), Service Queue (SQ), and Ser-
vice Provider (SP). The overall system architecture for the
DPM is shown in Fig. 3 [14]. The SR will send a request
to the SP. When the SP is busy and if requests keep coming,
incoming requests will be stored in the SQ. If the SQ is full,
incoming requests will be discarded. The Power Manager
(PM) observes the status of the SR, SQ, and SP, and it deci-
des which command, such as shutdown, wakeup, or state-
transition, will be sent to the SP. The probability models
used to describe the behaviors of the SR, SQ, and SP are
the main issue of the stochastic-based schemes. The more
precise the probability models that describe the SR, SQ, and
SP are, the more accurate the state transition decisions
made by the PM will be; thus more energy of the system
can be saved.

The following are representative stochastic-based algo-
rithms. In [14], it models request arrivals and state transi-
tions as stationary discrete-time Markov processes. The
assumptions of this approach are as follows [14]:

1. The arrival of service requests can be modeled by an m-
memory Markov chain. The m-memory Markov model
has 2m states, one for each possible sequence of consec-
utive bits.

2. The state transition delays in the SP can be modeled as
random variables with a geometric distribution.

3. Model parameters and cost functions are available and
accurately measured before optimization.

However, the above constraints are not likely to occur
in real life. First, in most cases, the arrivals of user requests,
the state transition delays, and even the service time, are
non-stationary [15]. Second, the characteristic of discrete
time causes additional cost for the PM because the PM
must periodically wakeup to do computation. The first
drawback can be dealt with using a non-stationary sto-
chastic process, and the second drawback can be handled
by changing the time from discrete to continuous [16,18].

For the first drawback, Chung et al. [16] proposed an
approach using a non-stationary stochastic process to



Table 1
A qualitative comparison of representative DPM algorithms.

Static
timeout

Adaptive timeout
[5]

Predictive
[11]

Stochastic
[14]

Machine learning
[20]

AH-DPM
(proposed)

Timeout value adjustment Static Adaptive Adaptive None Adaptive Adaptive
Time complexity O(1) O(1) O(1) O((xa)3L) Depend on experts O(1)
Space complexity O(1) O(1) O(1) O(xa) Depend on experts O(1)
Offline calculation No No No Yes Depend on experts No
Manual configuration Yes Yes Yes No Depend on experts No
Suitable for bursty arrival patterns

with self-similarity
No No No No Depend on experts Yes
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model the arrival distribution of user requests. They pro-
posed a mechanism called sliding window to keep histori-
cal data. The sliding window is limited in length and hence
recent historical data are kept in order to reflect recent
user request behavior. Because the distribution of user
requests is non-stationary, the decision table of the SP
must be recalculated in every period. To overcome this
drawback, the authors used table lookup and interpolation
to calculate the decision table to avoid the recalculation.
Ren et al. [17] modified the approach in [16] and intro-
duced a multi-mode model using a Markov-modulated sto-
chastic process to model the non-stationary arrival process
of service requests [17]. The advantage of these two
approaches is that the request arrival distribution of the
SR can be adapted to any distribution. But the disadvan-
tages are an enormous amount of memory usage and com-
putation power required. If we apply these two approaches
to several components in a mobile device, we have to
derive a request arrival distribution for each component
in advance and it will be time consuming and
inconvenient.

As to the second drawback, Qiu et al. [18] proposed a
continuous-time Markov decision process to decrease the
computation of the PM. In this approach, the decision is
made on an event arrival, such as a user request arrival,
the SP starting to serve a user request, and the SP finishing
a user request. Rong et al. [19] extended the work in [18] to
model a battery-powered portable system by introducing
and incorporating a new continuous-time Markovian deci-
sion process model of the battery source [19]. There are
some disadvantages in this approach. First, the computa-
tion complexity both in time and space are high because
of the characteristic of continuous-time based policy opti-
mization. Second, the experiment was based on a continu-
ous-time Markov process, that means that the inter-arrival
time of user requests, the switching time of the SP, and the
state transition of the SQ are exponential distributed,
which are not quite realistic in the real world.

2.4. Machine learning algorithms

Several researchers applied machine learning to learn
the request arrival patterns of the SR. Dhiman et al. [20]
and Prabha et al. [21] proposed expert based machine
learning algorithms. An expert based machine learning
algorithm selects the best DPM policy from a set of DPM
policies. These policies are called experts. Each expert has
a weight value which indicates the expert’s priority and
is adjustable by the machine learning algorithm. The
weight value will be adjusted in every idle period and
the expert with the highest weight value in the current idle
period will be used to control an embedded system during
the next idle period. However, the performance of an
expert based machine learning algorithm is highly depen-
dent on chosen experts. In [22], the authors proposed a
reinforcement learning based algorithm. The algorithm is
based on the Q-learning algorithm, which was originally
designed to find a policy for a Markov Decision Process,
to learn the arrival request patterns of the SP [22]. The
authors modified the Q-learning algorithm to solve the
DPM problem and speed up the algorithm’s convergence
time by updating more than one Q values simultaneously.
The time complexity of the modified Q-learning algorithm
is O(jSPj � jAj), and the space complexity is O(jSPj � jSQj �
jSRj � jAj), where jSPj, jSQj, and jSRj are the number of states
of the SP, SQ, and SR, respectively, and jAj is the number of
commands. Note that the time and space complexities of
the modified Q-learning algorithm are higher than those
of the proposed AH-DPM algorithm, which are constant
in both time and space complexity, which will be
explained later.

In summary, a qualitative comparison of major DPM
algorithms, including the proposed AH-DPM, is shown in
Table 1. The time complexity and space complexity of the
proposed AH-DPM algorithm are both O(1) since our algo-
rithm is a hybrid of adaptive timeout and predictive algo-
rithms. Let p be the number of states in the SP, q be the
queue length in the SQ, and r be the number of states in
the SR, and let x = p � q � r [14]. The time complexity of
the stochastic algorithm proposed by Benini et al. [14] is
O((xa)3L), where L is the bit length of input data [23] (usu-
ally 32 bits in modern computer systems) and a is the
number of commands that the PM can issue to the SP
[14]. The space complexity of the stochastic algorithm is
O(xa) [23]. The stochastic algorithm needs offline calcula-
tion because the system state transition matrix must be
calculated in advance. Because the machine learning algo-
rithm uses experts, which are a set of DPM algorithms, the
time and space complexities, offline calculation, and man-
ual configuration are dependent on the selected DPM algo-
rithms. In addition, STO, ATO, and predictive algorithms
need to configure some initial values manually. Further-
more, to the best of our knowledge, none of previous works
is suitable for bursty arrival patterns with self-similarity.
They are more suitable for stationary request arrival
patterns.



H.-C. Shih, K. Wang / Computer Networks 56 (2012) 548–565 553
3. Proposed AH-DPM algorithm

3.1. The design of the proposed algorithm

To obtain better power saving of the SP, the proposed
AH-DPM algorithm handles the average idle time in the
bursty (ON) and non-bursty (OFF) periods in the request
arrival pattern separately. We derive the average idle time
of the SP in the ON and OFF periods separately using expo-
nential average. All parameters used in the proposed algo-
rithm are defined in Table 2.

The proposed AH-DPM algorithm returns two values:
the next state, SSP_next, that the SP should be switched to
and the timeout value, Ttimeout, that the SP should wait
before being switched to the next state. There are three
main ideas in the proposed AH-DPM algorithm: (1) keep-
ing track of the average idle time in the ON period, Ton_avg,
and in the OFF period, Toff_avg, separately, (2) using the
average idle time in the ON period to adjust the timeout
value more precisely and using the average idle time in
the OFF period to decide which inactive state the SP should
be switched to, and (3) comparing the most recent idle
time, Tidle, with the break-even time, TBE, to determine
whether the expected period of the request arrival pattern,
Pexpect, is ON_period or OFF_period. Three cases will be mon-
itored by the proposed AH-DPM algorithm:

1. When a request arrives, based on Pexpect and the compar-
ison between Tidle and TBE, there are three situations
required to be taken care of:
(a) If Pexpect equals to ON_period, calculate new Ton_avg

using new Tidle. Then, new Ttimeout is obtained from
the maximum value among old Ttimeout, Tidle, and
Ton_avg. Note that if Tidle > TBE, our algorithm will
not choose Tidle as the new timeout value to avoid
long busy wait.

(b) If Pexpect equals to OFF_period and Tidle is smaller than
TBE, this situation is called prediction miss because in
the OFF period, Tidle should be larger than TBE. In this
case, the calculations described in situation a will be
performed since Pexpect should be in the ON period.

(c) If Pexpect equals to OFF_period and Tidle is larger than
or equal to TBE, this situation is called prediction hit.
Toff_avg will be calculated using new Tidle.

After handling either of the above three situations, Pex-

pect will be set to ON_period, SSP_next will be set to idle state,
and SSP_next along with timeout value of zero will be
Table 2
The parameters used in the proposed AH-DPM algorithm.

Parameters Description

Ton_avg Average idle time in the ON period
Toff_avg Average idle time in the OFF period
Tidle Most recent idle time
Ttimeout Timeout value
TBE Break-even time
SSP_current Current state of the SP
SSP_next Next state of the SP
Pexpect Expected period of the request arrival pattern, either

ON_period or OFF_period
returned. The reason for returning zero as the timeout
value is to wake up the SP immediately whenever there
is a request arrived and the SP is in an inactive state.
2. When the SP has finished serving a request and the SQ is

empty, the SP may be inactivated since there is no
request to be served. The next state of the SP, SSP_next,
will be chosen by the algorithm InactiveState. Then,
SSP_next and Ttimeout will be returned.

3. When Ttimeout expires, the SP will be switched to the
state indicated by SSP_next and Pexpect will be set to OFF_-
period to indicate that the request arrival pattern is now
in the OFF period.

In summary, the benefits of the proposed AH-DPM algo-
rithm are that our algorithm can adapt to bursty request
arrival patterns with self-similarity and a service provider
(SP, i.e., hard disk or WLAN NIC in this paper) with multiple
inactive states using the following two steps to achieve
better power saving. First, it derives the average idle time
of the SP in the bursty (ON) period and non-bursty (OFF)
period separately. Second, it uses the average idle time in
the ON period to adjust the timeout value more precisely
and uses the average idle time in the OFF period to decide
which inactive state the SP should be switched to. In other
words, the derivation of the new timeout value described
in situation a of case 1 above is to set the timeout value
long enough to prevent the SP from an unexpected state
transition to an inactive state and to keep the timeout va-
lue short enough to decrease the length of the busy wait
period during the ON period.
3.2. The flowchart and pseudo codes of the proposed algorithm

Figs. 4 and 5 show the flowchart and the pseudo codes
of the proposed AH-DPM algorithm, respectively. If a re-
quest arrives and the SP is in the ON period, Ton_avg and
Ttimeout are updated accordingly, as shown from line 7 to
line 11 in Fig. 5. On the other hand, if a request arrives
and the SP is in the OFF period, two circumstances must
be considered. First, if Tidle is larger than or equal to TBE,
the algorithm has made a correct prediction that the SP
is actually in the OFF period. This circumstance is called a
prediction hit and Toff_avg will be updated accordingly, as
shown at line 17 in Fig. 5. Second, if Tidle is smaller than
TBE, this is called a prediction miss since in the OFF period
Tidle must be larger than TBE. In this case, Ton_avg and Ttimeout

are updated instead of Toff_avg, and Pexpect is set to ON_per-
iod, as shown from line 21 to line 25 in Fig. 5. Once a
request is served and the SQ is empty, the SP becomes idle.
Then, the SP will be switched to an inactive state SSP_next

with timeout value Ttimeout. SSP_next will be assigned using
algorithm InactiveState, as shown in Fig. 6. Algorithm Inac-
tiveState is used to determine which inactive state the SP
will enter. It calculates TBE of each inactive state, and save
it into BE_List. BE_List is an array that stores TBE of each
inactive state. BE_List is then sorted in the descending
order. Toff_avg will be compared with each TBE. If Toff_avg is
greater than or equal to a certain TBE, the inactive state cor-
responding to the previous TBE in BE_List will be returned
to algorithm AH-DPM, as shown from line 6 to line 14 in
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A request arrives

ON_period

OFF_period

Check Tidle

Calculate new Toff_avg using new Tidle

Tidle < TBE

(prediction miss)

SSP_next = InactiveState(SSP_current, Toff_avg)

SP has finished serving a request
and SQ is empty

Check Tidle

Ttimeout = MAX(Ton_avg, Ttimeout)

Tidle > TBE

Ttimeout = MAX(Tidle, Ton_avg,
Ttimeout)

Tidle ≤ TBE

Pexpect = ON_period
SSP_next = Idle_state

Pexpect = OFF_period and 
SP will be switched to 

state SSP_next

Ttimeout expires

return SSP_next and Ttimeout

Finish

Tidle ≥ TBE

(prediction hit)

A

AReturn SSP_next and zero

Fig. 4. The flowchart of the proposed AH-DPM algorithm.
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Fig. 6. If Ttimeout expires, the SP will be switched to state
SSP_next and Pexpect will be set to OFF_period.
4. Experimental results and discussion

4.1. Experimental setup

We compare our algorithm (AH-DPM) with the Oracle
algorithm (Oracle), the static timeout algorithm (STO) with
timeout value of 30 s [2], the adaptive timeout algorithm
(ATO) of Douglis et al. [5] with parameters (am,bm,q) =
(0.5,1.5,0.1) [2] and initial timeout value of 30 s [2], the
predictive algorithm (Predictive) of Huang et al. [11] with
parameters a = 0.3 and c = 2 [2], the stochastic (Stochastic)
algorithm of Benini et al. [14], and the machine learning
(ML) algorithm of Dhiman et al. [20]. Remind that the Ora-
cle algorithm is a theoretically optimal algorithm because
it knows the arrival time of all requests; therefore, the
algorithm can determine exactly when and to which state
the SP should be switched for power saving. The Stochastic
algorithm does not need to set any initial value, but the
optimal decision policies must be calculated in advance.
The ML algorithm uses STO, ATO, Predictive, and Stochastic
algorithms as its experts. The parameters of each expert
used in the ML algorithm are same as those listed above.
Since the Oracle algorithm is aware of all the requests
issued from the beginning to the end, it can come out with
the most power saving results. The AlwaysOn algorithm is
defined as ‘‘always keeping the SP in the active state,’’
and represents the worst case of average power consump-
tion and the best case of average response time (average
packet transmission delay) in hard disk (WLAN NIC)
experiments.

In the hard disk experiments, we used a typical hard
disk specification of Hitachi Travelstar 5K100 as an exam-
ple SP specification, as shown in Tables 3 and 4 [24]. The
hard disk request traces were collected for a week by mon-
itoring the ATA commands sent and received by libATA
drivers under Fedora 12 [25], kernel version 2.6.32.11
[26]. The trace characteristics of hard disk requests for
each day of the week are listed in Table 5. We compare
the average power consumption and average response time
for the hard disk among these DPM algorithms. The aver-
age power consumption is measured in Watt, and it is
defined as total energy consumed divided by total elapsed
time. The average response time is measured in millisecond
and it is defined as the average elapsed time between a
request arrived and the request having been served, which
includes the queuing delay and service time of a request.

As to the WLAN NIC experiments, we used the specifica-
tion of the Intel PRO/Wireless 3945ABG (802.11g) card,
which is shown in Table 6 [27]. However, the state transi-
tion time and state transition power of the Intel PRO/Wire-
less 3945ABG card are not available. We used the state
transition time listed in [28]. The state transition power



01 algorithm AH-DPM(SSP_current, Tidle)
02 {
03 if(a request arrives)
04 {
05 if(Pexpect == ON_period)
06 {
07 Ton_avg = α× Tidle + (1 - α) × Ton_avg

08 if(Tidle > TBE)
09 Ttimeout = MAX(Ton_avg, Ttimeout)
10 else
11 Ttimeout = MAX(Tidle, Ton_avg, Ttimeout)
12 }
13 else if(Pexpect == OFF_period)
14 {
15 if(Tidle ≥ TBE)  /* prediction hit */
16 {
17 Toff_avg = α× Tidle + (1 - α) × Toff_avg

18 }
19 else  /* prediction miss */
20 {
21 Ton_avg = α× Tidle + (1 - α) × Ton_avg

22 if(Tidle > TBE)
23 Ttimeout = MAX(Ton_avg, Ttimeout)
24 else
25 Ttimeout = MAX(Tidle, Ton_avg, Ttimeout)
26 }
27 }
28 Pexpect = ON_period
29 SSP_next = Idle_state
30 return SSP_next and zero
31 }
32 else if(SP has finished serving a request and SQ is empty)
33 {
34 SSP_next = InactiveState(SSP_current, Toff_avg)
35 return SSP_next and Ttimeout

36 }
37 else if(Ttimeout expires)
38 {
39 Pexpect = OFF_period
40 }
41 }

Fig. 5. The proposed AH-DPM algorithm.
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from sleep to idle is set to twice of the power consumption
in idle state, and the state transition power from idle to
sleep is set to the power consumption in sleep state [29].
The state transition characteristics of the WLAN NIC are
listed in Table 7. In addition, the real traces of the WLAN
NIC were captured using Wireshark [30], version 1.2.6,
under Fedora 12 [25]. The trace characteristics of WLAN
NIC packets for each day of the week are listed in Table
8. The average power consumption and average packet trans-
mission delay are metrics of the WLAN NIC for performance
evaluation among these DPM algorithms. The definition of
the average power consumption is identical to that for the
hard disk and the average packet transmission delay is
measured in millisecond, and it is defined as the queuing
delay plus the packet transmission time.

Finally, we also evaluate the prediction miss rate and the
inactivation ratio, which will be defined later. The predic-
tion miss rate can reflect the average power consumption
and the inactivation ratio can reflect the average response
time in the hard disk and the average transmission delay in
the WLAN NIC. There are two cases of prediction miss: false
positive prediction miss and false negative prediction miss.



01 algorithm InactiveState(SSP_current, Toff_avg) 
02 { 
03 calculate each TBE which relates to each inactive state and SSP_current, and save them into BE_List 
04 sort BE_List in descending order 
05 Sret = SSP_current

06 for(index = 0; index < the size of BE_List; index++)
07 { 
08 if(Toff_avg >= BE_List[index]) 
09 { 
10 Sret = the inactive state corresponding to BE_LIST[index] 
11 break; 
12 } 
13 } 
14 return Sret

15 } 

Fig. 6. Inactive state decision algorithm.

Table 3
State transition time and power consumption specifications of Hitachi Travelstar 5K100 hard disk [24].

From To Time (s) Power consumption (Watt)

Sleep Performance Idle 3.5 3.8
Standby Performance Idle 2.5 3.8
Low Power Idle Performance Idle 0.3 2.0
Active Idle Performance Idle 0.02 2.0
Performance Idle Standby 0.35 2.0
Performance Idle Sleep 0.35 2.0

Table 4
Power consumption specification of Hitachi Travelstar 5K100 hard disk
[24].

State Power consumption (Watt)

Performance Idle 2.0
Active Idle 1.1
Low Power Idle 0.65
Read 2.0
Write 2.0
Seek 2.5
Standby 0.2
Sleep 0.1

Table 6
Power consumption specification of Intel PRO/wireless
3945ABG WLAN NIC [27].

State Power consumption (Watt)

Transmit 1.8
Receive 1.4
Idle 0.15
Sleep 0.03

Table 7
State transition time and power consumption of the WLAN NIC [27,28].

From To Time (ls) Power consumption (Watt)

Sleep Idle 250 0.3
Idle Sleep 80 0.03
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The false positive prediction miss occurs in a situation that
the PM inactivates the SP (i.e., switching the SP to a lower
power consumption state), but the length of the inactive
period is shorter than the break-even time. That is, the SP
should not be inactivated, but it is inactivated. The false
negative prediction miss occurs in a situation that the
Table 5
Trace characteristics of hard disk requests.

Day of week Number of requests

Sunday 148175
Monday 273503
Tuesday 90081
Wednesday 190393
Thursday 532259
Friday 128420
Saturday 46820
A week 1409651

TRI: Average request inter-arrival time (s).
rTRI : Standard deviation of the request inter-arrival time.
PM keeps the SP in active state, but the length of the idle
period is longer than the break-even time. That is, the SP
TRI rTRI

0.5826582132 28.066745610
0.3158121481 7.576979263
0.9588597164 13.238787090
0.4537697663 7.577420349
0.1623176762 3.813604001
0.6725806881 10.876428390
1.8449750100 18.263384880
0.4289868597 11.847667333



Table 8
Trace characteristics of WLAN NIC traffic.

Day of week Number of requests TPI rTPI

Sunday 68812 1.2524797900 13.271983260
Monday 24697 3.0321168550 43.423190660
Tuesday 48308 1.6348761390 218.246429500
Wednesday 115253 0.7495722815 10.870117770
Thursday 183500 0.4701362994 8.127996827
Friday 13013 6.5880108190 73.593723700
Saturday 8164 10.4842361800 93.448664130
A week 461747 1.2648289645 73.980365017

TPI: Average packet inter-arrival time (s).
rTPI : Standard deviation of the packet inter-arrival time.
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should be inactivated, but it is not inactivated. Both cases
will result in extra power consumption penalty.

The definition of the prediction miss rate Rprediction_miss is
as follows:

Rprediction miss ¼
Nfp miss þ Nfn miss

Nprediction
ð2Þ

where Nfp_miss is the number of false positive prediction
miss, Nfn_miss is the number of false negative prediction
miss, and Nprediction is the total number of predictions made
by the PM. The definition of the inactivation ratio Rinactivate

is defined as follows:

Rinactivate ¼
Ninactivate

Nprediction
ð3Þ

where Ninactivate is the number of switching the SP from the
active state to an inactive state (a lower power consump-
tion state). When the SP is in an inactive state and a
request arrives, the SP must switch to the active state in or-
der to serve the request. Since existing DPM algorithms,
except the Oracle algorithm, did not actually implement
the pre-wakeup mechanism, an incoming request will be
Fig. 7. Comparison of the average pow
queued in the SQ waiting for the SP to be switched from
an inactive state to the active state. Therefore, it results
in queuing delay. Since each SP inactivation will lengthen
the queuing delay of the next incoming request, the higher
the inactivation ratio is, the longer the average response
time of the hard disk and the average packet transmission
delay of the WLAN NIC are.

4.2. Experimental results

Fig. 7 shows the experimental results of the average
power consumption of the hard disk for each DPM
algorithm on each day of a week. In Fig. 7, we found that
the proposed AH-DPM algorithm is always better
than the other algorithms except the Oracle algorithm un-
der the request trace of each day in a week. From Table 5
and Fig. 7, we found that average power consumption is
proportional to number of requests, except the case on
Tuesday. The average power consumption on Tuesday is
still higher in spite of a lower number of requests. This is
because of a higher inactivation ratio on Tuesday, as shown
in Fig. 9. Since a higher inactivation ratio implies a higher
er consumption of the hard disk.



Fig. 8. Comparison of the average response time of the hard disk.
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number of state transitions, the power consumption
increases due to frequent state transitions. As to the aver-
age response time, Fig. 8 shows that the proposed AH-DPM
algorithm is larger than the ATO, AlwaysOn, ML, Oracle,
and STO algorithms, and is shorter than the Predictive
algorithm. From Figs. 8 and 9, we found that average
response time is proportional to inactivation ratio. This is
because that if the SP is in an inactivated state and there
is an incoming request, the SP must be switched to the
active state to serve the request. Since no existing DPM
algorithms has the ability to switch the SP to the active
state in advance, the request must be queued in the SQ
Fig. 9. Comparison of the inactiva
to wait for the SP to be switched from an inactive state
to the active state. Therefore, a larger inactivity ratio will
result in longer response time.

Figs. 10 and 11 are the comparison of average power
consumption and average response time in a week for
the hard disk, respectively. In Fig. 10, we observed that
the average power consumption of the proposed AH-DPM
is 33.90% worse than that of the Oracle algorithm, and is
better than that of the ATO, ML, Predictive, STO, and Sto-
chastic algorithms by 69.40%, 101.68%, 113.69%, 95.33%,
and 278.37%, respectively. That is, the proposed AH-DPM
algorithm performed the best except the Oracle algorithm
tion ratio of the hard disk.



Fig. 10. Comparison of the average power consumption of the hard disk in a week.
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in terms of average power consumption. Remind that the
Oracle algorithm is theoretically optimal. Since the predic-
tion miss will cause extra power consumption, we derive
the prediction miss rate of each algorithm. In Fig. 12, we
found that the prediction miss rate of the proposed
AH-DPM algorithm is the lowest compared to that of the
other DPM algorithms except the Oracle algorithm. The
results are in accordance with those illustrated in Fig. 10.
Although the average response time of the proposed
AH-DPM algorithm in Fig. 11 is not the best, it is still lower
than that of the Predictive algorithm by 43.03% and it is
also lower than the average disk access time specified in
a hard disk specification [24]. According to this specifica-
tion [24], the average response time for read/write one
byte from/to the hard disk is about 20.5 ms (command
overhead + average seek time + average latency + average
disk-buffer data transfer rate). Therefore, the average
response time of the proposed AH-DPM algorithm, which
is 18.022 ms as shown in Fig. 11, is lower than 20.5 ms.
Fig. 11. Comparison of the average respon
In the following, we illustrate that the inactivation ratio
of the hard disk is also in accordance with its average
response time. In Fig. 13, in term of the inactivation ratio,
we observed that the proposed AH-DPM algorithm is larger
than the ATO, ML, and STO algorithms, and is smaller than
the Predict and Stochastic algorithms. A larger inactivation
ratio means that the PM inactivates the SP more aggres-
sive; however, the penalty is longer average response time,
as shown in Fig. 11.

We also evaluate the average power consumption and
average packet transmission delay on each day of a week
for each DPM algorithm. In Fig. 14, we found that the aver-
age power consumption of the proposed AH-DPM is com-
parable to that of the ATO, Oracle, and Predictive
algorithms, and is better than that of the ML, STO, and Sto-
chastic algorithms. However, in terms of average packet
transmission delay, the proposed AH-DPM algorithm is
better than the ATO and Predictive algorithms, as shown
in Fig. 15.
se time of the hard disk in a week.



Fig. 12. Comparison of the prediction miss rate of the hard disk in a week.
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Figs. 16 and 17 illustrate the average power consump-
tion and average packet transmission delay of the WLAN
NIC in a week for different DPM algorithms, respectively.
In Fig. 16, we observed that the average power consump-
tion of the AH-DPM algorithm is comparable to (0.7% more
than) that of the ATO, Oracle, and Predictive algorithms,
and is better than that of the ML, STO, and Stochastic algo-
rithms by 172.34%, 89.14%, and 372.68%, respectively. Note
that although the prediction miss rate of the proposed
AH-DPM algorithm is the best, as shown in Fig. 18, com-
pared with the other algorithms except the Oracle algo-
rithm, the average power consumption of the AH-DPM
algorithm is still slightly larger than that of the ATO and
Predictive algorithm. This is because that the average
timeout value of the AH-DPM algorithm is larger than that
of the ATO and Predictive algorithms, as illustrated in
Fig. 19. That is, the proposed AH-DPM has a higher predic-
tion hit rate that can reduce more power consumption (see
Fig. 13. Comparison of the inactivation
Fig. 16) and decrease more packet transmission delay (see
Fig. 17); however, the minor penalty is a longer timeout
value that causes slightly larger power consumption.

As to the average packet transmission delay, Fig. 17
shows that the proposed AH-DPM algorithm is better than
the ATO and Predictive algorithms by 23.22% and 25.18%,
and is worse than the ML, STO, and Stochastic algorithms
by 41.37%, 41.05%, and 38.20%, respectively. Moreover,
Fig. 20 illustrates the inactivation ratio of the WLAN NIC
in a week for each DPM algorithm. We found that the inac-
tivation ratio of the proposed AH-DPM is larger than that of
the ATO and Predict algorithms and is smaller than that of
the ML, STO, and Stochastic algorithms. The results of the
inactivation ratio are again in accordance with those of
the average packet transmission delay (see Fig. 17).

In summary, considering the tradeoff between average
power consumption and average response time (or average
packet transmission delay), the proposed AH-DPM
ratio of the hard disk in a week.



Fig. 14. Comparison of the average power consumption of the WLAN NIC.
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algorithm performs the best among the DPM algorithms,
except the Oracle algorithm, for hard disks and WLAN NICs.
Note that the proposed algorithm derives the average idle
time in the ON period and OFF period separately. It uses
the average idle time in the ON period to determine an
appropriate timeout value, which means to set the timeout
value long enough to decrease the false positive prediction
miss rate and to set the timeout value short enough to
decrease the false negative prediction miss rate. By
decreasing these two types of prediction miss rates, the
proposed algorithm can reduce unnecessary power con-
sumption of the SP. In addition, the proposed algorithm
can also adapt to the SP that has multiple inactive states
by using the average idle time in the OFF period to decide
Fig. 15. Comparison of the average packet
which inactive state the SP should be switched to. Such
adaptation can further decrease the power consumption
of the SP because we can choose a better inactive state
according to the average idle time in the OFF period. The
longer idle time of the SP in the OFF period, the deeper
inactive state the SP can be switched to.

4.3. Discussion

In Fig. 8, we observed that the average response time on
Tuesday and Saturday are higher than that in the other
days. This is because that the average request inter-arrival
time on Tuesday and Saturday are longer than those on the
other days, as shown in Table 5. A longer average request
transmission delay of the WLAN NIC.



Fig. 16. Comparison of the average power consumption of the WLAN NIC in a week.
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inter-arrival time implies a higher probability to inactivate
a component. Because of lacking the pre-wakeup mecha-
nism for each DPM algorithm, except the Oracle algorithm,
the SP will only be waked up when a request arrived.
Therefore, the average response time will increase due to
the state transition time penalty while waking up the SP.

The performance of the ATO algorithm [7] is highly cor-
related with the SP’s state transition time from an inactive
state to the active state, called wakeup state transition time,
and the request arrival pattern. The ATO algorithm will in-
crease the timeout value if the wakeup state transition
time of the SP is larger than the latest idle time of the SP,
and will decrease the timeout value otherwise. If the wake-
up state transition time is smaller (larger) than the idle
time in a period with bursty request arrivals, the ATO algo-
rithm will decrease (increase) the timeout value rapidly.
For the hard disk, since the wakeup state transition time,
which are 3.5 s from Sleep to Performance Idle and 2.5 s
from Standby to Performance Idle (see Table 3), is larger
than the idle time of the SP during a bursty request arrivals
Fig. 17. Comparison of the average packet transm
period, it will cause the timeout value to be increased rap-
idly. A larger timeout value means a lower probability to
inactivate the SP, which results in higher power consump-
tion of the ATO algorithm. As to the WLAN NIC, the wakeup
state transition time of the ATO algorithm, which is 80 ls
(see Table 7), is smaller than the idle time of the SP during
a bursty request arrivals period, and it causes the timeout
value to be decreased rapidly. A smaller timeout value
causes a larger inactivation ratio as well as a larger false
positive prediction miss rate, which result in longer packet
transmission delay.

The Predictive algorithm [11] also suffers from the bur-
sty request arrivals pattern. This is because that the Predic-
tive algorithm uses Eq. (1) (refer to Section 2) to predict the
idle time. If the predicted idle time is longer than the
break-even time, the SP will be inactivated. Otherwise,
the SP will remain in the active state. When a request
arrives, the PM will recalculate and update the predicted
idle time. If the request arrival pattern is bursty and the
idle time of the SP in the bursty period is shorter than
ission delay of the WLAN NIC in a week.



Fig. 18. Comparison of the prediction miss rate of the WLAN NIC in a week.

Fig. 19. Comparison of the average timeout value of the WLAN NIC in a week.
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the break-even time, the average idle time will be short-
ened rapidly and will be smaller than the break-even time.
When the average idle time is shorter than the break-even
time, the SP will remain in the active state until the aver-
age idle time becomes larger than the break-even time,
even if the next idle time is longer than the break-even
time. This situation of the SP remaining in the active state
while the actual idle time is longer than the break-even
time will cause extra power consumption. Although the
Predictive algorithm uses a watchdog mechanism to com-
pensate the prediction inaccuracy caused by the bursty
request arrivals pattern, the busy wait period caused by
the watchdog mechanism will also result in extra power
consumption.

The ML algorithm [20] has a drawback that is caused by
the calculation of a weight factor for each expert. The
weight of each expert is calculated as follows:

wtþ1
i ¼ wt

ib
lti ð4Þ
where wt
i is the weight factor of expert i, b is a chosen value

between 0 and 1, which was assigned to 0.75 in the exper-
iments [20], and lt

i is the joint loss factor, which is given by:

lt
i ¼ a� lt

ie þ ð1� aÞ � lt
ip ð5Þ

where lt
ie and lt

ip are the loss factors corresponding to
energy savings and performance delay for an expert i
[20]. Because b is between 0 and 1 and lt

i is always positive,
the weight will approach to zero after a series of calcula-
tion, which will cause the underflow problem. If this prob-
lem happens, the weight of each expert will be the same
and the result of selecting an operational expert will be
the same.

Finally, the performance of the Stochastic algorithm is
not good because the request arrival pattern of the SR is
bursty. With the bursty request arrival patterns of the hard
disk and WLAN NIC, the state transition policies calculated
by the Stochastic algorithm will tend to keep the SP in the



Fig. 20. Comparison of the inactivation ratio of the WLAN NIC in a week.
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active state and it will result in high average power
consumption.
5. Conclusions

In this paper, we have presented a new power efficient
adaptive hybrid dynamic power management (AH-DPM)
algorithm that can adapt to the self-similar workloads with
bursty nature of the SPs (hard disk and WLAN NIC) in mobile
devices to lengthen their battery lifetime. To adapt to bursty
request arrival patterns with self-similarity of hard disks or
WLAN NICs, the proposed AH-DPM first derives the average
idle time of the SP in the bursty (ON) period and non-bursty
(OFF) period separately. Then, to achieve better power sav-
ing, we use the average idle time in the ON period to adjust
the timeout value more precisely and use the average idle
time in the OFF period to decide which inactive state the
SP should be switched to. Experimental results based on
real traces of a hard disk have shown that the average power
consumption of the proposed AH-DPM is better than that of
the ATO, ML, Predictive, STO, and Stochastic algorithms by
69.40%, 101.68%, 113.69%, 95.33%, and 278.37%, respec-
tively. Nevertheless, the proposed AH-DPM algorithm did
not sacrifice the average response time of the hard disk
too much, which is still lower than the average disk access
time specified in a hard disk specification. In addition,
experimental results based on real traces of a WLAN NIC
have also shown that the average power consumption of
the proposed AH-DPM is comparable to that of the ATO,
Oracle, and Predictive algorithms, and is better than that
of the ML, STO, and Stochastic algorithms by 172.34%,
89.14%, and 372.68%, respectively. As to the average packet
transmission delay, the proposed AH-DPM algorithm is bet-
ter than that of the ATO and Predictive algorithms by 23.22%
and 25.18%, and is worse than that of the ML, STO, and
Stochastic algorithms by 41.37%, 41.05%, and 38.20%,
respectively. In summary, the experimental results have
supported that the proposed AH-DPM algorithm can pro-
vide a better tradeoff between average power consumption
and average response time (or average packet transmission
delay) for hard disks and WLAN NICs, and thus it is really
feasible to ever increasing mobile devices for extending
their battery lifetime.
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