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This paper investigates a machine repair problem with homogeneous machines and standbys available, in
which multiple technicians are responsible for supervising these machines and operate a (R, V, K) syn-
chronous vacation policy. With such a policy, if any V idle technicians exist in the system, these V
(V < R) technicians would take a synchronous vacation. Upon returning from vacation, they would take
another vacation if there is no broken machine waiting in the queue. This pattern continues until at least
one failed machine arrives. It is assumed that the number of teams/groups on vacation is less than or
equal to K (0 5 KV < R). The matrix analytical method is employed to obtain a steady-state probability
and the closed-form expression of the system performance measures. Efficient approaches are performed
to deal with the optimization problem of the discrete/continuous variables while maintaining the system
availability at a specified acceptable level.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In many industrial processes, production machines are unreli-
able and may have a breakdown. When a machine fails, it is sent
to a maintenance facility and repaired by a group of technicians
(servers). In order to achieve the production quota and reduce
the loss of production capacity, the plant usually keeps standby
machines that could substitute for a failed machine. In this paper,
a machine repair problem, which includes M identical machines, S
standby machines, and R technicians with synchronous multiple
vacation policy is investigated. There are numerous researches on
the machine repair problem or the multi-server queueing system
with various vacation policies.
1.1. Machine repair/inference problem

This paper first conducts a literature review on non-vacation
servers (i.e. servers do not perform secondary tasks during their
idle period). Ke and Wang (1999) analyzed machine repair prob-
lems with constant balking probability, negative exponential dis-
tributed reneging, and unreliable servers. A subsequent study, by
Ke and Wang (1999) and Wang and Ke (2003), revisited this model
ll rights reserved.
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with reneging behavior. The system steady-state availability,
MTTF, and some system performance measures were presented.
Wang, Ke, and Ke (2007) investigated the profit analysis of the
M/M/R machine repair problem with balking, reneging, and stand-
by switching failures. They employed the direct search method and
the steepest descent method in order to determine global maxi-
mum values to satisfy system constraints. A comprehensive and
exhaustive discussion of machine repair problems was given by
Haque and Armstrong (2007). Ke and Lin (2008) modeled manufac-
turing systems using two queueing systems with different repair
rates and different numbers of technicians. As for vacation servers,
Gupta (1997) first investigated a machine interference problem
with warm spares and server vacations, including multiple vaca-
tions, single vacation, and hybrid multiple/single vacation
schemes. A transform free, closed form expression of the probabil-
ity distribution for the number of operating machines and perfor-
mance measures was developed in Gupta’s work. Ke (2006)
generalized Gupta’s work to unreliable-server cases. Numerical
investigation and sensitivity analysis of the reliability and avail-
ability measures of a repair system were investigated by Ke and
Lin (2005), in which the servers were imperfect, and applied a mul-
tiple vacation policy. Ke and Wang (2007) dealt with machine re-
pair problems with a single/multiple vacation policy and two
type spares, and a cost analysis for both vacation models was
developed. Recently, Wang, Chen, and Yang (2009) studied the
M/M/1 machine repair problem with a working vacation policy,
where the server may work with different repair rates rather than
completely terminate during a vacation period. In their work, the
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Fig. 1. A machine repair problem with standby machines.
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optimal number of machines and two different repair rates were
determined using a direct search method and Newton’s method.

1.2. Queueing model with synchronous vacation policy

The second category of studies is in regard to a queueing system
with synchronous vacation policy. Zhang and Tian (2003a, 2003b)
first introduced the multi-server queueing system with single/
multiple synchronous vacations, in which some idle servers would
take a vacation of random duration when finished serving custom-
ers, with no customers waiting. Moreover, Tian and Zhang (2003)
investigated a GI/M/c queueing system with phase-type vacations
where all servers take multiple vacations together until the system
is not empty. Tian and Zhang (2006) considered a multi-server
queueing system with a (d, N) vacation policy, in which d idle serv-
ers may take multiple vacations together until the number is equal
to or more than a predetermined threshold N. They also conducted
a computational study of the optimal value of controllable variable
d, while N was presented under non-controllable parameter. Yue
et al. (2006) studied a finite capacity queueing system with balk-
ing, reneging, and single synchronous vacations policy. They also
obtained a matrix-form solution for the steady-state probability
vector and some performance measures. A multi-server queueing
model, with Markovian arrivals and synchronous phase type vaca-
tions, was investigated by Srinivas (2007), who performed several
cases of MAP processes and numerical examples, including the ta-
bles of optimum values of system parameters, the corresponding
system performances, and total expected costs were presented. Re-
cently, Srinivas (2009) presented a steady-state analysis of the
MAP/M/c queueing system with the phase type vacation and pro-
vided some interesting numerical results. However, existing re-
search works regarding synchronous vacation do not include
machine repair problems, and mainly focused on the infinite
capacity queueing system.

In the photolithography process (see Uzsoy, Lee, & Martin-Vega,
1992, 1994), each job is processed by stepper machines, which are
unreliable and are subject to unpredictable breakage. When a ma-
chine fails it is immediately sent to the maintenance department
and repaired by technicians, as the stepper machines are critical
resources in the photolithography process, thus, maintaining the
machines operational performance in the system is very important.
In the repair facility, an arriving broken stepper machine under-
goes a random process. The service/repair time of each failed ma-
chine is by provided a technician, and could be regarded as a
random variable. For the convenience of labor management, the
technicians usually are divided into teams/groups of fixed size.
Whenever there is an idle team, they would take a multiple vaca-
tion and leave the repair facility at random periods. The primary
goal of leaving the repair facility is to improve the utility of the
work force (support for other departments), or increase the abili-
ties of personnel by joining a training course. A broken machine
must wait for repair service in a queue when there is no available
technician/server in the system. Therefore, the plant always main-
tains some standby machines to substitute the failed machines. As
mentioned above, to allocate labor and maintain the operations of
product machines are important for the engineers and manage-
ment. However, regarding production or manufacturing systems,
there are no studies on partial server multiple vacation (synchro-
nous vacation) policies for the machine repair problems or finite
arrival resources.

The objectives of this paper are as follows: (1) provide a matrix-
analytical computational algorithm to develop the steady-state
probability vectors; (2) derive the steady-state availability, the
mean time to failure (MTTF), and other system performance mea-
sures; (3) construct a cost model to determine the optimal number
of technicians (servers), the optimal vacation policy, the optimal
service rate, and the optimal vacation rate; (4) conduct numerical
study on the effect of parameters on the system characteristics.

2. The system

This paper considers a multi-server machine repair problem
with a synchronous multiple vacation policy and standby. There
are M operating machines, S standby machines, and R technicians
(servers) in this system. The presented machine repair system with
warm standbys is shown in Fig. 1. A repaired machine would stay
as a standby (Case (I)) or be returned to the product line if the sys-
tem is short (Case (II)).

The detailed descriptions and assumptions of this model are gi-
ven as follows:

1. M operating machines are required for the function of the
system. In other words, the system is short only if S + 1 (or
more) machines fail.

2. Operating machines are subject to breakdowns, according to
an independent Poisson process, with rate k. When an oper-
ating machine breaks down, it is immediately backed up by
an available standby.

3. Each of the standby machines fails independently of the
others with Poisson rate a, where (0 6 a 6 k). When a
standby machine moves into an operating state, its charac-
teristics are the same as an operating machine.

4. Failed machines in the system form a single waiting line and
receive repair in the order of their breakdown, i.e. FCFS dis-
cipline. The service time provided by each technician is an
independent and identically distributed exponential ran-
dom variable with rate l.
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5. When a failed machine is repaired, it enters into a standby
state unless the system is short, then the repaired machine
would be sent back to an operating state.

6. Each technician could repair only one failed machine at a
time, and a failed machine arriving at the repair facility
where all technicians are busy or on vacation must wait in
the queue until a technician is available.

7. When there are any V idle technicians, they take a synchro-
nous multiple vacation. Upon returning from the vacation,
they would take a vacation again if there are no fail
machines waiting in the queue. The number of teams/
groups on synchronous vacation is restricted no more than
K (1 6 K 6 [R/V] � 1) at any time. The symbol ‘‘[�]’’ is the
ceiling function which [x] denotes the smallest integer not
less than x.

8. The vacation time of each team/group has an exponential
distribution with parameter h. The various stochastic pro-
cesses involved in this system are independent of each
other.

It should be noted that the inequality equation, 1 6 K 6 [R/
V] � 1, means that it is not allowed to have all technicians (servers)
on vacation at any time. In other words, the constraint KV < R must
hold surely. Therefore, the vacation policy introduced by this study
is a vacation policy without exhausting the servers, which is differ-
ent from the vacation polices in literatures, but closer to practical
use than past studies. The vacation policy we mentioned above is
represented by ‘‘(R, V, K) synchronous multiple vacation policy’’
and could be used to expresses a queueing system with R servers
and K teams/groups (with size V) are allowed to take synchronous
vacation.

3. Steady-state results

For the multi-server machine repair model, with a (R, V, K) syn-
chronous multiple vacation policy and standby machines, the state
of the system could be described by the pairs {(i, n): i =
R, R � V, R � 2V, . . . , R � KV, and n = max{i � V + 1, 0}, . . . , M + S},
where i denotes the number of operating (not on vacation) techni-
cians in the system, and n represents the number of failed ma-
chines in the system. For instance, (3, 2) indicates the state of 3
operating machines (R � 3 machines are on vacation) and 2 failed
machines in the system. The mean failure rate kn and mean repair
rate ln for this system are given by:

kn ¼
Mkþ ðS� nÞa; 0 6 n 6 S

½M � ðn� SÞ�k; S 6 n 6 M þ S

0; otherwise

8><
>:

and

ln ¼
nl; 1 6 n 6 R

0; otherwise

�

In the steady-state, the following notations are used:
Pi,n � probability that there are n failed machines in the system

when there are i operating technicians in the system (R � i techni-
cians are on vacation), where i = R,R � V, . . . , R � (K � 1)V, R � KV,
n = max{i � V + 1,0}, . . . , M + S.

3.1. Steady-state equations

In reference to the transition diagram shown in Fig. 2, the stea-
dy-state equations for multiple-server machine repair problems,
with standby under a (R, V, K) synchronous multiple vacation pol-
icy, are obtained as follows.
(1) i = R � KV
k0PR�KV ;0 ¼ l1PR�KV ;1 ð1Þ

ðkn þ lnÞPR�KV ;n ¼ kn�1PR�KV ;n�1 þ lnþ1PR�KV ;nþ1;

1 6 n 6 R� KV � 1 ð2Þ

ðkR�V þ lR�V ÞPR�KV ;R�V ¼ kR�KV�1PR�KV ;R�V�1

þ lR�KV PR�KV ;R�KVþ1

þ lR�KVþ1PR�ðK�1ÞV ;R�KVþ1 ð3Þ

ðkn þ ln þ KhÞPR�KV ;n ¼ kn�1PR�KV ;n�1 þ lR�KV PR�KV ;nþ1;

R� KV þ 1 6 n 6 M þ S� 1 ð4Þ

ðlR�KV þ KhÞPR�KV ;MþS ¼ kMþS�1PR�KV ;MþS�1 ð5Þ
(2) R � (K � 1)V 6 i 6 R � V
ðkR�ðiþ1ÞVþ1 þ lR�ðiþ1ÞVþ1ÞPR�iV ;R�ðiþ1ÞVþ1

¼ ðiþ 1ÞhPR�ðiþ1ÞV ;R�ðiþ1ÞVþ1 þ lR�ðiþ1ÞVþ2PR�iV ;R�ðiþ1ÞVþ2 ð6Þ

ðkn þ lnÞPR�iV ;n ¼ ðiþ 1ÞhPR�ðiþ1ÞV ;n þ kn�1PR�iV ;n�1

þ lnþ1PR�iV ;nþ1;R� ðiþ 1ÞV þ 2 6 n 6 R� iV � 1 ð7Þ

ðkR�iV þ lR�iV ÞPR�iV ;R�iV ¼ ðiþ 1ÞhPR�ðiþ1ÞV ;R�iV

þ kR�iV�1PR�iV ;R�iV�1

þ lR�iV PR�iV ;R�iVþ1

þ lR�iVþ1PR�ði�1ÞV ;R�iVþ1 ð8Þ

ðkn þ lR�iV þ ihÞPR�iV ;n ¼ ðiþ 1ÞhPR�ðiþ1ÞV ;n þ kn�1PR�iV ;n�1

þ lR�iV PR�iV ;nþ1R� iV þ 1 6 n 6 M þ S� 1 ð9Þ

ðlR�iV þ ihÞPR�iV ;MþS ¼ ðiþ 1ÞhPR�ðiþ1ÞV ;MþS

þ kMþS�1PR�iV ;MþS�1 ð10Þ
(3) i = R
ðkR�Vþ1 þ lR�Vþ1ÞPR;R�Vþ1 ¼ hPR�V ;R�Vþ1 þ lR�Vþ2PR;R�Vþ2 ð11Þ

ðkn þ lnÞPR;n ¼ hPR�V ;n þ kn�1PR;n�1 þ lnþ1PR;nþ1; R� V þ 2
6 n 6 R� 1 ð12Þ

ðkn þ lRÞPR;n ¼ hPR�V ;n þ kn�1PR;n�1 þ lRPR;nþ1;

R 6 n 6 M þ S� 1 ð13Þ

lRPR;MþS ¼ hPR�V ;MþS þ kMþS�1PR;MþS�1 ð14Þ
There is no way of solving (1)–(14) in a recursive manner in or-
der to develop explicit expressions for steady-state probabilities. In
the next section, this study provides a matrix-analytic method to
address this problem.

3.2. Matrix-analytical solutions

To analyze the resulting system of linear Eqs. (1)–(14), a matrix-
analytic approach is used. Following concepts by Neuts (1981), in
order to represent the steady-state equations in a matrix-form,
the transition rate matrix Q (the coefficient matrix) of this Markov
chain could be partitioned as follows:



Fig. 2. Steady-transition-rate diagram for a multi-server machine repair problem with standbys under a (R, V, K) synchronous multiple vacation policy
(M = 15, S = 3, R = 13, V = 3, K = 2).
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Q ¼

AK BK�1

CK AK�1 BK�2

CK�1 AK�2 BK�3

. .
. . .

. . .
.

C3 A2 B1

C2 A1 B0

C1 A0

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

ð15Þ

Matrix Q is a square matrix of order K(M + S � R) � K(K + 1)/
2 + (M + S + 1), and each entry of the matrix Q is listed in the follow-
ing. The first diagonal sub-matrix is

AK ¼

� k0

l1 � k1

l2 � k2

. .
. . .

. . .
.

lR�KV � kR�KV

. .
. . .

. . .
.

lR�KV � kMþS�1

lR�KV �

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA
ðMþSþ1Þ�ðMþSþ1Þ

ð16Þ

AK describes the in-flows and out-flows of the states in the first
(top) level as Fig. 2. Later, for i = 1, 2, . . . , K � 1,
Ai¼

� kR�ðiþ1ÞVþ1

lR�ðiþ1ÞVþ2 � kR�ðiþ1ÞVþ2

lR�ðiþ1ÞVþ3 � kR�ðiþ1ÞVþ3

. .
. . .

. . .
.

lR�iV � kR�iV

. .
. . .

. . .
.

lR�iV � kMþS�1

lR�iV �

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ðMþS�Rþðiþ1ÞVÞ�ðMþS�Rþðiþ1ÞVÞ

ð17Þ
Ai record the corresponding flows in the middle levels. Finally, the
matrix A0 as following shows the flows in the bottom (lowest) level
as Fig. 2.
A0¼

� kR�Vþ1

lR�Vþ2 � kR�Vþ2

lR�Vþ3 � kR�Vþ3

. .
. . .

. . .
.

lR � kR

. .
. . .

. . .
.

lR � kMþS�1

lR �

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
ðMþS�RþVÞ�ðMþS�RþVÞ

ð18Þ

The diagonal elements of matrix Ai (Q), indicated by ⁄, are such
that the sum of each row of Q is zero (keeps the flow balance).

Then, the first lower-diagonal sub-matrices, CK is a matrix of
size (M + S � R + KV) � (M + S + 1) with only one nonzero element
CK[1, R � KV + 1] = lR�KV+1. For i = 1, 2, . . . , K � 1, Ci is a matrix of
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size (M + S � R + iV) � [M + S � R + (i + 1)V] with only one nonzero
element Ci[1, V] = lR�iV+1.

BK�1 is a matrix of size (M + S + 1) � (M + S � R + KV) with ele-
ments BK�1[R + 1 � KV + n, n] = Kh, n = 1, 2, . . . , (M + S � R + KV).
For i = 0, 1, . . . , K � 2, Bi is a matrix of size [M + S � R +
(i + 2)V] � [M + S � R + (i + 1)V] with elements Bi[V + n, n] = (i + 1)h,
n = 1, 2, . . . , M + S � R + (i + 1)V.

For example, for the queueing system in Fig. 2
(M = 15, S = 3, R = 13, V = 3, K = 2), C2 (11 � 19) and C1 (size
8 � 11) have one and only one nonzero element C2[1, 8] = l8 and
C1[1, 3] = l11, respectively. B1 (19 � 11) has nonzero elements
B1[9, 1], B1[10, 2], . . . , B1[18, 10] and B1[19, 11] with value 2h. Sim-
ilarly, B0 (11 � 8) has nonzero elements B0[4, 1], B0[5, 2],
. . . , B0[10, 7] and B0[11, 8] with value h.

Let P denote the steady-state probability vector of Q. Vector P
is partitioned as P = [PK, PK�1, . . . , P1, P0] where PK = [PR�KV,0,
PR�KV,1, . . . , PR�KV,M+S�1, PR�KV,M+S] denotes the steady-state proba-
bility vector that the number of teams/groups on vacation is equal
to K (such as the states of the top level in Fig. 2). The sub-vectors
Pk = [PR�kV, R�(k + 1)V + 1, PR�kV, R�(k + 1)V + 2, . . . , PR�kV,M + S] repre-
sents the steady-state probability vector that the number of
teams/group on vacation is equal to k, k = 0, 1, . . . , K � 1. Then,
the steady-state equations are expressed in matrix-form as
PQ = 0 are given by

PK AK þPK�1CK ¼ 0 ð19Þ
Pkþ1Bk þPkAk þPk�1Ck ¼ 0; k ¼ 1;2; . . . ;K � 1 ð20Þ
P1B0 þP0A0 ¼ 0 ð21Þ

and the following normalizing equation must be satisfiedX
i

X
n

Pi;n ¼
X

k

Pke ¼ 1 ð22Þ

where e represents a column vector with suitable size and each
component equal to one. Firstly, it is known that PK = PK�1

CK(�AK)�1 = PK�1/K from Eq. (19). Substituting this result to Eq.
(20) and performing some routine manipulations, we obtain the fol-
lowing results

PK BK�1 þPK�1AK�1 þPK�2CK�1 ¼ PK�1/K BK�1 þPK�1AK�1

þPK�2CK�1 ¼ PK�1½/K BK�1 þ AK�1� þPK�2CK�1 ¼ 0

implies

PK�1 ¼ PK�2CK�1 �ð/K BK�1 þ AK�1Þ½ ��1 ¼ PK�2/K�1

Similarly, doing these recursive operations successively, we have

Pk ¼ Pk�1Ck �ð/kþ1Bk þ AkÞ
� ��1 ¼ Pk�1/k; 1 6 k 6 K � 1 ð23Þ

where /k = Ck[ � (/k+1Bk + Ak)]�1, 1 6 k 6 K � 1. Finally, replacing
P1 by P0/1 in Eq. (21) infers

P0/1B0 þP0A0 ¼ P0ð/1B0 þ A0Þ ¼ 0 ð24Þ

Consequently, Pk(1 6 k 6 K) in Eqs. (19) and (20) could be written
in terms of P0 as Pk = P0Uk where Uk = /1, /2, . . . , /k, 1 6 k 6 K
is a product form of quantity /k. Once the steady-state probability
P0 being obtained, the steady-state solutions
P = [PK, PK�1, . . . , P1,P0] are then determined. P0 could be solved
by Eq. (24), with the following normalization equation

X
i

X
n

Pi;n ¼
X

k

Pke ¼ P0

XK

k¼1

Uk þ I

" #
e ¼ 1 ð25Þ

where I represents an identity matrix with suitable size. Solving Eq.
(24) and the above normalization condition simultaneously would
gain the steady-state solution P0.
4. Performance analysis

This section addresses the steady-state availability and the
mean time to system failure analysis. In addition, the explicit
expressions of other system performance measures in the system
are obtained.

4.1. Availability and reliability analysis

It is noted that the system fails if, and only if, S + 1 (or more)
machines fail. Hence, the steady-state availability could be calcu-
lated as

A:V : ¼ Pð0 6 n 6 SÞ ¼
X

i

X
06n6S

Pi;n ð26Þ

The mean time to failure (MTTF) is an important reliability
characteristic, as a shortage in the system (system failure) would
cause operating costs to be raised and abate the utility of the pro-
duction machines. To calculate the MTTF, the original transition
rate matrix is reduced by deleting the rows and columns of the
absorbing state(s). The new reduced transient matrix, C, is as
follows:

C ¼

Ar
K Br

K�1

Cr
K Ar

K�1 Br
K�2

Cr
K�1 Ar

K�2 Br
K�3

. .
. . .

. . .
.

Cr
3 Ar

2 Br
1

Cr
2 Ar

1 Br
0

Cr
1 Ar

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð27Þ

where Ar
i ; Br

i , and Cr
i denote the sub-matrices of Ai, Bi, and Ci,

respectively. These sub-matrices Ar
i ; Br

i , and Cr
i , with superscript

‘‘r’’, are derived by deleting the rows and columns of the absorbing
state(s) ((i, n), which satisfy n P S + 2) from the original matrices Ai,
Bi, and Ci. Then, the expected time to reach an absorbing state could
be calculated from

E TPð0Þ!PðabsorbingÞ

h i
¼ Pð0ÞT

Z 1

0
eCt dt ¼ Pð0ÞTð�C�1Þe ð28Þ

where P(0) = [1, 0, . . . , 0]T denotes the initial conditions for this
problem (see Wang & Ke, 2003).

4.2. System performance measures

The analysis of this study is based on the following system per-
formance measures. Let

E[F] � the expected number of failed machines in the system,
E[Fq] � the expected number of failed machines in the queue,
E[O] � the expected number of operating machines in the
system,
E[S] � the expected number of acting standby machines in the
system,
E[B] � the expected number of busy repairmen in the system,
E[V] � the expected number of vacation repairmen in the
system,
E[I] � the expected number of idle repairmen in the system,
M.A. �machine availability (the fraction of the total time that
the machines are working),
O.U. � operative utilization (the fraction of busy servers).

For convenience, this study defines the symbol ‘‘hf(n), n = a..bi’’
as denoting a column vector with dimension (b � a + 1), of which
the nth element is f(n). For instance, hmax
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(n, 4), 4), n = 1..6i = [4, 4, 4, 4, 5, 6]T, hmin{n, 3}, n = 1..6i = [1, 2, 3,
3, 3, 3]T, and hn2, n = 1..6i = [1, 4, 9, 16, 25, 36]T. It represents a col-
umn vector that is constructed by using the specific function. Then,
the expressions for E[F], E[Fq], E[O], E[S], E[B], E[V], and E[I] are
developed as follows:

E½F� ¼
X

i

X
n

nPi;n ¼
XK�1

k¼0

Pk n;n ¼ ½R� ðkþ 1ÞV �::ðM þ SÞh i

þPK n;n ¼ 0::ðM þ SÞh i ¼ P0

XK�1

k¼0

Uk n; n ¼ ½R� ðkþ 1ÞV �h
(

�ðM þ SÞi þUK n;n ¼ 0::ðM þ SÞh ig ð29Þ

E½Fq�¼
X

i

X
n

Pi;nmaxfn�i;0gþ
X

n

PR�KV ;nmaxfn�i;0g

¼
XK�1

k¼0

Pk maxfn�ðR�kVÞ;0g;n¼½R�ðkþ1ÞVþ1�h ::ðMþSÞi

þPK maxfn�ðR�kVÞ;0g;n¼0::ðMþSÞh i

¼P0

XK�1

k¼0

Uk maxfn�ðR�kVÞ;0g;n¼½R�ðkþ1ÞVþ1�h
(

::ðMþSÞi

þUK maxfn�ðR�KVÞ;0g;n¼0::ðMþSÞh ig ð30Þ

E½O�¼
X

i

X
n

Pi;nminfM;MþS�ngþ
X

n

PR�KV ;nminfM;MþS�ng

¼
XK�1

k¼0

Pk minfM;MþS�ng;n¼½R�ðkþ1ÞVþ1�::ðMþSÞh i

þPK minfM;MþS�ng;n¼0::ðMþSÞh i

¼P0

XK�1

k¼0

Uk minfM;MþS�ng;n¼½R�ðkþ1ÞVþ1�h
(

::ðMþSÞi

þUK minfM;MþS�ng;n¼n¼0::ðMþSÞh ig ð31Þ

E½S� ¼
X

i

X
n

Pi;n maxf0; S� ng þ
X

n

PR�KV ;n maxf0; S� ng

¼
XK�1

k¼0

Pk maxf0; S� ng; n ¼ ½R� ðkþ 1ÞV þ 1�::ðM þ SÞh i

þPK maxf0; S� ng; n ¼ 0::ðM þ SÞh i

¼ P0

XK�1

k¼0

Uk maxf0; S� ng;n ¼ ½R� ðkþ 1ÞV þ 1�::ðM þ SÞh i
(

þUK maxf0; S� ng;n ¼ n ¼ 0::ðM þ SÞh ig ð32Þ

E½V � ¼
XK

k¼1

KVPke ¼ P0V
XK

k¼1

kUke ð33Þ

E½I� ¼
X

i

X
n

Pi;n maxfi� n;0g þ
X

n

PR�KV ;n maxfR� KV ;0g

¼
XK�1

k¼0

Pk maxfðR� kVÞ � n;0g;n ¼ ½R� ðkþ 1ÞV þ 1�::ðM þ SÞh i

þPK maxfðR� KVÞ � n;0g;n ¼ 0::ðM þ SÞh i

¼ P0

XK�1

k¼0

Uk maxfðR� kVÞ � n;0g;n ¼ ½R� ðkþ 1ÞV þ 1�::ðM þ SÞh i
(

þ UK maxfðR� KVÞ � n;0g;n ¼ 0::ðM þ SÞh ig ð34Þ
E½B� ¼
X

i

X
n

Pi;n minfi;ng ¼
XK�1

k¼0

Pk minfðR� KVÞ;ng;nh

¼ ½R� ðkþ 1ÞV þ 1� � ðM þ SÞi þPK minfðR� KVÞ;ng;nh

¼ 0 � ðM þ SÞi ¼ P0

XK�1

k¼0

Uk minfðR� KVÞ;ng;nh
(

¼ ½R� ðkþ 1ÞV þ 1� � ðM þ SÞi þUK minfðR� KVÞ;ng;n ¼ 0h
�ðM þ SÞig ð35Þ

By the properties of minimum and maximum functions, it could be
verified that E[V] + E[I] + E[B] = R. Furthermore, following Benson
and Cox (1951), the machine availability and the operative utiliza-
tion of servers are defined by

M:A: ¼ 1� E½F�
M þ S

and O:U: ¼ E½B�
R

ð36Þ

Finally, use Little’s formula to obtain the expected waiting time in
the system, E[W], and in the queue E[Wq], as

E½W� ¼ E½F�=ke and E½Wq� ¼ E½Fq�=ke ð37Þ

where ke ¼
P

i

P
nknPi;n is the effective arrival rate into the system.

5. Cost analysis

In this section, a total expected cost function per unit time, as
based on system performance measures, is constructed. A con-
straint on system availability is imposed on this cost model, where
R, V and K are discrete decision variables. First, let

Ch � cost per unit time when one failed machine joins the
system,
Ce � cost per unit time of a failed machine after all standbys are
exhaused,
(downtime cost),
Cs � cost per unit time when one machine is functioning as a
standby (inventory cost),
Cb � cost per unit time when one repairman is busy,
Cf � cost per unit time of each resident repairman,
Ct � cost per unit time of each team group,
c � cost per unit time of augment the size of team group.

Using the definitions of the cost elements listed above, the total
expected cost function per unit time is given by

TcostðR;V ;KÞ ¼ ChE½F� þ CeðM � E½O�Þ þ CsE½S� þ CbE½B� þ ðR
� KVÞCf þ ðR=VÞCt þ cV ð38Þ

An example (photolithography process problem mentioned in Sec-
tion 1) is provided to perform the numerical investigation:

� There are M = 15 stepper machines and S = 10 standby
machines in the photolithography process.
� Each operating stepper machine may be interrupted due to

unpredictable accidents with Poisson breakdown rate k = 1.5.
� The standby machines are with Poisson breakdown rate a = 1.0
� In the repair facility, R technicians are responsible to provide

the repair service for the failed machines. The repair time for
one failed machine is exponentially with mean l�1 = 0.2.
� The servers/technicians are allocated by a (R, V, K) synchronous

multiple vacation policy, in which vacation time is an exponen-
tial distributed with mean h�1 = 2.
� The cost elements and availability requirements are

Ch ¼ 10; Ce ¼ 125; Cs ¼ 90; Cb ¼ 60; Cf ¼ 80; Ct

¼ 45; c ¼ 30; and A ¼ 0:9



Fig. 3a. Surface plot of cost function.
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The objective of this study is to determine the optimum synchro-
nous multiple vacation policy, including the value of the number
of technicians R, say R⁄, the team size V, say V⁄, and the upper bound
of number of vacation teams, say K⁄, in order to minimize cost func-
tion Tcost (R, V, K) under system availability, is maintained at a cer-
tain acceptable level A. Following the concept of Hilliard (1976),
this cost minimization problem could be illustrated mathematically
as

Minimize
R;V ;K

TcostðR;V ;KÞ

Subject to A:V : P A
ð39Þ

where A.V. (system availability) is the steady-state probability that
the number of broken machines is less than or equal to S. The sym-
bol A is an availability level requirement or the acceptable level.

A direct search method may be employed to obtain potentially
useful results. An optimization algorithm is a direct search ap-
proach over a grid, which boundaries for decision variables are se-
lected in order to guarantee that the global optimum is obtained in
the interior region (see Hilliard, 1976). The procedure of direct
search method is described in the following.

Algorithm 1. Direct Search Method
Fig. 3b. Surface plot of A.V.
INPUT M, S, A and set cost T⁄ =1 (initialization)
OUTPUT approximation solution (R⁄, V⁄, K⁄) and

Tcost(R⁄, V⁄, K⁄).
Step 1 for R = 1 to M do

Step 2 for V = 1 to R do
Step 3 for K = 1 to [R/V] � 1 do
Step 4 Computing Tcost(R, V, K) and the corresponding

system availability A.V. (R, V, K)
Step 5 If A.V. (R, V, K) P A and Tcost(R, V, K) 6 T⁄

Step 6 Setting (R⁄, V⁄, K⁄) = (R, V, K) and T⁄ = Tcost(R, V, K)
Step 7 end if
Step 8 end do loop

Step 9 end do loop
Step 10 end do loop
Step 11 OUTPUT (R⁄, V⁄, K⁄), A.V., (R, V, K) and T⁄.

The Direct search method using this problem is with complexity

O(M3), and the information of the CPU time spent for computation
is listed below in the tables/figures, which are gained by software
MAPLE 9, as based on personal computer with implement AMD
Dual-Core CPU (2.70 GHz) and 4.0 GB RAM. The computational
time is acceptable. The direct search algorithm is applied in the
set {M = 15 P R P V and R > KV; R,V,K are positive integers}.
Table 1
The expected cost Tcost(R, V⁄, K⁄) and the system availability A.V. with a synchronous mult

R 10 11 12

(R, V⁄, K⁄) (10, 2, 2) (11, 4, 1) (12,
Tcost(R, V⁄, K⁄) 1509.27 1575.78 1495
A.V. 0.90531 0.94765 0.90

CPU time spent: 89.092 s.

Table 2
The expected cost Tcost(R, V⁄, K⁄) and the system availability A.V. with specific multiple-va

R 8 9 10

(R, V, K⁄) (8, 1, 1) (9, 1, 3) (10, 1
Tcost(R, V, K⁄) 1724.24 1658.52 1705.
A.V. 0.94496 0.90446 0.910

CPU time spent: 66.408 s.
Step 1. Find V⁄ and K⁄ for R technicians necessary to satisfy the
required availability, where R = 2, 3, . . . , 15 (see Table 1).

Step 2. From Table 1, H = {$1721.24, $1594.27, $1509.27,
$1575.78, $1495.77, $1609.53, $1503.85, and $1544.55}.
iple-vacation policy (k = 1.5, l = 5.0, h = 0.5, a = 1.0).

13 14 15

3, 2) (13, 6, 1) (14, 4, 2) (15, 3, 3)
.77 1609.53 1503.85 1544.55

957 0.94787 0.91199 0.92006

cation policy (k = 1.5, l = 5.0, h = 0.5, a = 1.0).

11 12 13

, 4) (11, 1, 5) (12, 1, 6) (13, 1, 7)
65 1752.55 1799.27 1845.84
72 0.91603 0.92062 0.92464



Fig. 4. Cost and availability surfaces for (M, S, R⁄, V⁄, K⁄) = (15, 10, 12, 3, 2) as k = 1.0 and a = 0.5.
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Step 3. From step 2, the optimal solution Tcost(R⁄, V⁄, K⁄) =
$1495.77 is achieved at R⁄ = 12, K⁄ = 3, V⁄ = 2 and the cor-
responding availability is 0.90957.

To compare the presented machine repair problem with a spe-
cific multiple vacation policy, set at the value of team size V = 1,
and retains restriction K (K < R). The corresponding optimal values
(R, V, K⁄), the expected cost, and the corresponding system avail-
ability for this system are as presented in Table 2. It should be
noted the steady-state availability does not reach 0.9 for V = 1
and K = R cases (traditional multiple vacation policy) from numer-
ical experiments (not presented the manuscript).

As shown in Tables 1 and 2, the synchronous multiple vacation
policy has lower (better) minimum cost than the specific multiple
vacation policy. As expected, for maintaining the availability level,
greater work force allocation flexibility has more advantage. In
addition, the specific multiple vacation policy would lead to a
shortage in the system availability if allowing all servers on
vacation.

In practice, the service rate and vacation rate could be adjusted
to further minimize the total cost. It is assumed that the value of
service rates and vacation rates have the upper bounds of lU and
hU. The investment budget is restricted by a given budget C. This
cost minimization problem could be illustrated mathematically as

Minimize
06l6lU ;06h6hU

F ¼ Tcostðl; hÞ=C � 1

Subject to A:V : P A
ð40Þ

The object function could be regarded as an alternative form of the
original cost function. After fixing the discrete variables, this study
addresses the optimization of the continuous variables. For the
example provided above, set lU = 7.5, hU = 5.0, C = 1500, Fig. 3a
and b displays the surface plots of objective functions and system
availability. Three surfaces Tcost(l, h)/C � 1, A.V. � A, and z = 0(xy
plane) are represented graphically in Fig. 4. It is noted that the
points on surface A.V. � A and above z = 0 plane are feasible solu-
tions. The optimal service rate l⁄ and the optimal vacation rate h⁄

are the points achieving the lowest (minimum) cost in the area
(feasible region) of A.V. � A P 0 (availability constraint). From
Fig. 4, one sees that the optimal solution is (l⁄, h⁄) = (6.7, 0.4), and
the corresponding minimum object function is �0.23411
(Tcost(l⁄, h⁄) = (1 � 0.23411) � 1500 = 1148.83).

Although the existence of the optimal solution for continuous
variables can not be verified due to the complexity of the objective
function, we can observe that the optimal solution exists in the
range of feasible solutions from the Fig. 4. From many numerical
experiments, as expected, we observe that raising the service rate
(l) and the vacation rate (h) would bring up the system availability
to achieve the availability target. In practice use, if there is no fea-
sible solution in the feasible region (constraint violation), some
measures (choices) such as adding the budget or expanding the
parameter upper bounds should be implemented to fulfill the
availability target. That is, there is no feasible solution in the con-
straint region when the budget is limited and the availability
requirement could not be satisfied. In order to obtain the feasible
solution, one should consider the increasing of lU and hU (see
Wu & Pearn (2008)), i.e., expand the boundary region. As soon as
the availability constrant holds, feasible solutions exist and the
optimal solution also exists.

5.1. Sensitivity analysis

A second numerical investigation is performed to deal with the
effects of various values of (k, a) on optimal value (R⁄, V⁄, K⁄), and
some system performance measures. The effects of various values
of (k, a) on (R⁄, V⁄, K⁄) are shown in Table 3, which reports that (i)
Tcost(R⁄, V⁄, K⁄), R⁄, and V⁄ increase as k increases. More servers
and a greater work force allocation flexibility are required when
the machine breakdown rate k becomes large; (ii) E[O] is main-
tained at a certain level since the availability requirement; (iii)
the increasing of k or a both leads to a drop of machine availability
(M.A.).

The third set of numerical results investigates the effects of
changing the values of (l, h) on optimal value (R⁄, V⁄, K⁄), and some
system performance measures. The effects of various values of
(l, h) on (R⁄, V⁄, K⁄) are shown in Table 4, from which we observe



Table 5
System performance measures of a machine-repair problem with standbys and
synchronous multiple vacations under optimal operating conditions (M = 15, S = 10).

(k, a) (1.0, 1.0) (1.5, 1.0) (2.0, 1.0) (1.0, 0) (1.0, 0.5) (1.0, 1.0)
(R⁄, V⁄, K⁄) (6, 2, 1) (12, 3, 2) (13, 4, 1) (14, 3, 4) (15, 2, 7) (6, 2, 1)
(l⁄, h⁄) (5.2, 0.1) (5.1, 0.2) (5.1, 0.6) (7.2, 0.2) (6.7, 0.4) (5.2, 0.1)
Tcost 1193.25 1492.90 1769.96 1157.39 1148.83 1193.25
A.V. 0.90357 0.90325 0.91517 0.90130 0.90124 0.90357
E[F] 6.08886 6.38069 6.78356 4.83871 5.56057 6.08886
E[Fq] 2.45210 1.28086 0.30489 2.79536 3.01243 2.45210
E[O] 14.7807 14.7797 14.8248 14.7121 14.7056 14.7807
E[S] 4.13045 3.83963 3.39169 5.44914 4.73379 4.13045
E[B] 3.63676 5.09983 6.47867 2.04335 2.54814 3.63676
E[V] 1.96404 5.92432 3.97654 11.6382 12.3396 1.96404
E[I] 0.39920 0.97585 2.54479 0.31844 0.11224 0.39920
M.A 0.75645 0.74477 0.72866 0.80645 0.77758 0.75645
O.U 0.60613 0.42499 0.49836 0.14595 0.16988 0.60613
CPU time 399.144 572.044 362.912 1086.61 1620.20 368.077

Mean CPU time spent for search (l⁄, h⁄): 734.831 s.

Table 3
System performance measures of a machine-repair problem with standbys and
synchronous multiple vacations under optimal operating conditions
(M = 15, S = 10, l = 5.0, h = 0.5).

(k, a) (1.0, 1.0) (1.5, 1.0) (2.0, 1.0) (1.0, 0) (1.0, 0.5) (1.0, 1.0)
(R⁄, V⁄, K⁄) (6, 2, 1) (12, 3, 2) (13, 4, 1) (14, 3, 4) (15, 2, 7) (6, 2, 1)
Tcost 1200.25 1495.77 1770.10 1172.20 1160.75 1200.25
A.V. 0.90906 0.90957 0.90553 0.90653 0.90490 0.90906
E[F] 6.07496 6.37355 6.91878 5.30300 5.94204 6.07496
E[Fq] 2.28996 1.16842 0.34232 2.35861 2.56221 2.28996
E[O] 14.7946 14.7984 14.8011 14.7219 14.7403 14.7946
E[S] 4.13039 3.82807 3.28014 4.97506 4.31761 4.13039
E[B] 3.78501 5.20513 6.57646 2.94439 3.37983 3.78501
E[V] 1.82832 5.82314 3.97739 10.7267 11.4976 1.82832
E[I] 0.38667 0.97173 2.44614 0.32892 0.12258 0.38667
M.A 0.75700 0.74506 0.72325 0.78788 0.76232 0.75700
O.U 0.63083 0.43376 0.50588 0.21031 0.22532 0.63083
CPU time 85.484 87.283 87.531 86.314 86.378 87.517

Mean CPU time spent for search (R⁄, V⁄, K⁄): 86.751 s.

Table 4
System performance measures of a machine-repair problem with standbys and
synchronous multiple vacations under optimal operating conditions
(k = 1.0, a = 0.05).

(l, h) (2.5, 0.5) (5.0, 0.5) (7.5, 0.5) (5.0, 1.0) (5.0, 1.5) (5.0, 2.0)
(R⁄, V⁄, K⁄) (12, 4, 1) (7, 2, 2) (4, 1, 2) (10, 3, 3) (7, 3, 2) (7, 3, 2)
Tcost 1679.50 1166.79 1053.38 1038.57 987.908 1004.82
A.V. 0.90227 0.90329 0.91265 0.91822 0.91128 0.94473
E[F] 6.52865 5.32927 4.83823 5.19104 5.30587 4.79122
E[Fq] 0.54350 2.33186 2.83337 2.19052 2.30984 1.76712
E[O] 14.7782 14.7405 14.7668 14.7497 14.7320 14.8527
E[S] 3.69314 4.93019 5.39500 5.05928 4.96212 5.35607
E[B] 5.98515 2.99741 2.00487 3.00053 2.99603 3.02410
E[V] 3.91557 3.61162 1.74900 6.64959 3.67514 3.59499
E[I] 2.09928 0.39097 0.24613 0.34989 0.32884 0.38091
M.A. 0.73885 0.78683 0.80647 0.79236 0.78777 0.80835
O.U. 0.49876 0.42820 0.50122 0.30005 0.42800 0.43201
CPU time 88.530 82.983 82.266 85.984 86.391 87.284

Mean CPU time spent for search (R⁄, V⁄, K⁄): 85.573 s.
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that (i) Tcost(R⁄, V⁄, K⁄), R⁄, and V⁄ decrease as l increases. Fewer
servers are employed and less vacation behaviors are allowed
when the server rate becomes large; (ii) the larger l or h, the smal-
ler E[F]; and (iii) E[S], E[B], M.A are insensitive to the change of
vacation rate h.

Similarly, this study is also interested in the effects of (l⁄, h⁄) by
changing the values of k and a. For the fourth set of numerical
investigations, this study examines the effects of the various values
of k and a on the optimal values (l⁄, h⁄). Table 5 shows the opti-
mum value (l⁄, h⁄) and several system performance measures for
the various values of k and a, when the optimal values of discrete
variables are determined in advance. Table 5 reveals that (i) E[S] is
decreased when k and a are increased, as the increased breakdown
rate would raise the substituting behavior and the failure of stand-
by machines; (ii) l⁄ is insensitive to the change of k; and (iii) h⁄ in-
creases as k increases, that is, the vacation time becomes shorter
when the arrival rate becomes larger.
6. Conclusions

The systematic methodology provided in this paper works effi-
ciently for a machine repair model with standby under a synchro-
nous multiple vacation policy. The stationary probability vectors
were obtained using the matrix-analytical approach and the tech-
nique of matrix recursive. First, the steady-state probabilities for
this machine repair model were obtained in matrix forms, and
then, the explicit expressions for system performance measures,
such as the expected number of idle, busy and vacation servers,
machine availability, and operative utilization were developed.
Next, a cost model was constructed to determine the optimum
vacation policy, including the number of technicians R⁄, the opti-
mum team size V⁄, and the upper bound of the number of vacation
teams K⁄, in order to reach the minimum cost when system avail-
ability is maintained at an acceptable level. Finally, a sensitivity
analysis was performed to investigate the affections of joint opti-
mal values (R⁄, V⁄, K⁄) by changing the values of system
parameters.

Due to the complexity of the cost formulas, there is no proof of
convexity or other properties of the cost function. Moreover, many
other algorithms, such as Lagrange relaxation, KKT conditions,
steepest descent method, and Quasi-Newton method (Hillier & Lie-
berman, 2005) could be employed to solve the non-linear optimi-
zation problem. A multi-server machine repair problem with
synchronous multiple vacation and various teams/groups size, ser-
ver breakdown, or customer retrial behavior may be good topics
for future study.
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