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Remarks on Diversity-Multiplexing Tradeoffs for
Multiple-Access and Point-to-Point MIMO Channels

Hsiao-Feng (Francis) Lu, Member, IEEE

Abstract—In this paper, we answer several open questions re-
lated to diversity-multiplexing tradeoffs (DMTs) for point-to-point
and multiple-access (MAC) MIMO channels. By analyzing the
DMT performance of a simple code, we show that the optimal
MAC-DMT holds even when the channel remains fixed for less
than��� � �� � � channel uses, where� is the number of users,
�� is the number of transmit antennas of each user, and �� is the
number of receive antennas at receiver. We also prove that the
simple code is MAC-DMT optimal. A general code design criterion
for constructing MAC-DMT optimal codes that is much more
relaxed than the previously known design criterion is provided.
Finally, by changing some design parameters, the simple code
is modified for use in point-to-point MIMO channels. We show
the modified code achieves the same DMT performance as the
Gaussian random code.

Index Terms—Diversity-multiplexing gain tradeoff (DMT),
multiple access channel (MAC), multiple-input multiple-output
(MIMO) channel, space-time block codes (STBCs).

I. INTRODUCTION

I T is known that using multiple antennas at both transmitting
and receiving ends in a point-to-point multiple-input-mul-

tiple-output (MIMO) channel can increase the transmission rate
and simultaneously provide higher diversity gain. Assuming
there are transmit antennas and receive antennas, it
has been shown that the ergodic channel capacity of such
MIMO Rayleigh block fading channel is approximately

in bits per channel use [1], and the
maximal achievable diversity gain is [2], [3], provided
that the channel remains fixed for at least channel uses.
Let be the actual transmission rate, where

is termed the multiplexing gain. Zheng and Tse [4] showed
there is a fundamental tradeoff between multiplexing gain
and diversity value . Such tradeoff is commonly known as the
diversity-multiplexing gain tradeoff (DMT) and is reproduced
below.

Theorem 1 ([4]): In a MIMO Rayleigh block fading channel
with transmit and receive antennas, assuming the trans-
mitter transmits at multiplexing gain , the maximal diversity
gain can be achieved by any coding schemes is a piece-
wise linear function connecting the points
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for , when the channel is fixed for at
least channel uses .

If the MIMO channel cannot hold static for at least
channel uses, some lower bounds on DMT based on Gaussian
random coding schemes are provided in [4]. By using space-
time codes constructed from cyclic division algebra (CDA) [5],
Elia et al. [6] proved that the same DMT holds whenever
the channel is static for at least channel uses. However,
such result cannot be further improved, and the exact DMT for

is still uncertain.
Beyond the DMT for point-to-point MIMO communication,

Tse et al. [7] investigated the DMT for MIMO multiple-access
(MAC) channel with users, each having transmit antennas
and transmitting at multiplexing gain . Assuming no coopera-
tion among the users, they showed the following result.

Theorem 2 (MAC-DMT [7]): Let the MIMO-MAC channel
be specified as the above; then given multiplexing gain , the
maximal diversity gain can be achieved by any coding schemes
is

(1)

whenever the MIMO-MAC channel holds static for at least
channel uses.

In both DMT results, Theorems 1 and 2, the proofs proceed
by first establishing an upper bound on DMT based on an
outage formulation, and then by using a Gaussian random
coding scheme to show the converse based on a union bound
argument. It should be noted that in both point-to-point and
MAC cases the requirement on the channel coherence time
for the optimal DMT to hold actually comes from the union
bound, not the outage. When , Coronel
et al. [8] presented a criterion for constructing MAC-DMT
optimal codes. For any coding schemes, let denote the error
event that only the messages from users are erroneously
decoded. Coronel et al. showed that for any -subsets of users,

, if is upper bounded by the probability of
the corresponding outage event formulated by these users,
i.e., if one can show

(2)
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where is the overall channel matrix and
is the channel matrix of the th user, then the code is
MAC-DMT optimal. Notions of exponential inequalities

, and equality are defined in [4]. Specifically, in terms of
code design, the above criterion (2) means that the
matrix obtained by vertically concatenating the signal matrices
from users must be of full row rank and should perhaps satisfy
the nonvanishing determinant (NVD) criterion [6], [9]. This full
NVD design criterion was explicitly given in [8].

The aim of this paper is to answer the following questions.
1) Is it possible to achieve the optimal MAC-DMT

when ?
2) Is design criterion (2) necessary? or is it only sufficient?
3) In order to be MAC-DMT optimal, is it necessary for a

code to satisfy the NVD criterion for any sub-
matrix formed by any -subsets of users?

4) In point-to-point MIMO channel, can one design a non-
random DMT optimal code for ? Also, will the
resulting DMT be the same as ? In other words,
when , it relates to the question of whether the
outage event will dominate the error performance.

The major contribution of this paper is not to provide con-
structions of codes having performance better than the previ-
ously known DMT optimal codes, for example, the CDA based
codes [6], the Golden perfect codes [10], the max-order codes
[11], or the multiblock codes [12]. Instead, we aim to address
the above four questions that none of these codes can answer.

By analyzing the DMT performance of a very simple code,
we will provide answers to all the above questions. We will con-
sider a MIMO-MAC channel with users, each having
only transmit antenna, and we will assume there are

receive antennas at receiving end. While Theorem
2 holds for codes with channel
uses, we will prove this simple code achieves the same optimal
MAC-DMT with only or 2 channel uses. Fur-
thermore, from the DMT analysis of this code we will see that
criterion (2) is only sufficient, not necessary, and one does not
need full NVD in order to achieve the optimal MAC-DMT. By
slightly modifying the parameters of this code, we will show in
the point-to-point MIMO scenario this simple code achieves the
same DMT performance as the Gaussian random code over the
fast Rayleigh fading channel, i.e., the case when , which
relates to the fourth question in the above list.

This paper is organized as follows. In Section II we will
present the simple code as well as the corresponding DMT
performance analysis. Inferences from the DMT analysis will
be given in Section III and will answer all the above questions
of interest.

II. DMT PERFORMANCE OF A SIMPLE CODE

For simplicity, we will first present the code for use in a
MIMO-MAC channel. For point-to-point MIMO channels, the
same code can be easily modified and will be discussed in the
next section.

Consider a MIMO-MAC channel with users, each
having transmit antenna and transmitting at multiplexing
gain . Assume there are receive antennas at receiving
end. The code to be analyzed is the following:

(3)

where

(4)

, and where

(5)

Entries are independently drawn from the QAM set
. During transmission, the first user transmits the first

row of while the second user sends the second row. Clearly,
the two users do not cooperate. Given , the received
signal matrix is

(6)

where is the overall (2 2) channel matrix whose
entries are modeled as i.i.d. complex Gaussian random variables

and where is the (2 2) noise matrix. is the
channel vector associated with the th user. We assume is
known to the receiver but is unknown to either of the users.

Obviously, the code of (3) is uncoded since the entries
are just plain QAM symbols with some scaling factor that
is chosen to satisfy the power constraint .
Nevertheless, below we will show that this uncoded scheme
achieves the optimal MAC-DMT (cf. (1))

over the two-user MIMO-MAC channel.
To prove the claim, we will partition the error event into

several subevents for some , and analyze the prob-
ability of each. Then we will apply the union bound

to establish the claim. Although during the analysis some
subevents can be combined, in order to be extra cautious we
will analyze separately the error probabilities of these events.
Below we distinguish five different kinds of error events.

a) Type-I Error Event: The first-type error event cor-
responds to the case when only one entry in is erroneously
decoded. Without loss of generality, below we focus on a spe-
cific subevent of : for any

(7)
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That is, events with only one can be considered the
same as and we have .

To find out the error probability of , it suffices to note
that the subcode is exactly the
CDA-based code proposed by Elia et al. [6] with and

. Hence we have

(8)

To make the present paper self-contained, below we briefly
highlight some key steps in proving (8). The proof actually
follows from the fact that the bounded-distance decoder would
make an error if the noise vector has norm larger than half
the minimum Euclidean distance, i.e., if

where we have set the noise matrix . By we
mean the Frobenius norm of matrix .

Given the channel vector , if

then it can be shown that . Hence

where (a) follows from and . The
notation is defined as . Thus, we con-
clude .

b) Type-II Error Event: The second-type is the event when
only the messages from exactly one of the two users are erro-
neously decoded in both channel uses, i.e., the case when
and are both erroneously decoded for or 2. Clearly for
this specific code we have

(9)

The factor of 4 comes from that the probability of both and
are erroneously decoded is at most twice of and the

same holds for and in error.
The previous two types of error events concerns the case when

only one user is in error. The remaining ones will deal with
situations when both users are in error.

c) Type-III Error Event: The third-type error event is the
case when both users are in error but only one of the two trans-
missions is erroneously decoded. Again, without loss of gener-

ality, we focus on the case when the first transmission is erro-
neously decoded, i.e., it is of the following form:

(10)
and we have .

We remark that in this case the difference matrix
is of rank 1 and does not satisfy the full NVD criterion given
in [8] [and cf. (2)]. Furthermore, if one applies the conventional
mismatched bound on product of eigenvalues [13], which is sub-
sequently used as a key ingredient for proving the DMT opti-
mality of CDA-based codes [6], the resulting bound on the DMT
of present event would be too loose to become any useful.
Thus, below we will use a novel technique to analyze the DMT
performance of this case.

Let
, where by we mean the usual transpose of vector

. Set . Then from the pairwise error probability
analysis [2], [3], the probability of erroneously decoding as

is given by

(11)

Fixing , we see that the number of such that
for some can be upper bounded by

(12)

due to the choice of . The exponent comes from the
independent choices of and . Now from the union bound
we see

Thus we conclude that the diversity gain achieved by in
equals .

d) Type-IV Error Event: The fourth error event concerns
the case when the messages from both users are erroneously de-
coded in both transmissions, but the difference matrix has only
rank 1. That is, can be formulated as

(13)

The conditions of for all and
distinguish this case from the remaining one, the type-V error

event, the case when . Specifically, if
for only one pair of and , then the difference matrix would
have rank equal to 2. The same also applies to the cases of

or . On the other hand, if
then it is equivalent to . Similarly, the case of
reduces to type-II.
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Analyzing the probability of might be the most trouble-
some as neither the weighted pairwise error probability tech-
nique used in analyzing type-II nor the conventional techniques
[6] used for analyzing the DMT performance of CDA-based
codes would work in this case. Furthermore, same as , this
event again belongs to the situation when both users are in error
but the difference matrix is singular, a situation violating the full
NVD design criterion (2).

Nevertheless, following the same bounded distance argument
as in type-I it can be shown that event would occur if the noise
matrix has norm larger than half the minimum Euclidean
distance . Next, let
and ; then note

Thus, we see

Remark 1: Another quick-and-dirty way to show the above
is to note the relation between events and , and it can be
seen that

The reason for this method being dirty is that the error proba-
bility calculation does not capture the fact that the channel re-
mains static for two consecutive channel uses. It relies rather on
the ergodicity of channel variation.

e) Type-V Error Event: Finally, the last error event ad-
dresses the case when both users are in error but the difference
matrix is of full rank, i.e., it is of the following form:

(14)

Analyzing the probability of is relatively easy since the ma-
trix

has determinant in . Therefore, the code satisfies the full
NVD criterion in . It can be shown along similar lines as in
[6] that

Overall, we have proved the following result.

Theorem 3: The error probability of the simple code is

and the diversity gain is

Hence the simple code is MAC-DMT optimal.

III. INFERENCES FROM DMT ANALYSIS OF CODE

In this section we will take a closer look at the results pre-
sented in the previous section and then address the four open
questions posed in Section I.

A. Alternative Design Criterion for MAC-DMT Optimal Codes

Recall that among the five types of error events analyzed in
the previous section, only and belong to the case when
both users are in error. However, it was proved that achieves
diversity gain rather than , which was required
by the design criterion (2). We also note that events ,
and all correspond to the case when the difference matrix

is of rank 1, and all achieve the same diversity order
. Thus, below we summarize this observation and pro-

vide an alternative, yet much relaxed, design criterion for con-
structing MAC-DMT optimal codes.

Theorem 4 (Relaxed Design Criterion): In a MIMO-MAC
channel with users, each having transmit antennas and
transmitting at multiplexing gain , let be the space-time code
of the th user, and let be the overall code
obtained by vertically concatenating the code matrices from all
users. Let denote the error event that users are in error
but the difference matrix has only rank with

. If for all and

(15)

then is optimal in MAC-DMT.

The above design criterion is weaker than (2) since (2)
excludes the possibility of having error event when

, that is, (2) requires whenever users are in error,
the difference matrix must be of rank . Codes satis-
fying (15) must be MAC-DMT optimal since it follows
from [7] that and

for any .
Hence the events with are not dom-
inant in the union bound, and the requirement on the error
performance of these error events can be much relaxed without
worsening the overall DMT performance.

Thus, in this section we have answered the second and the
third questions posed in Section I. We showed that criterion (2)
is only sufficient, not necessary, and it is unnecessary to design
codes to meet the full NVD criterion. Moreover, we have pro-
vided in Theorem 4 an alternative, yet much relaxed, code de-
sign criterion for constructing MAC-DMT optimal codes.
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B. Requirement on Minimal Channel Coherence Time

In Theorem 2 it was shown that in the MIMO-MAC channel
with users, and , the MAC-DMT

holds whenever the channel remains fixed for
channel uses. The requirement on

was improved by the simple code analyzed in Section II.
We proved that achieves the same MAC-DMT optimality
with only channel uses, and hence improves the result
on minimal channel coherence time required by Theorem 2. In
particular, we note that in this specific channel we actually have

In other words, the single-user performance dominates the entire
region of , and there is no region of antenna-pooling
[7] in this case.

From the analyses presented in the previous section, we can
further strengthen the MAC-DMT result to the following. The
vector code

(16)

that is a subcode of given in Section II and is obtained by
taking only the first column of code matrices in , is in fact
MAC-DMT optimal. To see this, from the error events and

, the error probability of is

(17)

It then implies that the MAC-DMT holds even for fast
fading channel, i.e., the case when . This answers the first
question posed in Section I.

C. Point-To-Point MIMO Channel

The vector code of (16) can be easily modified for use
in a point-to-point MIMO channel. To this end, let

(18)

and set

(19)

where . In other words, can be obtained
from when both users transmit at multiplexing gain such
that the overall multiplexing gain achieved by equals .
Because of this, the error probability of is upper bounded
by

(20)

and the diversity gain equals for . The
maximal multiplexing gain , same as that indicated by
the ergodic channel capacity [1], [4] of this channel. However,
the resulting DMT is only , much worse than
the optimal DMT . It is understandable since the latter
requires the channel to be fixed for at least two channel uses,

while the former changes from one channel use to another, and
there is no coding across independent channel uses.

The maximal diversity gain achieves by is given
by , which is the same for any such vector codes. This
can be easily seen from the pairwise error probability argument.
Taking any fixed vector coding schemes that do not vary with
SNR, the resulting multiplexing gain equals 0 and the maximal
possible rank distance between any pairs of distinct code vectors
equals 1. Hence the resulting diversity order is 2 since there
are two receive antennas. Therefore, we conclude that for

the maximal diversity order is , and the resulting DMT
can never be the same as the optimal one , where the
maximal diversity order equals . Furthermore, it means that
the outage event does not dominate the error performance when

. These answer the fourth question posed in Section I.
While the code is not optimal in terms of , in [4]

Zheng and Tse proved the following result.

Theorem 5 ([4]): For a point-to-point MIMO channel with
transmit antennas, receive antennas, and , the
Gaussian random coding scheme achieves the following DMT:

(21)

where , and the con-
straint is given by

Substituting and into (21) gives

Thus, we see that the DMT achieved by Gaussian random
coding scheme is the same as that achieved by the deterministic
code . Hence is DMT optimal in the case of .

Finally, we remark that the well-known Alamouti scheme of
orthogonal space-time codes [14] was shown to achieve DMT
at for by Zheng and Tse [4]. Thus
we see for multiplexing gain the Alamouti code would
perform worse than the uncoded in the DMT sense.

IV. CONCLUSION

In this paper, we have answered all the four open questions
posed in Section I. We showed it is possible to achieve the
optimal MAC-DMT with , and previously
known full NVD design criterion for MAC-DMT optimal codes
[8] is only sufficient. A simple code not satisfying this full
NVD criterion is provided, and we proved it is still MAC-DMT
optimal. In view of this, we have provided an alternative, yet
much more relaxed, criterion for constructing MAC-DMT
optimal codes. This simple code is also modified for use in
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point-to-point MIMO channels. We showed the modified code
is optimal in DMT in the sense that it achieves the same DMT
performance as the Gaussian random coding schemes.

Below we state without proof a generalization of the results
in this paper.

Theorem 6: Consider a MIMO-MAC channel with users,
each having transmit antenna and transmitting at multi-
plexing gain . Assume there are receive antennas at receiver.
Then the following overall code:

...
. . .

...

achieves the optimal MAC-DMT with channel
uses, where and are defined as before (cf. Section II).
Furthermore, the same result holds for the vector code ob-
tained by taking the first column of code matrices in . Hence

holds for as well. Finally, by setting
the multiplexing gain at in the resulting code achieves
DMT in the point-to-point MIMO channel with

and . It is the same DMT performance
achieved by Gaussian random coding schemes.
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