Corrigendum

Volume 61, Number 1 (1992), in the article "A Comparison Theorem for Permanents and a Proof of a Conjecture on (t, m) -Families," by Joseph Y.-T. Leung and W.-D. Wei, pages 98-112: There is a flaw in the proof of a conjecture on (t, m) -families. Suppose $F = (F_1, F_2, ..., F_m)$ is a family of subsets of S. A system of distinct representatives (SDR) of the family F is a sequence $(f_1, f_2, ..., f_m)$ of m distinct elements of S such that $f_i \in F_i$ for $1 \le i \le m$. Let $N(F)$ denote the number of distinct SDRs of the family F. The problem of finding the value and the bounds for $N(F)$ has been investigated extensively in the literature. For a non-negative integer t , a family $F = (F_1, F_2, ..., F_m)$ is called a (t, m) -family if

$$
\left| \bigcup_{i \in I} F_i \right| \geq |I| + t
$$
 for any nonempty subset $I \subseteq \{1, 2, ..., m\}.$

Chang [1] proposed the problem of determining the value

$$
M(t, m) = \min\{N(F) : F \text{ is a } (t, m)\text{-family}\}.
$$

It is easy to see that for the family $F_{t,m}^* = (F_1^*, F_2^*, ..., F_m^*)$ with

$$
F_i^* = \{i, m+1, m+2, ..., m+t\}, \qquad 1 \le i \le m,
$$

the value of $N(F_{t,m}^*)$ is

$$
U(t, m) = \sum_{j=0}^{\min(t, m)} j! {t \choose j} {m \choose j}.
$$

It was proved in [1] that

$$
M(t, m) = U(t, m) \quad \text{for} \quad 0 \leq t \leq 2,
$$

and that $F_{2,m}^*$ is the only $(2, m)$ -family F with $N(F) = M(2, m)$. All (t, m) families F with $N(F) = M(t, m)$ for $t = 0$ and 1 were also determined. It was then conjectured in [1] that

$$
N(F) = U(t, m) \qquad \text{for all} \quad t \geq 3,
$$

and that $F_{t,m}^*$ is the only (t, m) -family with $N(F) = M(t, m)$ for all $t \ge 3$.

0097-3165 96 12.00

Copyright 1996 by Academic Press, Inc. All rights of reproduction in any form reserved.

Leung and Wei [2] gave a proof of the above conjecture by means of a comparison theorem for permanents. Let $B(b_{i,j})$ be an $m \times n$ matrix over a ring R . The permanent of B is defined as

$$
per(B) = \sum_{j_1, j_2, \dots, j_m} \prod_{i=1}^m b_{i, j_i},
$$
 (1)

where $j_1 j_2 \cdots j_m$ is an *m*-permutation of $\{1, 2, ..., n\}$. When $m > n$, the sum on the right-hand side of (1) is 0. For a family $F = (F_1, F_2, ..., F_m)$, where each $F_i \subseteq S \equiv \{s_1, s_2, ..., s_m\}$, the *incidence matrix* of F is the $m \times n$ matrix $A = (a_{i,j})$ defined by

$$
a_{i,j} = \begin{cases} 1, & \text{if } s_j \in F_i, \\ 0, & \text{otherwise.} \end{cases}
$$

It is easy to see that $N(F) = \text{per}(A)$. Let A_i be the *i*th row of A. Then the family F is a (t, m) -family if and only if for any nonempty subset I of $\{1, 2, ..., m\}, \sum_{i \in I} A_i$ has at least $|I| + t$ nonzero components. A $(0, 1)$ matrix with this property is called a (t, m) -matrix. Then we have

$$
M(t, m) = min\{per(A) : A \text{ is a } (t, m)
$$
-matrix $\}.$

The key to Leung and Wei's proof of Chang's conjecture is the following comparison theorem for permanents.

THEOREM 1. Let $B = (b_{i,j})$ be an $m \times n$ (0, 1)-matrix, $m \le n$, and let p and q be given, $1 \leqslant p < q \leqslant n$. Suppose $\hat{B} = (\hat{b}_{i,j})$ is obtained from B by changing the pth and qth columns as :

$$
(\hat{b}_{i,p}, \hat{b}_{i,q}) = \begin{cases} (1, 0), & \text{if } (b_{i,p}, b_{i,q}) = (0, 1), \\ (b_{i,p}, b_{i,q}), & \text{otherwise.} \end{cases}
$$

Then $\text{per}(B) \geq \text{per}(\hat{B})$, and the strict inequality holds if and only if there are two indices i and j such that

$$
\begin{pmatrix} b_{i,p} & b_{i,q} \\ b_{j,p} & b_{j,q} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad or \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

and $\text{per}(B(i, j | p, q)) \neq 0$, where $B(i, j | p, q)$ is the submatrix of b formed by deleting row i, row j, column p, and column q.

Note that there is no guarantee that the fact that B is a (t, m) -family implies \hat{B} is a (t, m) -family. Theorem 1 was used to prove Chang's conjecture in Theorem 2 of [2]. The place that may cause a problem is at the bottom of page 109. For a (t, m) -family, the new matrix A' obtained from A by

CORRIGENDUM 191

applying Theorem 1 is not necessarily a (t, m) -family. So Leung and Wei's argument breaks down here. The following is an example of a (3, 3)-matrix A for which A' is not a (3, 3)-matrix when we use $p=2$ and $q=3$ as in Theorem 1:

$$
A = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}
$$

and

$$
A' = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.
$$

REFERENCES

- 1. G. J. CHANG, On the number of SDR of a (t, m) -family, *European J. Combin.* 10 (1989), 231-234.
- 2. J. Y.-T. Leung and W.-D. Wei, A comparison theorem for permanents and a proof of a conjecture on (t, m) -families, *J. Combin. Theory Ser. A* 61 (1992), 98–112.

Gerard J. Chang*

Department of Applied Mathematics National Chiao Tung University Hsinchu 30050 Taiwan

* Supported partly by the National Science Council of the Republic of China under Grant NSC83-0208-M-009-050, E-mail: gchang@cc.nctu.edu.tw.