
472
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

PAPER Special Section on Architectures, Protocols, and Applications for the Future Internet

An Efficient Conflict Detection Algorithm for Packet Filters∗

Chun-Liang LEE†a), Member, Guan-Yu LIN††, and Yaw-Chung CHEN††, Nonmembers

SUMMARY Packet classification is essential for supporting advanced
network services such as firewalls, quality-of-service (QoS), virtual private
networks (VPN), and policy-based routing. The rules that routers use to
classify packets are called packet filters. If two or more filters overlap, a
conflict occurs and leads to ambiguity in packet classification. This study
proposes an algorithm that can efficiently detect and resolve filter conflicts
using tuple based search. The time complexity of the proposed algorithm
is O(nW + s), and the space complexity is O(nW), where n is the number
of filters, W is the number of bits in a header field, and s is the number of
conflicts. This study uses the synthetic filter databases generated by Class-
Bench to evaluate the proposed algorithm. Simulation results show that the
proposed algorithm can achieve better performance than existing conflict
detection algorithms both in time and space, particularly for databases with
large numbers of conflicts.
key words: packet classification, conflict detection, tuple space search

1. Introduction

Packet classification is a key component of a variety of ad-
vanced network services, including security, policy-based
routing, and quality-of-service (QoS). Packet filters are the
rules that routers use to classify incoming packets into dif-
ferent flows. A filter F = (f [1], f [2], . . . , f [k]) is called k-
dimensional if the filter consists of k fields, where each field
can be a variable length prefix, a range, an exact value or
wildcard. The most common fields are the network source
address, network destination address, source port, destina-
tion port, and protocol type. A packet P matches a par-
ticular filter F if for all i, the i-th field of the header sat-
isfies f [i]. For example, a two-dimensional (2-D) filter
F = (163.25. ∗ .∗, ∗) denotes a flow originating from the
subnet 163.25, and destined for any host. An IP packet
P1 = (163.25.114.1, 140.113.1.1) matches the filter F,
while P2 = (163.1.1.1, 140.113.1.1) does not.

Each filter has an associated action that specifies how
to treat packets matching this filter. A packet may also
match multiple filters. In this case, ambiguity may arise
if the actions of matching filters conflict. For example,

Manuscript received May 16, 2011.
Manuscript revised September 20, 2011.
†The author is with the Department of Computer Science

and Information Engineering, Chang Gung University, Taoyuan,
Taiwan.
††The authors are with the Department of Computer Science

and Information Engineering, National Chiao Tung University,
Hsinchu, Taiwan.

∗This work was supported in part by the National Science
Council under Grant No.NSC 96-2221-E-182-013 and NSC 99-
2221-E-182-053.

a) E-mail: cllee@mail.cgu.edu.tw
DOI: 10.1587/transinf.E95.D.472

Table 1 gives a 2-D filter database with 4 filters. Sup-
pose that the length of each field is 8 bits. A packet P1 =
(00110000, 00001111) matches filter A, and will be allowed
to pass through if this is a firewall. However, another packet
P2 = (00110000, 00101111) matches both filters A and B
leading to ambiguity. The conflicting actions of filters A and
B cause a security problem if packets that should be blocked
are allowed to pass through. Previous research lists three
possible solutions to solve the problem of filter conflict [1]:

1. Select the first matching filter in the filter database.
2. Assign each filter a priority. The matching filter with

the highest priority is selected.
3. Assign each field a priority. Select the matching filter

with the most specific matching field with the highest
priority.

However, none of these solutions can fully solve the
ambiguity problem caused by filter conflict. Since a 2-D
filter can be viewed as a rectangle in 2-D space, the filters
in Table 1 can be represented as four rectangles (Fig. 1). A
packet is a point in the space. Thus, overlap regions denote
conflicts. For example, packets in the overlap between rect-
angles A and B match filters A and B. In this case, there
are four overlap regions (i.e., conflicts) in the example fil-
ter database. The upper rectangle in a overlap denotes the
desired filter to match in the overlap region. Therefore, if
a packet matches both filters A and B, A is selected. Three
solutions mentioned above cannot solve all conflicts in this

Table 1 An example filter database.

Filter Field 1 Field 2 Action

A 001* * Accept
B * 001* Reject
C 110* * Accept
D * 110* Reject

Fig. 1 Rectangular presentation of filters.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

LEE et al.: AN EFFICIENT CONFLICT DETECTION ALGORITHM FOR PACKET FILTERS
473

filter database. For example, if we use the first solution,
it is impossible to find an order of the filters such that the
desired filters can be selected in all overlap regions. The
second solution is similar to the first solution if we treat
the priority assigned to a filter as the order of the filter in
the first solution. Let pri(A) denote the priority of filter A.
Suppose that if filter A has a higher priority than filter B,
then pri(A) > pri(B). We have the following inequalities:
pri(A) > pri(B), pri(B) > pri(C), pri(C) > pri(D), and
pri(D) > pri(A). These inequalities lead to a contradiction.
That is pri(A) > pri(A). Similarly, the third solution cannot
solve all conflicts.

A possible way to get around this difficulty is to use
resolve filters [1]. A resolve filter is a filter that matches the
packets in the overlap region of two conflicting filters. How-
ever, finding the minimum number of resolve filters is an
NP-hard problem [1], [2]. Therefore, it is a challenging task
to design an algorithm that can efficiently detect and resolve
filter conflicts. This study proposes an efficient algorithm to
detect filter conflicts using tuple space search [3]. The key
idea behind the proposed algorithm is based on the intrinsic
properties of the data structures generated by the rectangle
research [3], a well-known packet classification algorithm.
By exploiting the unrevealed relationship between the tu-
ple space and filter conflicts, the proposed algorithm is not
only faster than the existing conflict detection algorithms,
but also requires less memory space.

The rest of this paper is organized as follows. Section 2
reviews existing conflict detection algorithms and describes
the tuple space search, which is closely related to the pro-
posed algorithm. Section 3 presents the proposed algorithm,
and provides a simple example to show how it works. Sec-
tion 4 presents the experimental setup and results. Finally,
Sect. 5 concludes the paper.

2. Related Work

2.1 Existing Conflict Detection Algorithms

A straightforward approach to detect all filter conflicts is to
check every pair of filters in the filter database. This ap-
proach is simple and does not require extra storage. How-
ever, it takes O(n2) time to detect all conflicts, where n is the
number of filters. Obviously, this approach is not feasible
for large filter databases. Hari et al. [1] proposed the use of
a grid of tries [4] to detect all conflicts in 2-D prefix filters.
The time complexity of their algorithm is O(nW + s), where
W is the length of the longest prefix and s is the number of
pairs of conflicting filters. Baboescu and Varghese [5] pro-
posed several conflict detection algorithms based on the bit
vector scheme [6] and the aggregated bit vector scheme [7].
Among their algorithms, the best one runs in O(n2) time and
requires O(n2) space. Lu and Sahni [2] proposed a plane-
sweep algorithm that improves the performance of both time
and space. The key idea behind the plane-sweep algorithm
is to treat each filter as a rectangle with four line segments
in the space, and then find all overlap regions (i.e., conflicts)

by finding orthogonal line segment intersections. The plane-
sweep algorithm runs in O(nlogn+ s) time and requires O(n)
space.

2.2 Tuple Space Search

The basic idea behind the tuple space search is that the num-
ber of distinct prefix lengths of filters is much less than the
number of filters [3]. Given a filter database, a tuple is de-
fined for each combination of field length, and the resulting
set is called tuple space. For example, assume that we have
a 2-D filter database, in which each filter has two fields,
specifying the source and the destination address, respec-
tively. We say that a filter F belongs to tuple Ti, j if the pre-
fix length of its first field is i, and that of its second field
is j. Since each tuple has a specific length for each field,
these bit strings can be concatenated to form a hash key that
can be used to perform the tuple lookup. For an incoming
packet, the matching filters can be found by probing all tu-
ples. For example, filter F = (11∗, 110∗) belongs to tuple
T2,3, while G = (110∗, 0011∗) belongs to tuple T3,4. Given
a packet P = (11100000, 11011111), to probe tuple T2,3,
two and three bits will be extracted from two fields respec-
tively to construct the hash key (i.e., 11110). Similarly, the
hash key 1111101 will be constructed for tuple T3,4. Even
a linear search in the tuple space represents a considerable
improvement over a linear search of the filters.

To improve the search time, previous research proposes
a tuple-based algorithm called rectangle search [3]. The
use of markers and pre-computation, which were first in-
troduced in [8], greatly reduces the number of tuples to be
probed. A marker is a special type of filter generated by a
real filter to eliminate a subset of the tuple space after prob-
ing a tuple. Let filter F = (f [1], f [2]) with the length com-
bination (i, j) belong to tuple Ti, j. For each tuple left to Ti, j,
say Ti, j′ , 0 ≤ j′ < j, a marker will be generated by eliminat-
ing the bits behind the j′th bits. After inserting all filters and
generating required markers, pre-computation is performed
for entries at each tuple, say Ti, j, to find the best matching
filter (i.e., the least-cost filter) among the tuples above Ti, j,
say Ti′, j, 0 ≤ i′ < i. Figure 2 shows how markers are gen-
erated using two filters F and G described above. If we use
the packet (11100000, 11011111) to probe tuple T4,0, we
will fail to get a match, which means it is impossible to find
a matching filter in the right side of tuple T4,0 in the same
row. Thus, we can skip probing these tuples.

Since the rectangle search provides a feasible way for
packet classification, researchers have proposed a number of
related algorithms to further improve its performance both
in time and space. Warkheda et al. [9] improved the rectan-
gle research by exploiting the conflict-free constraint in the
2-D tuple space and introduced a binary search algorithm.
In [10], Wang et al. proposed an algorithm to reduce the
number of tuples to be probed. They adopted a dynamic
programming scheme to calculate the optimal set of tuples
and reorganize the rules. However, the cost of precomputa-
tion increases exponentially as the classifier expands, mak-

474
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

Fig. 2 Illustration of markers.

ing the scheme unsuitable for large filter databases. In [11],
Wang et al. proposed a new hybrid scheme “filter rephras-
ing” to improve both the search and storage complexity of
the rectangle search by reorganizing the entries in the hash
tables.

3. Tuple-based Conflict Detection Algorithm

This section presents the proposed tuple-based conflict de-
tection algorithm (TCDA). After describing the key idea
behind the proposed algorithm, this section shows how to
construct the required data structures. Then process of de-
tecting all conflicts is also discussed. Finally, this section
provides a simple example to help the reader understand
how the TCDA operates.

3.1 Key Idea

For a 2-D filter database, if the length of both field is W bits,
each filter is mapped to one of (W +1)2 tuples. The simplest
way to detect all conflicts is to look up all tuples for each
filter. Therefore, the number of tuples required to lookup for
a specific filter is simply (W+1)2−1, which is obviously not
feasible. To improve performance, we need more insights
into the tuple space. Two filters F and G are in conflict if
and only if all of the following three conditions hold [2]:

1. There is at least one packet that is matched by both F
and G.

2. There is at least one packet that is matched by F but
not by G.

3. There is at least one packet that is matched by G but
not by F.

For a filter F in tuple Ti, j, the remaining tuples can be
partitioned into three disjoint sets [3]:

1. Shorter tuples: A tuple Ti′, j′ , where Ti′, j′ � Ti, j, belongs
to this set if and only if i′ ≤ i and j′ ≤ j.

2. Longer tuples: A tuple Ti′, j′ , where Ti′, j′ � Ti, j, belongs
to this set if and only if i′ ≥ i and j′ ≥ j.

3. Incomparable tuples: A tuple Ti′, j′ , where Ti′, j′ � Ti, j,

Fig. 3 The incomparable tuples of tuple Ti, j.

belongs to this set if and only if it belongs to neither
the shorter tuples nor the longer tuples .

Among these three sets, only the incomparable tuples
may contain the filters that are in conflict with filter F. The
lengths of filter fields in the shorter tuples are smaller than
filter F. Thus, filters in the shorter tuples are less specific
than filter F, and cannot satisfy the three conditions men-
tioned above. Similarly, filters in the longer tuples are more
specific than filter F. The three conditions do not hold as
well. Figure 3 marks incomparable tuples with solid-line
rectangles. The number of tuples to look up is reduced by
nearly a half. Moreover, since we only need to generate
one resolve filter for two conflicting filters, the bottom-left
solid-line rectangle can be omitted. Let us use an example
to explain this. Suppose that we have a filter G that belongs
to a tuple in the bottom-left solid-line rectangle and is in
conflict with filter F. Note that we have to process every
filter. When filter G is processed, a resolve filter for filters
F and G will be generated since filter F belongs to a tuple
in the upper-right incomparable tuples of filter G, as marked
by a dashed-line rectangle in Fig. 3. Therefore, the bottom-
left solid-line rectangle can be omitted without missing any
resolve filters.

The markers mentioned in Sect. 2 can further reduce
the number of tuples to look up. Figure 5 (a) shows two
filters A and B, and the generated markers, which are in-
dicated by light gray color. Through the help of markers,
the tuples to look up are the left-most column of the upper-
right marked region (Fig. 4). In other words, for each filter
F in tuple Ti, j, it is only necessary to look up i tuples (i.e.,
T0, j+1,T1, j+1, . . . ,Ti−1, j+1). The number of tuples to look up
has been reduced from O(W2) to O(W). For example, if we
are dealing with a filter F in tuple Ti, j, and a match is re-
turned when probing some tuple, say T1, j+1, the marker rule
tells us that there must be at least one filter conflicting with
F in the right side of T1, j+1 in the same row. The tuple-based
algorithms mentioned in Sect. 2 provide no information that
can be used to find all the conflicting filters efficiently. The

LEE et al.: AN EFFICIENT CONFLICT DETECTION ALGORITHM FOR PACKET FILTERS
475

following subsection shows how to solve this problem by
adding new fields in markers and filters.

Fig. 4 Reducing the number of tuples needed to lookup.

(a) (b)

(c)

Fig. 5 Relationships between two filters.

3.2 Constructing the Required Data Structures and Per-
forming Conflict Detection

We have shown the key idea behind the proposed algorithm.
However, the information included in markers is not enough
to detect and resolve all conflicts efficiently. If filter F finds
a matching marker in tuple Ti−1, j+1, then filter F conflicts
with one or more filters in tuples to the right of tuple Ti−1, j+1.
To resolve these conflicts, we need to find the filters that
generate the marker. To address this issue, we introduce the
marker pointer, which is a field of a marker. The marker
pointer of a marker points to the filter that generated it.
The settings of marker pointer can be categorized into three
types:

1. The first type is simplest, as Fig. 5 (a) shows. Dur-
ing the process of generating markers, neither filter en-
counters any duplicate markers or filters.

2. Figure 5 (b) shows the second type, where filter A en-
counters a duplicate filter (i.e., filter B). In this case,

476
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

the filter pointer of filter B, which indicates that there
is a more specific filter in the right tuple, will point to
filter A. The filter pointer is also a newly introduced
field similar to the marker pointer while it is only for
filters. Since the marker generated by filter A is identi-
cal to filter B in tuple Ti, j, filter A will stop generating
markers in tuple Ti, j′ , 0 ≤ j′ < j.

3. The third type is more complicated (Fig. 5 (c)). The
marker generated by filter A in tuple Ti, j−1 is duplicated
with the marker generated by filter B. In this case, the
marker generated by filter A in tuple Ti, j still points to
filter A. In addition, the filter pointer of filter B points
to filter A because if a filter finds a matching marker in
tuple Ti, j−1, both filter A and B that generate the same
marker may conflict with it. Thus, the filter pointers
can detect the conflicts more efficiently.

After describing how to set a marker pointer, we can
now present the procedure of constructing the required data
structures. First, every filter is inserted into the correspond-
ing tuple according to its prefix lengths of fields. Then all
tuples are processed from left to right and from top to bot-
tom. Note that we can omit the tuples in the left-most col-
umn since they do not have tuples left to them. In other
words, these tuples do not generate any markers. For each
filter in a tuple, markers are generated according to the way
we mentioned in Sect. 2.2, and the marker pointers are set
as described above. The detailed procedure is shown in Al-
gorithm 1. Table 2 summarizes the notation used in Algo-
rithms 1 and 2.

To detect and resolve all conflicts, tuples are processed
from left to right and from top to bottom. Since the tu-
ples in the first row do not have the upper-right incompa-
rable tuples, the conflict detection starts from the second
row. Similarly, the tuples in the right-most column do not
have the upper-right incomparable tuples, and thus can be
omitted. In other words, the sequence of tuples to probe is
T1,0,T1,1, . . . ,T1,W−1,T2,0,T2,1, . . . ,T2,W−1, . . . ,TW,W−1. For
each filter F in tuple Ti, j, tuples T0, j+1,T1, j+1, . . . ,Ti−1, j+1

should be probed. Note that for each of these tuples to probe,
filter F has to generate two filters since the prefix length of
the second field of filter F is j, while that of the tuple to
probe is j + 1. For example, suppose that we have a filter
F = (11∗, 110∗) in tuple T2,3. The sequence of tuples to be
processed is thus T0,4 and T1,4. To probe T0,4, two filters, say
M = (∗, 1100∗) and N = (∗, 1101∗), are generated to detect
conflicts. For either filter M or N, if there is a match in the
tuple, which means a conflict is detected, then the resolve
filters will be generated by following the marker pointer to
find the filter or the filter pointer for the chained filters. The
detailed procedure for conflict detection is shown in Algo-
rithm 2.

3.3 A Simple Example of the TCDA

The end of this section uses a simple example to illustrate
how the proposed algorithm constructs the required data

Algorithm 1: Required data structures construction
1 foreach filter F in the filter database do
2 i← Length(F[1]);
3 j← Length(F[2]);
4 tuple Ti, j + = F /* insert F to Ti, j */ ;
5 end
6 for i← 0 to W do
7 for j← 1 to W do
8 foreach filter A in tuple Ti, j do
9 for k ← j − 1 to 0 do

10 Am ← Generate a marker in tuple Ti,k using
filter A;

11 if Am finds a matching filter B in tuple Ti,k

then /* Type 2 */

12 B.pointer ← A;
13 break;
14 else if Am finds a matching marker Bm in

tuple Ti,k then /* Type 3 */

15 Bm.pointer.pointer ← A;
16 break;
17 else /* Type 1 */

18 Am.pointer ← A;
19 tuple Ti,k + = Am;
20 end
21 end
22 end
23 end
24 end

Table 2 Summary of notation.

F filter (same as other capital letters)
Fm the marker generated by filter F
F[i] the i-th field of filter F

Length(F[i]) the prefix length of F[i]
W the length of the longest prefix

F.pointer the filter pointer of filter F
Fm.pointer the marker pointer of marker Fm

Algorithm 2: Conflict detection
1 for i← 1 to W do
2 for j← 0 to W − 1 do
3 foreach filter A in tuple Ti, j do
4 for k ← 0 to i − 1 do
5 Generate filters M and N in tuple Tk, j+1

using A;
6 if M or N finds a matching marker Bm in

tuple tuple Tk, j+1 then
7 C ← Bm.pointer;
8 else if M or N finds a matching filter B in

tuple tuple Tk, j+1 then
9 C ← B;

10 else
11 C ← null;
12 end
13 if C � null then
14 Generate a resolve filter for A and C;
15 Follow the filter pointer of filter C to

find all filters that are in conflict with
filter A and generate resolve filters;

16 end
17 end
18 end
19 end
20 end

LEE et al.: AN EFFICIENT CONFLICT DETECTION ALGORITHM FOR PACKET FILTERS
477

structures and uses them to detect all conflicts. Table 3 pro-
vides an example filter database with 10 filters. To ease the
discussion, we assume that the length of each field is 4 bits.
Thus the tuple space is a 5 × 5 square. First, each filter
is inserted to the corresponding tuple, as Fig. 6 (a) shows.
Then, markers are generated for each filter in exactly the
same way as the rectangle search algorithm mentioned in
Sect. 2.2. Recall that all filters are processed tuple-by-tuple
from left to right and from top to bottom. Figure 6 (b) indi-
cates each marker by a leading ’M’, followed by the number
of the corresponding filter that generates it. For example,
the four markers indicated by M6 are generated by filter F6.
The newly introduced marker pointer of each M6 points to
filter F6. For clarity, this figure does not show all marker
pointers. When filter F4 in tuple T1,3 is processed, a marker
indicated by M4 will be generated and inserted to tuple T1,2.
However, the marker to be generated in tuple T1,1 is dupli-

(a) (b)

(c) (d)

Fig. 6 Illustration of TCDA.

cated with filter F3. Therefore, F4 stops generating mark-
ers. In addition, the filter pointer of F3 points to F4, as in-
dicated by an arrow in the figure. Similarly, the filter pointer
of F7 points to F9. After generating all required markers

Table 3 A filter database with 10 filters.

Filter Src Field Dst Field

F1 * 1*
F2 1 * *
F3 0 * 1*
F4 0 * 110*
F5 01 * *
F6 00 * 0011
F7 000 * 1*
F8 010 * 0*
F9 000* 110*
F10 1101 011*

478
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.2 FEBRUARY 2012

and setting marker pointers and filter pointers (Fig. 6 (b)), it
is possible to start conflict detection.

The first tuple to be processed is tuple T1,0, which con-
tains only one filter (i.e., F2). To detect possible conflicts
in tuple T1,0, two filters (*, 0*) and (*, 1*) are generated us-
ing F2 to probe tuple T0,1. Clearly, there is a match in tuple
T0,1. Since we have matched F1, which means F1 and F2
are in conflict, a resolve filter F11 is generated in tuple T1,1,
as Fig. 6 (c) shows. Similarly, when tuple T2,0 is processed,
two filters (0*, 0*) and (0*, 1*) are generated using F5 to
probe tuple T1,1. Again, there is a match, and a resolve fil-
ter F12 is generated in tuple T2,1. Note that since the filter
pointer of the conflicting filter F3 points to another filter, a
resolve filter F13 will be generated in T2,3 by following the
filter pointer. This makes it possible to detect all conflicts
and generate the required resolve filters, as Fig. 6 (d) shows.
Clearly, the proposed TCDA takes O(nW + s) time to report
all conflicts, where n is the number of filters, W is the num-
ber of bits in a header field, and s is the number of conflicts.
Note that the time complexity of O(nW + s) is obtained by
assuming that n is larger than W, which is a practical as-
sumption. Otherwise, the time complexity is O(W2 + s).

Table 4 Time (in ms) to detect all conflicts for the seed files with the least conflicts in each category.

ACL5 FW4 IPC1

Filter Size FastDetect Plane-Sweep TCDA FastDetect Plane-Sweep TCDA FastDetect Plane-Sweep TCDA
1 K 3.558 1.077 0.488 18.077 3.548 0.479 11.185 2.078 0.588
5 K 22.037 6.182 3.811 1,993.474 161.503 9.085 77.029 26.482 8.996

10 K 41.408 13.232 7.023 13,367.232 704.740 42.688 214.842 68.590 13.615
20 K 97.346 26.020 22.908 52,900.648 4,205.391 162.603 1,243.933 377.048 38.745
30 K 159.624 45.385 36.495 106,414.782 9,833.510 412.080 4,232.259 1,162.827 75.924

Table 5 Time (in ms) to detect all conflicts for the seed files with the most conflicts in each category.

ACL3 FW5 IPC2

Filter Size FastDetect Plane-Sweep TCDA FastDetect Plane-Sweep TCDA FastDetect Plane-Sweep TCDA
1 K 12.771 1.843 0.888 87.943 4.953 0.274 21.015 3.627 0.517
5 K 81.904 19.321 5.304 8,936.516 199.417 20.895 2,072.464 158.314 4.357

10 K 194.428 44.391 13.562 55,865.839 932.029 94.472 13,415.186 613.596 16.198
20 K 1,022.153 199.690 32.018 222,450.552 5,069.460 462.182 50,888.207 3,965.395 86.769
30 K 4,009.130 826.100 72.894 498,589.323 12,291.351 1,342.515 112,247.022 9,514.543 215.908

Table 6 Performance evaluation for synthetic databases.

Statistics FastDetect Plane Sweep TCDA
Databases Number of Number of Time Space Time Space Time Space

Filters Conflicts (ms) (KB) (ms) (KB) (ms) (KB)

ACL1 29,809 8,960 420.927 27,497 57.064 3,100 16.612 3,597
ACL2 29,357 4,006,275 2,786.980 14,509 1,002.700 3,053 87.319 2,297
ACL3 29,367 4,884,375 4,009.130 12,478 826.100 3,054 72.894 2,422
ACL4 29,113 1,993,007 1,522.382 10,247 486.831 3,028 48.659 2,033
ACL5 29,522 152 159.624 6,622 45.385 3,070 36.495 1,340
FW1 29,378 89,599,625 390,297.176 12,426 11,975.669 3,055 1,431.130 1,869
FW2 29,279 54,492,459 68,409.287 10,428 2,802.817 3,045 352.340 1,042
FW3 29,196 98,774,337 411,709.041 10,561 12,656.453 3,036 1,490.969 1,676
FW4 29,128 49,802,186 106,414.782 12,765 9,833.510 3,029 412.080 1,818
FW5 29,470 115,748,863 498,589.323 11,151 12,291.351 3,065 1,342.515 1,576
IPC1 28,780 5,068,689 4,232.259 15,026 1,162.827 2,993 75.924 2,575
IPC2 30,000 27,247,914 112,247.022 17,795 9,514.543 3,120 215.908 2,637

4. Experimental Results

This section compares the proposed TCDA with the FastDe-
tect algorithm [1] and the plane-sweep conflict detection al-
gorithm [2]. All algorithms were implemented in C++, and
benchmarked on a 3.2 GHz AMD Phenom II X4 PC with
4 GB of memory. The tested filter databases were synthe-
sized by ClasssBench [12]. This tool includes 12 seed files
derived from real filter sets to reflect the characteristics of
filters for different applications, including three categories:
the access control list (ACL), firewall (FW), and IP chain
(IPC). For each seed file, we generate filter sets with 1 K,
5 K, 10 K, 20 K, and 30 K filters. Since the filters generated
by ClassBench are 5-D, the number of filters for each file
generated is slightly less than the specified number after re-
moving duplicate filters by only considering source and des-
tination address fields. The reported memory requirement
does not include the memory required to store the original
filter set. For the proposed TCDA, the memory space used
to implement the hash function is included.

Tables 4 and 5 show the time requirements for different
conflict detection algorithms to report all conflicts. Due to

LEE et al.: AN EFFICIENT CONFLICT DETECTION ALGORITHM FOR PACKET FILTERS
479

the space limitation, Tables 4 and 5 only list the results of the
seed files with the least and the most conflicts in each cate-
gory, respectively. The proposed TCDA provides a signifi-
cant speed improvement over the plant-sweep algorithm, not
mention to the FastDetect algorithm, which is the slowest of
these three algorithms. The performance improvement in-
creases with the number of filters and the number of con-
flicts. For example, ACL3 has more conflicts than ACL5 for
each filter size, and the performance improvement achieved
by the TCDA for ACL3 is larger than that for ACL5.

Table 6 lists the memory and time requirements for
all seed files, and the filter size of each database is 30 K.
Compared to the other two algorithms, the proposed TCDA
achieves a significant speed improvement. Since the time
and space requirements of the FastDetect algorithm are ap-
parently higher than the other two algorithms, the follow-
ing discussion focuses on the plane-sweep algorithm and
the TCDA. The smallest improvement is for ACL5. The
time required to detect and resolve all conflicts is reduced
by 19.6%. The largest improvement is for IPC2. The re-
quired time is reduced by 97.7%. Note that the number of
conflicts of ACL5 is 152, which is also the smallest among
all seed files. As for IPC2, the number of conflicts is over
27 M, which is not the largest, but is obviously a large num-
ber. In short, the proposed algorithm can reduce the times by
over 70% for 11 out of 12 seed files. As for the memory re-
quirements, the proposed TCDA still outperforms the other
two algorithms except for ACL1. This is due to the rule
used to generate markers in [3]. As the number of marker
increases, the memory required by the proposed algorithm
also increases. Since the proposed algorithm can reduce the
time by 70.1% for ACL1, the extra cost in memory is ac-
ceptable.

5. Conclusion

Packet classification plays an important role in providing
advanced services in routers. Filter conflicts may lead to
ambiguity in packet classification. This study proposes a
tuple-based conflict detection algorithm to efficiently detect
and resolve all conflicts. As compared with the plane-sweep
algorithm, experimental results show that the proposed al-
gorithm can reduce the detection time by 19.6% to 97.7%.
More importantly, it reduces storage requirements for most
filter databases. The performance improvement in time is
particularly significant for filter databases with many con-
flicts.

References

[1] A. Hari, S. Suri, and G. Parulkar, “Detecting and resolving packet fil-
ter conflicts,” Proc. IEEE INFOCOM, pp.1203–1212, March 2000.

[2] H. Lu and S. Sahni, “Conflict detection and resolution in two dimen-
sional prefix router tables,” IEEE/ACM Trans. Netw., vol.13, no.6,
pp.1353–1363, 2005.

[3] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification us-
ing tuple space search,” Proc. ACM SIGCOMM, pp.135–146, Sept.
1999.

[4] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” Proc. ACM SIGCOMM, pp.191–202,
1998.

[5] F. Baboescu and G. Varghese, “Fast and scalable conflict detec-
tion for packet classifier,” Comput. Netw., vol.42, no.6, pp.717–735,
Aug. 2003.

[6] T.V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” Proc.
ACM SIGCOMM, pp.203–214, Aug. 1998.

[7] F. Baboescu and G. Varghese, “Scalable packet classification,” Proc.
ACM SIGCOMM, pp.199–210, Aug. 2001.

[8] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable
high speed ip routing lookups,” Proc. ACM SIGCOMM, pp.25–36,
Sept. 1997.

[9] P. Warkhede, S. Suri, and G. Varghese, “Fast packet classification
for two-dimensional conflict-free filters,” Proc. IEEE INFOCOM,
pp.1434–1443, March 2001.

[10] P.C. Wang, C.T. Chan, S.C. Hu, C.L. Lee, and W.C. Tseng,
“High-speed packet classification for differentiated services in next-
generation networks,” IEEE Trans. Multimedia, vol.6, no.6, pp.925–
935, 2004.

[11] P.C. Wang, C.L. Lee, C.T. Chan, and H.Y. Chang, “Performance im-
provement of two-dimensional packet classification by filter rephras-
ing,” IEEE/ACM Trans. Netw., vol.15, no.4, pp.906–917, 2007.

[12] D.E. Taylor and J.S. Turner, “Classbench: a packet classification
benchmark,” IEEE/ACM Trans. Netw., vol.15, no.3, pp.499–511,
2007.

Chun-Liang Lee received M.S. and Ph.D.
degrees in computer science and information
engineering from National Chiao Tung Univer-
sity, Hsinchu, Taiwan in 1997 and 2001, respec-
tively. From 2002 to 2006, he worked with the
Telecommunication Laboratories, Chunghwa
Telecom Co., Ltd. Since February 2006, he has
been an assistant professor of Computer Science
and Information Engineering at Chang Gung
University, Taoyuan, Taiwan. His research inter-
ests include the design and analysis of network

protocols, quality of service in the Internet, and packet classification algo-
rithms.

Guan-Yu Lin received an M.S. degree
in computer science and information engineer-
ing from Chang Gung University in 2009. He
is currently pursuing a Ph.D. degree in com-
puter science and information engineering at
National Chiao Tung University. His research
interests include packet classification algorithms
and peer-to-peer overlay networks.

Yaw-Chung Chen received his B.S. degree
from National Chiao Tung University, Hsinchu,
Taiwan, his M.S. degree from Texas A&M Uni-
versity, Kingsville, Texas, USA, and his Ph.D.
degree from Northwestern University, Evanston,
Illinois, USA. In 1986 he joined AT&T Bell
Laboratories, where he worked on various ex-
ploratory projects. He joined National Chiao
Tung University, Hsinchu, Taiwan as an asso-
ciate professor in 1990. He is currently a pro-
fessor in the Department of Computer Science,

National Chiao Tung University, Hsinchu, Taiwan. His research interests
include wireless networks, mobility management, P2P systems and green
computing. He is a senior member of IEEE and a member of ACM.

