IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.2 FEBRUARY 2012

559

[PAPER

Performance-Driven Architectural Synthesis for Distributed
Register-File Microarchitecture with Inter-Island Delay

Juinn-Dar HUANG', Member, Chia-1 CHEN'®, Wan-Ling HSU', Yen-Ting LINT,

SUMMARY In deep-submicron era, wire delay is becoming a bottle-
neck while pursuing higher system clock speed. Several distributed regis-
ter (DR) architectures are proposed to cope with this problem by keeping
most wires local. In this article, we propose the distributed register-file mi-
croarchitecture with inter-island delay (DRFM-IID). Though DRFM-IID is
also one of the DR-based architectures, it is considered more practical than
the previously proposed DRFM, in terms of delay model. With such delay
consideration, the synthesis task is inherently more complicated than the
one without inter-island delay concern since uncertain interconnect latency
is very likely to seriously impact on the whole system performance. There-
fore we also develop a performance-driven architectural synthesis frame-
work targeting DRFM-IID. Several factors for evaluating the quality of re-
sults, such as number of inter-island transfers, timing-criticality of trans-
fer, and resource utilization balancing, are adopted as the guidance while
performing architectural synthesis for better optimization outcomes. The
experimental results show that the latency and the number of inter-cluster
transfers can be reduced by 26.9% and 37.5% on average; and the latter
is commonly regarded as an indicator for power consumption of on-chip
communication.

key words: Behavioral synthesis, distributed register-file, performance op-
timization, low-power, resource binding, scheduling

1. Introduction

As technology advances into the deep-submicron (DSM)
era, interconnects are becoming one of the most crucial is-
sues for electronic circuit and system designs. System per-
formance, power, and area are all greatly affected by inter-
connects, especially for global ones [1]-[3]. It is reported
that interconnects are responsible for over 50% of the over-
all dynamic power for a microprocessor in 130 nm tech-
nology [4]. Previous studies also show that interconnects
are overwhelmingly dominating the total area and power in
FPGA applications [5]-[7].

There have been several approaches proposed in the
past to deal with the timing-critical issue arisen from long
interconnects. Globally-asynchronous locally-synchronous
(GALS) design styles adopt handshaking protocols for com-
munication over long interconnects [8],[9]. In a syn-
chronous latency-insensitive system (LIS), special pipelin-
ing elements, named relay stations, are inserted to break a
long interconnect into shorter wire segments for sustaining
higher operating clock frequency [10]-[13]. Furthermore,

Manuscript received July 1, 2011.
Manuscript revised October 1, 2011.

"The authors are with the Department of Electronics Engineer-
ing and Institute of Electronics, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.

a) E-mail: cichen.ee94g@nctu.edu.tw
DOI: 10.1587/transfun.E95.A.559

and Jing-Yang JOU', Nonmembers

Data from other islands Data to other islands

v

4 ‘Input Routing Logic‘

‘ Local Register File ‘

Functional Units

| Anisland

(a) (b)

Fig.1 (a) The DRFM architecture, and (b) the island architecture in
DRFM.

several types of distributed register (DR) architectures, in
which the whole system is divided into several logic clus-
ters, are also broadly studied [14]-[27]. In general, all
DR-based architectures try to keep most interconnects lo-
cal within a cluster and thus minimize the number of long
inter-cluster interconnects for better area and performance
outcome.

The distributed register-file microarchitecture (DRFM)
is one of the DR-based architectures and is recently pro-
posed in [14],[15]. As shown in Fig. 1, a DRFM is com-
posed of multiple islands and each of them has its own
register-file, functional units (FUs), and data-routing logic.
DRFM is particularly adequate for platforms with a rich set
of distributed memory blocks, e.g., modern FPGAs. While
utilizing DRFM, one should be aware that the way of how
to map operations of a target system into islands can have a
significant impact on the final outcome in terms of area and
performance.

In DRFM, the notion of inter-island connections (IICs)
is presented to better estimate the actual cost of physical
global interconnects. Hence, the number of IICs is usually
considered as a metric for quality of result (QoR) at early
design phases [14], [15]. Meanwhile, unlike IICs, inter-
island transfers (IITs) are the actual data transfers taking
place. Multiple IITs can share one IIC as long as they have
the same source-destination island pair as well as different
arrival times. The number of IITs is commonly used for
on-chip communication power estimation. However, during
synthesis, it is not always possible to reduce both IICs and
IITs at the same time; that is, there is a tradeoff between area
(IIC) and power (IIT) minimization.

Inter-island delay is ignored in the original DRFM;
hence its delay model appears over-simplified. To be a

Copyright © 2012 The Institute of Electronics, Information and Communication Engineers

560

Data from other islands ~ Data to other islands
4

b A
Input Routing Logic

Local Register File

Yy ¥
Functional Units

An island

(a) (b)

Fig.2 (a) The DREM-IID architecture, and (b) the island architecture in
DRFM-IID.

bit more practical, here we propose a new alternative —
distributed register-file microarchitecture with inter-island
delay (DRFM-IID). Shown in Fig.2(a), as one of the DR-
based architecture family, DRFM-IID is also composed of
multiple islands and the structure of an island is depicted
in Fig.2(b). Within an island, inputs of a local FU solely
come from its local register-file (RF), whereas data from
other islands (i.e., inter-island transfers) should be parked
in its local RF first and become available only from the next
control step (cstep). That is, an IIT takes one whole cstep
for data delivery. This new interconnect delay model makes
the synthesis task more complicated than the one targeting
the original DRFM without inter-island delay concern since
uncertain interconnect latency is very likely to seriously im-
pact on the whole system performance. Therefore, we also
develop a performance-driven architectural synthesis frame-
work targeting DRFM-IID. Unlike previous synthesis works
targeting DRFM, which focus on minimizing the number of
IICs (area) [14]-[17], the proposed approach is to optimize
the performance (latency in cycle count). There are two ma-
jor steps in the proposed algorithm: island assignment and
iterative latency minimization. At first, island assignment
is responsible for properly binding operations into islands.
Then, iterative latency minimization is employed to vali-
date and further improve outcomes. The experimental re-
sults show that the proposed approach can produce synthesis
results with higher performance and lower power consump-
tion than the existing art.

The rest of this article is organized as follows. The re-
lated works and the proposed microarchitecture DRFM-IID
are described in Sect. 2. Section 3 presents our key observa-
tions and motivations while Sect. 4 details the proposed syn-
thesis algorithm. The experimental results and analyses are
then given in Sect. 5, followed by the conclusions in Sect. 6.

2. Distributed Register-File Microarchitecture with
Inter-Island Delay (DRFM-IID)

2.1 Related Works of DR-Based Architectures

Synthesis flows targeting DR-based architectures can be
classified according to the interconnect delay model they
adopt. The synthesis work is relatively easier with zero
inter-cluster delay; nevertheless, this delay model appears

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.2 FEBRUARY 2012

over-simplified [14]-[17]. On the other hand, the synthesis
flow considering inter-cluster delay takes a step toward re-
ality. Obviously, with such an interconnect delay model, the
synthesis task is inherently more complicated.

Regular distributed register (RDR), which is one of
the DR-based architectures, and its synthesis framework are
first proposed in [20]. Several enhanced synthesis frame-
works [21]-[24] are also revealed later. In addition, there are
two variants of the original RDR, RDR-Pipe [25] and RDR-
GRS [26],[27], which focus on minimizing required inter-
connect resources. However, all the previously proposed
synthesis frameworks targeting the RDR-based architecture
do not take embedded on-chip memory or register-file into
consideration.

2.2 DRFM-IID

As a member of the DR-based architecture family, DRFM-
IID is composed of several clusters (islands) and each island
has its own local RF, FUs and data-routing logic, as shown
in Fig. 2. The fundamental difference between DRFM and
DRFM-IID is the way they handle inter-island delay —
DRFM-IID isolates inter-island communication delay from
intra-island computation delay while DRFM does not. Be
more precise, inputs of an FU can come from other islands
in DRFM but always come from the local RF in DRFM-
IID. That is, an entire cycle is allocated for inter-island data
delivery in DRFM-IID, which makes timing convergence
much easier.

In DRFM-IID, to properly model inter-island delay, a
special type of node with a square shape, named a conveyer,
is added to every IIT destination in the bound DFG. For ex-
ample, Figs.3(a) and 3(b) illustrate the same DFG mapped
onto DRFM and DRFM-IID, respectively. A closed shaded
region indicates that all nodes inside are bound to the same
island. For IIT,, (the IIT from nodes to node;) in Fig. 3(b),
the requested data item is first sent to island I4, then parked
in the local RF at cstep,. Recall that every IIT needs a com-
plete cycle for data delivery so that the data item cannot be
used in I4 until csteps. As a result, a conveyer node b is
added into I, at cstep, to reflect this fact. Furthermore, the
DFG should also be rescheduled accordingly to strictly pre-
serve data dependency. As a consequence, the latency is
very likely to be stretched in DRFM-IID as demonstrated
in Figs. 3(a) and (b). Note that conveyers are conceptually
inserted into DFGs to preserve data dependency and not in-
serted as actual hardware elements into a DRFM-IID plat-
form. A conveyer in a bound DFG indicates that a forwarded
data item is received and stored in the local RF at that cstep,
which costs no extra hardware resources.

Be aware the difference between the number of inter-
island connections (IICs) and the number of inter-island
transfers (IITs) — the former is usually less than the latter
due to resource sharing. For example, in Fig. 3(a), those two
IITs merely need one IIC (i.e., from Ip to I4). As previ-
ously mentioned, in DRFM, the number of IICs has been
proven to be an appropriate metric to evaluate the quality of

HUANG et al.: PERFORMANCE-DRIVEN ARCHITECTURAL SYNTHESIS FOR DISTRIBUTED REGISTER-FILE MICROARCHITECTURE

#ITs =2 and #lICs = 1

Fig.3 (a), (b) A bound DFG with #IITs = 2 and #IICs = 1 targeting
DRFM and DRFM-IID; and (c), (d) another bound DFG with #IITs = 1
and #IICs = 1 targeting DRFM and DRFM-IID.

result in terms of both cycle time and area at early design
phases [14], [15]. Hence, if minimizing global interconnect
resource is the primary goal, the main concern of synthesis
flows targeting DRFM is to reduce the number of IICs in-
stead of IITs. The previous works [14]-[17] have already
done a fairly good job in terms of IIC reduction. However,
things change a lot in DRFM-IID since latency may increase
terribly while taking inter-cluster delay into account. That
is, the number of IICs is no longer the only evaluation met-
ric of QoR in DRFM-IID synthesis. Hence, in this work, we
develop a performance-driven architectural synthesis frame-
work targeting DRFM-IID.

3. Motivations

It is observed that the number of IITs also affects system
latency in DRFM-IID. Figure 3(a) and Fig. 3(b) show the
scheduling results of a bound DFG in DRFM and DRFM-
IID, respectively. Similarly, Fig. 3(c) and Fig. 3(d) show the
results of another bound DFG. Note that these two binding
solutions have the same latency and IIC count but differ-
ent IIT counts in DRFM. Those black nodes inside DFGs
in Fig. 3 are named bubbles and are used to indicate unused
(idle) time slots. Since each IIT needs a conveyer in its des-
tination island, a bound DFG with more IITs tends to have
longer latency in DRFM-IID. For instance, with additional
inter-cluster delay, the binding solution in Fig. 3(b) is ob-
viously better than that in Fig. 3(d). Consequently, besides
the number of IICs (wiring resource), the number of IITs
(system latency) is definitely another key metric for QoR
evaluation in DRFM-IID synthesis.

In the previous example, it shows that a bound DFG
with more IITs tends to have longer latency. However, to

561

Critical path:
Vi => V4 -> V7

()
N~

|A |B

Fig.4 (a), (b) A bound DFG w/ IITs lying on the critical path targeting
DRFM and DRFEM-IID; and (c), (d) another bound DFG w/o IITs lying on
critical paths targeting DRFM and DRFM-IID.

be more specific, not every IIT can effectively affect system
latency in DRFM-IID. In fact, only those lying on critical
paths can. Figure 4 illustrates another example. DFGs in
Fig. 4(c) and Fig. 4(d) have identical latency. It is because
both IIT, and IIT534 do not lie on any critical paths and
thus latency is not increased even after conveyer insertion in
DRFM-IID. Instead, the DFG in Fig. 4(b) has longer latency
than that in Fig. 4(a). The reason is that both /IT| 4 and IIT 4 ;
lie on the critical path and thus the overall latency is length-
ened due to mandatory conveyer insertion in DRFM-IID.
Therefore, in addition to the number of IITs, a performance-
driven synthesizer for DREM-IID should also take timing-
criticality of IIT into account for better outcomes.

Meanwhile, the utilization of an island 1, U(I), is de-
fined as (1):

nodes in this island + # conveyers in this island

u(n) = (1

total csteps

Low island utilization implies there are many bubbles (un-
used time slots) in that island. In a scheduled and bound
DFQG, if the utilization distributes unevenly among islands,
the overall system latency is very likely to be dominated by
those crowded islands. For example, when a highly-utilized
island, like /4 in Fig.5(a), comes along with many incom-
ing IITs from other islands, the overall latency is likely to
be stretched after conveyer insertion, as shown in Fig. 5(b).
Note that the number of in-edges of an island I represents
the number of IITs ending at /. For instance, the number
of in-edges of I, in Fig. 5(a) is two (i.e., IIT5, and [Ty 3).
On the contrary, the DFG in Fig. 5(c) has the same IIT count
as the one in Fig. 5(a), but has no IIT ending at the highly-
utilized island Ic. After considering inter-cluster delay, the
resultant DFG in Fig. 5(d) has shorter latency than the one in
Fig. 5(b). As aresult, it is usually not a good idea to have too

562

Island
u(h)
#In-edges(l)

Island
u(h)
#In-edges(l)

() (d)

Fig.5 (a), (b) The DFG targeting DRFM and DREM-IID with unbal-
anced island utilization; and (c), (d) the DFG targeting DRFM and DRFM-
IID with relatively balanced island utilization.

many in-edges incident to a highly-utilized island. That is,
keeping island utilization distribution more even as well as
reducing the number of in-edges for heavily-utilized islands
can potentially lead to better system performance.

In summary, due to additional consideration of inter-
cluster delay, architectural synthesis targeting DRFM-IID
becomes even more complicated. Instead of IIC count, a
performance-driven and power-aware synthesis framework
should also take IIT count, which is also an indicator for
on-chip communication power consumption [4], timing-
criticality of IIT, and island utilization into account for better
outcomes.

4. Proposed Synthesis Algorithm for DRFM-IID

As in [14], [15], it is commonly assumed that every opera-
tion can be carried out at arbitrary island. Then the problem
formulation of this work can be described as: Given a DFG
and a resource constraint (the number of available islands),
obtain a scheduled and bound DFG with minimized latency
targeting DRFM-IID.

The overall flow of the proposed method is shown in
Fig.6. Given a DFG, list-scheduling is first employed to
obtain an initial scheduling result. Then island assignment
and iterative latency minimization are applied consecutively
to get a final solution. Island assignment is performed to

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.2 FEBRUARY 2012

Resource
constraint

Y

[Initial scheduling | .
‘ Iterative latency

‘ minimization

/ IIT refinement

Conveyer insertion

’ Island assignment

Iterative latency
minimization
]

v
Scheduled and bound DFG

Fig.6 The overall flow of the proposed algorithm.

~

bind operations into islands considering both the number of
IITs and the timing-criticality of IIT. Then, iterative latency
minimization tries to iteratively reduce the number of IITs,
balance island utilization, and perform necessary conveyer
insertion to preserve data dependency. There are two essen-
tial steps in iterative latency minimization: IIT refinement
and conveyer insertion. At the k-th iteration, the former is
responsible for not only IIT reduction but also island uti-
lization balancing, while the latter is used to keep data de-
pendency intact. At the end of the iteration, the partially
scheduled and bound DFG (from the first to the k-th control
step) are fixed, and the procedure then moves to the next it-
eration. More details are revealed in the remainder of this
section.

4.1 Island Assignment

Island assignment is conducted to bind operations into is-
lands. As previously mentioned, IIT count and timing-
criticality of IIT should be the major concerns. Hence an
edge-weighted compatibility graph H(V, F) is built from the
scheduled DFG G(V, E) after list scheduling. The vertex set
of H is the same as the one in G, whereas the edge set F is
a superset of E. There are two types of edges in F: those
that belong to E and those that do not. An edge belonging
to F but not to E connects a pair of vertices that have no
data dependency but are timing-compatible and thus can be
assigned to the same island. Weights on those two types of
edges are defined in (2), where the term cri(e; ;) suggesting
the timing-criticality of the corresponding transfer is given
in (3).

0, eij ¢ E
1+ cri(e,-_j), € eFE
1

cri(ei) = cstep(v;) — cstep(v;) v

Wi(e; ;) = { 2)

After properly setting edge weights, the island assign-
ment problem can be formulated as finding a set of flows
with maximum sum of weights in the compatibility graph,
i.e., the min-cost flow problem. This problem can then be
optimally solved by a polynomial-time algorithm described
in [28]. The proposed method tries to prevent timing-critical
transfers from crossing islands as well as minimizes the IIT

HUANG et al.: PERFORMANCE-DRIVEN ARCHITECTURAL SYNTHESIS FOR DISTRIBUTED REGISTER-FILE MICROARCHITECTURE

count at the same time.
4.2 Tterative Latency Minimization — IIT Refinement

IIT refinement considers not only the number of IITs but
also the balance of island utilization. Before going into de-
tails, a maximum utilization island set (MUIS) is defined
first. An MUIS is a set of islands with maximum utiliza-
tion. For example, as in Fig. 5(a) and Fig. 5(c), MUIS is {14,
Ic} and {I¢}, respectively.

The IIT refinement process is based on the KL algo-
rithm [29], which is broadly used in partitioning-related
problems. During the process, operation nodes and bubbles
are swapped for IIT minimization. A swap can be made
between two nodes or between a node and a bubble. More
precisely, a swap attempt can only be made between two fea-
sible candidates over all islands. A node is considered feasi-
ble only on following conditions: i) it must be unlocked, ii)
none of its immediate predecessors comes from a conveyer,
and iii) it must be in the current cstep. Meanwhile, a bubble
is considered feasible only if it is in the current cstep. The
gain of a swap pair (u, v) is denoted as g,,, and given in (4),
where T represents the number of IITs that can be reduced
and D, defined in (5), indicates the difference of the average
number of in-edges incident to islands in MUIS before and
after the swap. Meanwhile, @ in (4) is a user-configurable
parameter and is set to 10 in all of our experiments shown
later.

Guw=D+a-T @
> #in—edges,y(1;) >, #in—edgesye,(I;)
_ LieMUIS _ LEMUIS s)
|MUISUI(1| |MUISnew|

All feasible swap pairs over all islands are collected into a
feasible swap pair set (FSPS). After performing a swap at-
tempt, FSPS, MUIS, and gains of all swap pairs are updated
accordingly. This swapping process is not terminated until
FSPS is finally empty. Similar to the KL algorithm, only
the first consecutive swaps with maximally positive accu-
mulated gain sum are actually performed. The key steps of
IIT refinement are summarized as follows:

i) Set all operation nodes unlocked.

ii) Find a swap pair with the largest gain from FSPS.

iii) Swap the pair then lock the operation node.

iv) Update FSPS and recalculate the gains of pairs in FSPS.

v) Repeat ii) to iv) until FSPS is empty.

vi) Keep the first k swaps and undo the rest if the accumu-
lated gain sum of the first k swaps is the largest and pos-
itive; go to 1).

vii)Otherwise, terminate IIT refinement.

All in all, the goal of IIT refinement is to minimize IIT

count, to balance island utilization, and to reduce in-edges

of highly-utilized islands at the same time.

4.3 Tterative Latency Minimization — Conveyer Insertion

After IIT refinement, conveyers may be inserted to preserve

563

Fig.7 The scheduled and bound DFG (a) before and (b) after conveyer
insertion.

data dependency. Figure 7 shows the case when the pro-
cedure arrives at cstep4. Note that an IIT does not need a
conveyer in its destination island if the data item it carries is
already available there. For example, as shown in Fig. 7, it
is unnecessary to add a conveyer for IIT5, since IIT3 has
already carried the same data item to I4 at cstep,. Further-
more, an inserted conveyer does not always increase system
latency because it tries to take over a bubble if there is any
in the same island, as IIT4 1o in Fig.7. At the end of an it-
eration, all necessary conveyers are properly inserted before
the currently working control step (i.e., csteps in this case),
and all data dependency remains intact. The procedure then
moves to the next iteration.

5. Experimental Results
5.1 Experimental Setup

The proposed algorithm has been implemented in C++/
Linux environment and all experiments are conducted on
a workstation with an Intel Xeon 3.2 GHz CPU and 4 GB
RAM. For fair and comprehensive comparisons, two differ-
ent synthesis flows are developed, as shown in Fig. 8. Given
an input DFG and a resource constraint (i.e., the number of
available islands), list scheduling is first performed to pro-
duce an initial scheduling result for both flows. Then, Flow1
implements the approach proposed in [14], [15]. Since that
approach does not consider inter-island transfer delay, con-
veyer insertion is thus mandatory as a post-processing step
to ensure correct data dependency in DRFM-IID. Flow?2 pre-
cisely carries out the algorithm proposed in this article. The
test cases are selected from several benchmark sets, which
are frequently used in the high-level synthesis field [30]—
[32]. The basic information of these test cases (DFGs) is re-
ported in Table 1. The first three columns give names, num-
bers of nodes, and numbers of edges, respectively. The last
column shows the latency (without inter-island delay con-
sideration) obtained through ASAP scheduling, which indi-
cates the lowest possible latency a synthesis framework can
achieve.

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.2 FEBRUARY 2012

564
_ Two configurations are elaborated in our experi-
DFG Resource constraint
ments — synthesis is performed without and with a resource
constraint, respectively. In Configuration 1, the number of
- - . . - available islands is set as the minimum number that still
c ‘ List scheduling ‘ ‘ List scheduling ‘ A . o
£ 1 ! guarantees the synthesis outcome with the minimum latency
=3
£ Previous work Island assignment obtained from ASAP scheduling; i.e., there is in fact no re-
c . .
o ; I source constraint at all. Nevertheless, the assumption about
‘g‘, Conveyer ‘ lterative latency ‘ unlimited available hardware resource is obviously imprac-
5 insertion minimization tical in the real world. Hence, in Configuration 2, for every
o . . .
X5 Flow1 Flow2 test case the number of available islands is reduced by half;
7 that is:
Scheduled and bound DFG . .
% #islands in Confie. 2 # islands in Config. 1 ©)
islands in Config. 2 =
Fig.8 The Experimental flows for comparisons. 2
5.2 Experimental Results and Discussions
Table 1 The basic information of the test cases.
Test case | #nodes | #edges | Latency The experimental results are given in Table 2 and Ta-
wang 48 58 7 ble 3 for Configuration 1 and Configuration 2, respectively.
lee 49 62 9 The latency values given in both tables apparently indicate
feedback 53 50 177 that inter-island delay does greatly lengthen system latency.
hava >3 >4 Table 2/3 reports that Flow] requires 102.6%/97.2% and
fft4 62 88 8 .
cosinel 66 6 3 Flow2 requires 66.1%/43.3% more control steps on average,
writebmp 106 33 - .respectlvely. Thergfor.e, it can be summarized that inter-
matmul 109 116 9 island delay has a significant impact on system latency and
smooth 197 196 11 must be handled with extreme care for every performance-
invert 333 354 11 driven architectural synthesis flow targeting DRFEM-IID.
It is also concluded that the proposed framework
Table 2 The experimental results — unlimited #islands (Configuration 1).
. Latency . #IITs . #1ICs
Test case | #islands ASAP Flowl Flow2 Reduction Flowl Flow2 Reduction Flowl Flow2 Increment
wang 8 7 16 12 25.00% 39 26 33.33% 17 21 23.53%
lee 6 9 17 14 17.65% 32 20 37.50% 11 14 27.27%
feedback 9 7 13 11 15.38% 27 18 33.33% 12 17 41.67%
h2v2 4 17 32 27 15.63% 24 17 29.17% 6 9 50.00%
fft4 8 8 21 16 23.81% 63 45 28.57% 24 34 41.67%
cosinel 9 8 16 15 6.25% 48 33 31.25% 20 29 45.00%
writebmp 16 7 13 11 15.38% 29 25 13.79% 18 26 44.44%
matmul 16 9 16 14 12.50% 39 38 2.56% 27 38 40.74%
smooth 27 11 21 16 23.81% 91 67 26.37% 49 63 28.57%
invert 36 11 24 19 20.83% 175 93 46.86% 77 96 24.68%
Avg. 17.62% 28.27% 36.76%
Table3 The experimental results — constrained #islands (Configuration 2).
. Latency . #11Ts . #11Cs
Test case | #islands ASAP Flowl Flow2 Reduction Flowl Flow2 Reduction Flowl Flow2 Increment
wang 4 13 26 20 23.08% 35 24 31.43% 16 12 -25.00%
lee 3 18 36 25 30.56% 36 23 36.11% 6 6 0.00%
feedback 4 14 28 20 28.57% 31 14 54.84% 8 10 25.00%
h2v2 2 29 43 36 16.28% 16 13 18.75% 2 2 0.00%
fft4 4 16 37 29 21.62% 58 44 24.14% 10 12 20.00%
cosinel 4 17 34 24 29.41% 46 26 43.48% 8 11 37.50%
writebmp 8 14 24 19 20.83% 42 27 35.71% 14 24 71.43%
matmul 8 15 29 21 27.59% 68 37 45.59% 19 28 47.37%
smooth 13 17 37 23 37.84% 111 69 37.84% 32 65 103.13%
invert 18 20 42 28 33.33% 204 107 47.55% 63 94 49.21%
Avg. 26.91% 37.54% 32.86%

HUANG et al.: PERFORMANCE-DRIVEN ARCHITECTURAL SYNTHESIS FOR DISTRIBUTED REGISTER-FILE MICROARCHITECTURE

achieves an average reduction of 26.91% (17.62%) and
37.54% (28.27%) in latency and IIT count respectively as
compared to the prior art [14], [15] with (without) a resource
constraint. The experimental results clearly indicate that
there is a strong link between the number of IITs and re-
sultant system latency. Furthermore, besides shorter latency,
fewer IITs in use can also imply less power consumption for
on-chip communication [4], which is regarded as a desirable
side effect.

Since the proposed method focuses on latency mini-
mization, reduction of physical inter-island connects (IICs)
is indeed not its primary goal. As a result, Flow1 does per-
form better than Flow?2 in terms of IIC count because that is
what Flow1 is exactly designed for. As a matter of fact, once
we have attempted to incorporate the number of IICs into
part of gain calculation as a secondary goal in the proposed
iterative optimization process. Nevertheless, the actual IIC
reduction is limited and thus not emphasized in this article.
We believe what really happens here should be regarded as
a typical area-delay (IIC-latency) tradeoff that can be found
in virtually all synthesis problems.

6. Conclusion

In this article, we first propose a new distributed register-
file based microarchitecture named DRFM-IID, which takes
inter-island transfer delay into account. The correspond-
ing synthesis task is inherently more complicated than those
without inter-island delay consideration. Therefore, we
develop a new performance-driven architectural synthesis
framework. There are two major procedures in the pro-
posed algorithm. First, island assignment performs opera-
tion binding while considering both IIT count and timing-
criticality of data transfer. The problem is formulated as
a min-cost network flow one and optimally solved accord-
ingly. Then, iterative latency minimization composed of IIT
refinement and conveyer insertion is conducted to validate
and further improve a solution. IIT refinement is to mini-
mize IIT count, to balance island utilization, and to reduce
in-edges of highly-utilized islands, while conveyer insertion
tries to keep data dependency intact without further increas-
ing latency. The experimental results show that a reduc-
tion of 26.91% and 37.54% is achieved in latency and IIT
count as compared to the prior art, where the latter is also an
indicator for on-chip communication power consumption.
Therefore, we believe the proposed method is a better syn-
thesis solution for high-performance and low-power appli-
cations targeting DRFM-IID.

Acknowledgment

This work was supported in part by the National Science
Council of Taiwan under Grant NSC 99-2220-E-009-008.

References

[1] International Technology Roadmap for Semiconductors, Semicon-
ductor Industry Association, 2009.

(2]
[3]

(4]

(5]

(6]

(71
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

565

D. Matzke, “Will physical scalability sabotage performance gains?,”
Computer, vol.30, no.9, pp.37-39, 1997.

L.P. Carloni and A.L. Sangiovanni-Vincentelli, “Coping with la-
tency in SOC design,” IEEE Micro, vol.22, no.5, pp.24-35, 2002.
N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-
power dissipation in a microprocessor,” Proc. Int’l Workshop Sys-
tem Level Interconnect Prediction, pp.7-13, 2004.

A. Singh, G. Parthasarathy, and M. Marek-Sadowska, “Efficient cir-
cuit clustering for area and power reduction in FPGAs,” ACM Trans.
Design Automation of Electronics Systems, vol.7, no.4, pp.643—
663, Oct. 2002.

E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,”
Proc. Int’l Symp. Low Power Electronics and Design, pp.155-160,
1998.

T. Tuan and B. Lai, “Leakage power analysis of a 90 nm FPGA,”
Proc. IEEE Custom Integrated Circuits Conf., pp.57-60, 2003.
D.M. Chapiro, Globally-asynchronous locally-synchronous sys-
tems, Ph.D. dissertation, Stanford Univ., Stanford, CA, 1984.

E. Beigne and P. Vivet, “Design of on-chip and off-chip interfaces
for a GALS NoC architecture,” Proc. Int’l Symp. on Asynchronous
Circuits and Systems, pp.174—183, 2006.

L.P. Carloni, K.L. McMillan, A. Saldanha, and A.L. Sangiovanni-
Vincentelli, “A methodology for correct-by-construction latency in-
sensitive design,” Proc. Int’l Conf. Computer Aided Design, pp.309—
315, 1999.

D. Bufistov, J. Jilvez, and J. Cortadella, “Performance optimization
of elastic systems using buffer resizing and buffer insertion,” Proc.
Int’l Conf. Computer Aided Design, pp.442—448, 2008.

J.-D. Huang, Y.-S. Huang, L. Wang, and G.-W. Lee, “Throughput-
aware floorplanning via dynamic optimization on performance-
critical loops,” Int’l Journal of Electrical Engineering, vol.17, no.1,
pp.33-42, 2010.

J.-D. Huang, Y.-H. Chen, and Y.-C. Ho, “Throughput optimization
for latency-insensitive system with minimal queue insertion,” Proc.
Asia and South Pacific Design Automation Conf., pp.585-590, Jan.
2011.

J. Cong, Y. Fan, and W. Jiang, “Platform-based resource binding
using a distributed register-file,” Proc. Int’l Conf. Computer Aided
Design, pp.709-715, 2006.

J. Cong, Y. Fan, and J. Xu, “Simultaneous resource binding and in-
terconnection optimization based on a distributed register-file mi-
croarchitecture,” ACM Trans. Design Automation of Electronics
Systems, vol.14, no.3, pp.1-31, May 2009.

K. Lim, Y. Kim, and T. Kim, “Interconnect and communication syn-
thesis for distributed register-file microarchitecture,” Computers &
Digital Techniques, IET, vol.3, no.2, pp.162—174, March 2009.
J.-D. Huang, C.-I Chen, Y.-T. Lin, and W.-L. Hsu, “Commu-
nication synthesis for interconnect minimization targeting dis-
tributed register-file microarchitecture,” IEICE Trans. Fundamen-
tals, vol.E94-A, no.4, pp.1151-1155, April 2011.

J.-D. Huang, C.-I Chen, W.-L. Hsu, Y.-T. Lin, and J.-Y. Jou,
“Performance-driven architectural synthesis for distributed register-
file microarchitecture considering inter-island delay,” Proc. Int’l
Symp. VLSI Design, Automation and Test, pp.169-172, April 2010.
D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-to-
placed RTL synthesis with performance-driven placement,” Proc.
Int’l Conf. Computer Aided Design, pp.320-325, 2001.

J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture
and synthesis for on-chip multicycle communication,” IEEE Trans.
Comput.-Aided Des. Integrated Circuits Syst., vol.23, no.4, pp.550-
564, April 2004.

C.-I Chen and J.-D. Huang, “A hierarchical criticality-aware archi-
tectural synthesis framework for multicycle communication,” IEICE
Trans. Fundamentals, vol.E93-A, no.7, pp.1300-1308, July 2010.
S.-H. Huang, C.-H. Chiang, and C.-H. Cheng, “Three-dimension
scheduling under multi-cycle interconnect communications,” IEICE
Electronics Express, vol.2, no.4 pp.108—114, Feb. 2005.

566

[23] A. Ohchi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “High-
level synthesis algorithms with floorplaning for distributed/shared-
register architectures,” Proc. Int’l Symp. VLSI Design, Automation
and Test, pp.164—167, April 2008.

[24] S. Gao, K. Seto, S. Komatsu, and M. Fujita, “Pipeline schedul-
ing for array based reconfigurable architectures considering inter-
connect delays,” Proc. Int’] Conf. Field-Programmable Technology,
pp.137-144, Dec. 2005.

[25] J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for au-
tomatic interconnect pipelining,” Proc. Design Automation Conf.,
pp.602-607, June 2004.

[26] W.-S. Huang, Y.-R. Hong, J.-D. Huang, and Y.-S. Huang, “A multi-
cycle communication architecture and synthesis flow for global in-
terconnect resource sharing,” Proc. Asia and South Pacific Design
Automation Conf., pp.16-21, Jan. 2008.

[27] Y.-S. Huang, Y.-J. Hong, and J.-D. Huang, “Communication syn-
thesis for interconnect minimization in multicycle communica-
tion architecture,” IEICE Trans. Fundamentals, vol.E92-A, no.12,
pp.3143-3150, Dec. 2009.

[28] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algo-
rithms, and Applications, Prentice Hall, 1993.

[29] B. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell Syst. Tech. J., pp.291-307, Feb. 1970.

[30] MCAS: multicycle architectural synthesis system. [Online]. Avail-
able: http://cadlab.cs.ucla.edu/software_release/mcas/

[31] ExPRESS group. [Online]. Available: http://express.ece.ucsb.edu/

[32] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed., the MIT Press, 2001.

Juinn-Dar Huang received the B.S. and
Ph.D. degrees in electronics engineering from
National Chiao Tung University, Hsinchu, Tai-
wan, in 1992 and 1998, respectively. He is
currently an Associate Professor in the Depart-
ment of Electronics Engineering and the Insti-
tute of Electronics, National Chiao Tung Uni-
versity. His research interests include behavioral
and logic synthesis, design verification, 3D IC
architecture/CAD, and microprocessor design.
He recently served in the Organizing Commit-
tees of IEEE/ACM ASP-DAC 2010 and SASIMI 2010. He was the Sec-
retary General of Taiwan IC Design Society (TICD) from 2004 to 2008,
and the Technical Program Committee Vice-Chair of VLSI Design/CAD
Symposium 2008. He served as a Technical Program Committee member
of IEEE/ACM DATE (2008, 2010), and IEEE VLSI-DAT (2010, 2011). He
was also the Organizing Committee member of IEEE ICFPT 2008. He is a
member of the IEEE, ACM, and Phi Tau Phi.

Chia-I Chen received the B.S. degree
in electronics engineering from National Chiao
Tung University, Hsinchu, Taiwan, in 2005,
where she is currently working toward the Ph.D.
degree in the Institute of Electronics. Her cur-
rent research interests include high-level synthe-
sis and computer architecture.

IEICE TRANS. FUNDAMENTALS, VOL.E95-A, NO.2 FEBRUARY 2012

Wan-Ling Hsu received the B.S. de-
gree in electrical engineering from Chang Gung
University, Taoyuan, Taiwan, in 2007, and the
M.S. degree in electronics engineering, National
Chiao Tung University, Hsinchu, Taiwan, in
2009. Her research interests include high-level
synthesis and physical synthesis.

Yen-Ting Lin received the B.S. and the
M.S. degrees in electronics engineering from
National Chiao Tung University, Hsinchu, Tai-
wan, in 2007 and 2009, respectively. His re-
search interests include high-level synthesis and
digital VLSI design.

Jing-Yang Jou received the B.S. degree
in electrical engineering from National Taiwan
University, Taiwan, and the M.S. and Ph.D.
degrees in computer science from the Univer-
sity of Illinois at Urbana-Champaign, in 1979,
1983, and 1985, respectively. He is the Deputy
Minister of National Science Council, Taiwan
from February 2010. He was the Vice Chan-
cellor (Academic Affairs), University System
of Taiwan (consisting of four research univer-
sities: National Central University, National
Chiao Tung University, National Tsing Hua University, and National Yang
Ming University) from April 2007 to January 2010, and the Executive Di-
rector of National SoC Program from April 2007 to January 2010. He
is a Distinguished Full Professor and was Chairman of Electronics Engi-
neering Department from 2000 to 2003 at National Chiao Tung University,
Hsinchu, Taiwan. His research interests include logic and physical synthe-
sis, design verification, CAD for low power and Network on Chips. He has
published more than 160 technical papers. Dr. Jou is a Fellow of IEEE. He
was elected to the President of the Taiwan Integrated Circuit Design Society
(TICD) 2007-2008, and he serves as Associate Editor for IEEE Transac-
tions on Very Large Scale Integration Systems from 2007 to present.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

