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a b s t r a c t

Modern robotic systemsperformelaborate tasks in complicated environments andhave close interactions
with humans. Therefore fault detection and isolation (FDI) schemes must be carefully designed and
implemented on robotic systems in order to guarantee safe and reliable operations. In this paper, we
propose a hierarchical multiple-model FDI (HMM-FDI) scheme to detect and isolate actuator faults of
robot manipulators. The proposed algorithm performs FDI in stages and refines the associated model set
at each stage. Consequently only a small number of models are required to detect and isolate various
types of unexpected actuator faults, including abrupt faults, incipient faults, and simultaneous faults. In
addition, the computational load is alleviated due to the reduced-sized model set. The relation between
the fault detection stage of the HMM-FDI scheme and the likelihood ratio test is explicitly revealed and
theoretical upper bounds of the false alarm and missed detection probabilities are evaluated. Then we
conduct experiments to demonstrate the ability of the HMM-FDI scheme in successful and immediate
detection and isolation of actuator faults.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Robotic systems are widely used to carry out various missions
that require high precision, reliability and safety. Typical robotic
applications are, to namebut a few, industrialmanufacturing, dem-
ining, hazardouswaste cleanup, and outer space exploration. In ad-
dition, recent advances in intelligent robots have inspired a large
number of emerging applications such as housekeeping, medical
surgeries, and the elderly home care. In order to accomplish these
increasingly elaborate tasks, modern robots turn into ever com-
plicating systems. However, the more complex the robotic sys-
tems are, the more likely they are to break down. Unfortunately,
the unexpected breakdown may either incur a cost that is too
high to be affordable (e.g. interruption of a space mission), or even
worse, cause damage to users and their property due to close in-
teractions with humans and environments. Therefore, faults of
robotic systems must be taken care of properly in order to guaran-
tee their safe operation. Procedures for dealing with faults include
(i) detecting the occurrences of faults (fault detection), (ii) indicat-
ing faulty components (fault isolation), (iii) identifying features of
faults (fault identification), and (iv) accommodating faults by ded-
icated control algorithms (fault tolerant control).
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Fault detection and isolation (FDI) schemes have been inves-
tigated over the past three decades [1–3], and have been suc-
cessfully applied to various safety-critical systems such as nuclear
plants [4], flight control systems [5], vehicular drive-by-wire sys-
tems [6], automated highway systems [7,8], and robotic systems
[9,10]. Commonly used techniques include state and parame-
ter estimation [11–17], parity equations [18,19], neural networks
[20,21], and multiple-model (MM) approaches [22–26]. On the
other hand, fault tolerant control (FTC) can be realized with or
without explicit FDI schemes [7,27–29]. In particular, applying FTC
to robotic systems has drawn a lot of attention in the past [30–32].

In the aforementioned studies, faults are represented as either
additive signals or multiple models. The former usually results in
a complicated fault signal which is a function of the system state.
Hence the fault signal cannot be treated as external disturbances,
making it challenging to analyze and synthesize the FDI schemes.
On the other hand, the latter represents each fault by a specific
model that might be simple and structurally different from one
another. Thus the multiple-model fault representation is more
flexible and powerful, leading to the recent development of
multiple-model FDI (MM–FDI) schemes.

For example, eight fault models were established for the air-
intake system of a turbo-charged engine [22]; then structured
hypothesis tests were used to detect the occurrences of faults. The
multiple-model adaptive estimation (MMAE) algorithm, which
runs parallel state estimators and calculates the probability of
each model by Bayes’ rule, has been applied to the flight control
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system [33]. To improve the performance of multiple-model
FDI (MM–FDI) schemes, the interacting multiple-model (IMM)
algorithm was investigated [23] and applied to the satellite’s
attitude control system [24] as well as the aircraft lateral motion
control system [25].

The aforementioned MM–FDI schemes enumerate all de-
tectable and isolatable faults in the model sets. If an unexpected
fault, i.e. a fault without a corresponding model in the model set,
has occurred, the results of the MM–FDI schemes become un-
predictable. Therefore, a large model set is required in order to
detect and isolate as many faults as possible. Unfortunately, it is
difficult, if not impossible, to design an exhaustive model set that
contains every possible fault. Take the partial actuator fault [26]
for example. The associated fault model incorporates a fixed mul-
tiplicative ‘‘effective factor’’ in the actuator’s output, representing
the reduction of the actuator’s gain. Since the effective factor can
be any number between 0 and 1, it is impossible to include all par-
tial fault models in the model set. In fact, we are restricted to work
on a finite model set, and we will show in Section 3 that expand-
ing the model set results in a considerable increase of the compu-
tational load. Even though the computational load is affordable, a
largemodel set is not recommended because somemodelsmay be-
come indistinguishable from the input–output point of view, and
then the MM–FDI schemes are unable to select the fittest model
from the model set with ‘‘sufficient confidence’’. In short, MM–FDI
schemes face a dilemma of avoiding unexpected faults by using a
fine-grained model set while maintaining a tractable algorithm by
limiting the size of the model set.

To tackle themodel set design problem, Ru and Li [26] proposed
the IM3L algorithm that uses the IMM algorithm for estimating
system state and the expectation-maximization (EM) algorithm for
updating model parameters. Therefore the fault models are self-
adaptive, relieving the need for a large model set. However only
(multiple) abrupt total and partial faults were considered in [26].

In this paper, we propose a hierarchical multiple-model FDI
(HMM-FDI) scheme as a solution to the model set design problem
and apply it to detect and isolate actuator faults of robot
manipulators. The ultimate goal of the proposed FDI scheme is
to find out faulty joints in an early stage such that fault tolerant
strategies can be launched in time to guarantee safe operation
of the robotic system. In other words, any faulty joints must be
indicated before the robotic system significantly deviates from its
nominal performance, no matter what kinds of faults have taken
place. To achieve this goal, the proposed HMM-FDI scheme works
in stages. At each stage, the model set is refined such that only
a small number of models are required. Therefore the HMM-FDI
scheme avoids the need for enumerating all possible faults in the
model set, while is endowed with the ability to detect and isolate
various types of unexpected actuator faults, including abrupt faults,
incipient faults, and simultaneous faults in a computationally
efficient way. The relation between the fault detection stage of
the HMM-FDI scheme and the likelihood ratio test is explicitly
revealed and theoretical upper bounds of the false alarm and
misseddetectionprobabilities are evaluated. Then experiments are
conducted to verify the performance and efficiency of the HMM-
FDI scheme.

The remainder of this paper is organized as follows: Section 2
introduces the dynamic and kinematic models of the robot
manipulator. Section 3 illustrates the notions of the MM–FDI
methods and the related techniques. The HMM-FDI scheme is
proposed in Section 4 while experimental results are presented in
Section 5. Section 6 concludes this paper.

2. Dynamic and kinematic models of the manipulator

The dynamic equation of an n-joint manipulator is given as
follows [34]:
M(q(t))q̈(t)+ C(q(t), q̇(t))q̇(t)+ G(q(t))+ F(q̇(t)) = τ(t) (1)

where q(t), q̇(t), q̈(t) ∈ Rn are vectors of joint positions, veloci-
ties, and accelerations at time t , respectively.M(q(t)), C(q(t), q̇(t))
∈ Rn×n are the inertia matrix, and Coriolis and centrifugal matrix
respectively. G(q(t)), F(q̇(t)), τ(t) ∈ Rn denote the gravitational
torque vector, friction vector, and control torque vector, respec-
tively. For clarity, we will drop the notational dependence of all
variables on t as long as it leads to no confusion.

Define the state vector of the manipulator as x = [qT , q̇T
]
T .

Because the proposed HMM-FDI scheme will be derived in the
discrete-time domain, we apply the Euler’s method to convert
(1) to its discrete-time counterpart and obtain the following state
space representation:

xk+1 = xk + h
[

q̇k

f(xk, τk)

]
+

[
wp

k

wv
k

]
(2)

where f(xk, τk) = M−1(qk) [τk − C(qk, q̇k)q̇k − G(qk)− F(q̇k)] , h
is the sampling time, and the subscript k denotes the kth sample.
wk = [(wp

k)
T , (wv

k)
T
]
T is the process noise representing the model

uncertainties and the approximation error due to the Euler’s
method.

We assume that only the joint positions are measurable. Thus
the output equation of the manipulator is:

yk = Cxk + vk (3)

where C = [In×n0n×n] and vk is the measurement noise which is
assumed to be Gaussian distributed white noise with zero mean
and covariance matrix R.

In the context of the HMM-FDI scheme, the dynamic model
consists of (2) and (3) along with the assumption that wk is
Gaussian distributed noise with zero mean and covariance matrix
QD

k . In addition, we assume that components of wk are mutually
uncorrelated, i.e. QD

k is a diagonal matrix. Note that we allow the
covariance matrix to be time-varying.

Remark 1. It should be noted that the actual distribution of wk
may not be Gaussian; nevertheless the dynamic model assumes
that wk is Gaussian distributed and mutually uncorrelated, and
treats the covariancematrixQD

k as a tunable parameter of the model,
not a physical quantity of the robot. By tuning QD

k we change the
‘‘accuracy’’ of the dynamic model. If QD

k is set to an inappropriate
value, then the dynamic model behaves poorly in predicting the
motion of the manipulator; however, it is our intention to reduce
the ‘‘relative accuracy’’ of one model w.r.t. the others for the
purpose of fault detection and isolation. See Section 4 for more
details.

On the other hand, we can predict the motion of the
manipulator through the kinematic relations of joints. By kinematic
relationwemean that the joint velocity is the first derivative of the
joint position. Approximating the kinematic relation by the Euler’s
method yields

qk+1 = qk + hq̇k + ξ
p
k (4)

where ξ
p
k is the approximation error due to the Euler’s method. On

the other hand, if the differentiation relation is approximated by
the backward difference equation, then we have

q̇k+1 =
qk+1 − qk

h
+ ξvk =


qk + hq̇k + ξ

p
k


− qk

h
+ ξvk (5)

where ξvk is the approximation error due to the backward
difference equation. Combining (4) and (5) yields the following
equation:

xk+1 = AKxk + GKξk (6)
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where AK
=


I hI
0 I


,GK

=


I 0
1
h
I I


, and ξk =

[
ξ
p
k

ξvk

]
. In the

context of the HMM-FDI scheme, the kinematic model1 consists
of (6) and (3) along with the assumption that ξk is Gaussian
distributed with zero mean and covariance matrix QK

k . We also
assume that the components of ξk are mutually uncorrelated,
i.e. QK

k is a diagonal matrix. Here QK
k is also regarded as a tunable

parameter of the kinematic model (c.f. Remark 1). In addition, we
assume that vk,wk and ξk are independent.

Furthermore, we can describe the motion of the ith joint by
either (7) (dynamic equation) or (8) (kinematic equation) below
and obtain a set of models with arbitrary combinations of (7) and
(8) for the n joints.[
qi,k+1
q̇i,k+1

]
=

[
qi,k
q̇i,k

]
+ h

[
q̇i,k

fi(xk, τk)

]
+

[
w

p
i,k

wvi,k

]
(7)

[
qi,k+1
q̇i,k+1

]
=

[
qi,k
q̇i,k

]
+ h

[
q̇i,k
0

]
+

 ξ
p
i,k

1
h
ξ
p
i,k + ξ vi,k

 (8)

where the symbol i in the first part of the subscript denotes the ith
element of a vector.

To facilitate the presentation, we introduce the notation
K(i, j, . . .) to denote a model that includes (8) for those joints
inside the parentheses, and (7) for all the other joints. For example,
if n = 3, then K(1, 3) denotes the following model:


q1,k+1
q2,k+1
q3,k+1
q̇1,k+1
q̇2,k+1
q̇3,k+1

 =


q1,k
q2,k
q3,k
q̇1,k
q̇2,k
q̇3,k

+ h


q̇1,k
q̇2,k
q̇3,k
0

f2(xk, τk)
0

+



ξ
p
1,k

w
p
2,k

ξ
p
3,k

1
h
ξ
p
1,k + ξ v1,k

wv2,k

1
h
ξ
p
3,k + ξ v3,k


.

In particular, (6) and (2) are denoted by K(1, 2, . . . , n) and K(0)
respectively.

3. Multiple-model FDI schemes

MM–FDI schemes use one model for one particular fault. Then
all fault models as well as the normal model (2), i.e. the model
describing the normal operation of the robot, are contained in a
model set. Whenever a fault has taken place, the model that best
fits the current behavior of the robot switches from the normal
model to the associated fault model. If we can detect the switch
of models and identify the associated fault model, the FDI problem
is solved.

We say that the robotic system is currently in mode i if the ith
model is the fittest one. Suppose that we have defined an exclusive
and exhaustive model set which consists of J models. Namely, the
robotic system is in one and exactly one of the J modes at any time.
Then we can estimate the current mode of the robotic system by
evaluating the probabilities of the modes.

1 In the context of robotics, the term ‘‘kinematic model’’ usually refers to the
transformation among the reference frames of joints or the transformation between
the joint space and the task space. In this paper, the kinematic model refers to
a model exploiting only the very fundamental relation between positions and
velocities. The same idea has also been explored by other researchers in designing
the kinematic Kalman filter (KKF) of manipulators [35].
Let P(M i
k) be the probability of the eventM

i
k, which denotes that

the robotic system is in mode i at step k for i = 1, 2, . . . , J and all
k. We assume thatM i

k forms a Markov chain, i.e.

P(M j
k+1|M

i
k,M

ik−1
k−1 , . . . ,M

i0
0 ) = P(M j

k+1|M
i
k) = π i,j,

i0, i1, . . . , ik−1, i, j = 1, 2, . . . , J and ∀k. (9)

π i,j is themode transition probability satisfying
∑J

j=1 π
i,j

= 1 for all
i. The posterior mode probability conditioning on all measurements
up to step k is

sik = P

M i

k|y1, y2, . . . , yk

, i = 1, 2, . . . , J and ∀k. (10)

If sjk = max

s1k, . . . , s

J
k


, thenwe conclude that the robotic system

is in mode jat step k. Furthermore, if mode j is associated with
a particular fault, then we infer that the corresponding fault has
taken place. Therefore the FDI problem is equivalent to evaluating
the posterior mode probabilities.

Evaluation of the posterior mode probabilities requires state
estimation in the multiple-model setting. Related techniques
adopted in this paper are introduced in the following subsections.

3.1. Nonlinear state estimation

Without loss of generality, we can assume that the ith model in
the model set has the following state space representation:

xik+1 = φi(xik, τk)+ wi
k

yk = Cxik + vk,
i = 1, . . . , J and ∀k

where φi is a nonlinear function of the state xik and the control
torque τk;wi

k and vk are process noise and measurement noise
respectively which are assumed to be Gaussian distributed with
zero means and covariance matrices Qi

k and R.
In this paper, we use unscented Kalman filter (UKF) for nonlin-

ear state estimation because in general, UKF achieves a better per-
formance than the well-known extended Kalman filter (EKF) with
similar computational complexity [36]. For completeness, the UKF
algorithm is presented in Algorithm 1, where the following nota-
tions are used:

x̂ik|t = E

xik|y1, . . . , yt


, Pi

k|t = var

xik|y1, y2, . . . , yt


,

Lk = p (yk|y1, y2, . . . , yk−1) .

Algorithm 1: UKF algorithm

(x̂jk+1|k+1, P
j
k+1|k+1, L

j
k+1) =

UKF(x̂jk|k, P
j
k|k, yk+1, τk,φ

j, C,Qj
k,R)

{
χ0 = x̂jk|k,W0 = κ/(N + κ) /* the dimension of xjk is

N = 2n*/

χi = x̂jk|k ±
√
n + κ


Pj
k|k

1/2
i
,Wi = 1/(2(N + κ)),

i = 1, 2, . . . , 2N

/* κ is a design parameter. Pj
k|k =


Pj
k|k

1/2 
Pj
k|k

T/2
and

Pj
k|k

1/2
i

is the ith column of

Pj
k|k

1/2
*/

χ̄i = φj(χi, τk),µ
j
k+1 =

∑2N
i=0 WiCχ̄i

x̂jk+1|k =
∑2N

i=0 Wiχ̄i,

Pj
k+1|k =

∑2N
i=0 Wi


χ̄i − x̂jk+1|k

 
χ̄i − x̂jk+1|k

T
+ Qj

k

Sjk+1 =
∑2N

i=0 Wi


Cχ̄i − µ

j
k+1

 
Cχ̄i − µ

j
k+1

T
+ R,

Pxy =
∑2N

i=0 Wi


χ̄i − x̂jk+1|k

 
Cχ̄i − µ

j
k+1

T
(continued on next page)
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x̂jk+1|k+1 = x̂jk+1|k + PxyP−1
yy


yk+1 − µ

j
k+1


,

Pj
k+1|k+1 = Pj

k+1|k − Pxy


Sjk+1

−1
PT
xy

Ljk+1 =
1

(2π)
n
2

det Sjk+1

exp

−

1
2


yk+1 − µ

j
k+1

T 
Sjk+1

−1 
yk+1 − µ

j
k+1


}

E[·] and var(.) denote the expected value and variance
respectively. p(·) is the probability density function (PDF).
Comprehensive discussions about UKF can be found in [37].

3.2. Multiple-model state estimation

Given that the robotic system is in mode j, we can apply
Algorithm 1 to estimate the state. Unfortunately, the mode of the
robotic system is unknown; therefore the generalized pseudo-
Bayesian method of order 2 (GPB-2) [38] is applied to estimate the
state and the posterior mode probabilities in the multiple-model
setting. Suppose that there are J models in themodel set and define

x̂i,jk|t = E

xk|M i

k−1,M
j
k, y1, . . . , yt


,

Pi,j
k|t = var


xk|M i

k−1,M
j
k, y1, . . . , yt


Li,jk = p


yk|M i

k−1,M
j
k, y1, . . . , yk−1


, i, j = 1, . . . , J. (11)

Algorithm 2: GPB-2 algorithm

GPB2 /* Given x̂ik|k, P
i
k|k and sik, GPB2 calculates

x̂ik+1|k+1, P
i
k+1|k+1, and sik+1 for i = 1, 2, . . . , J */

{
/* Run Algorithm 1 J2 times. */
(x̂i,jk+1|k+1, P

i,j
k+1|k+1, L

i,j
k+1) =

UKF(x̂ik|k, P
i
k|k, yk+1, τk,φ

j, C,Qj
k,R); i, j = 1, 2, . . . , J

x̂ik+1|k+1

J
i=1
,

Pi
k+1|k+1

J
i=1
,

sik+1

J
i=1


=

Merging


x̂i,jk+1|k+1

J
i,j=1

,

Pi,j
k+1|k+1

J
i,j=1

,

Li,jk+1

J
i,j=1

,


sik
J
i=1


;

}
where

x̂ik+1|k+1

J
i=1
,

Pi
k+1|k+1

J
i=1
,

sik+1

J
i=1


=

Merging


x̂i,jk+1|k+1

J
i,j=1

,

Pi,j
k+1|k+1

J
i,j=1

,

Li,jk+1

J
i,j=1

,


sik
J
i=1


{

si,jk,k+1 =
Li,jk+1π

i,jsik∑J
i=1

∑J
j=1 Li,jk+1π

i,jsik
, sjk+1 =

∑J
i=1 s

i,j
k,k+1, x̂

j
k+1|k+1 =

1
sjk+1

∑J
i=1 s

i,j
k,k+1x̂

i,j
k+1|k+1, i, j = 1, . . . , J

Pj
k+1|k+1 =

1
sjk+1

∑J
i=1 s

i,j
k+1


Pi,j
k+1|k+1 + x̃i,jk+1(x̃

i,j
k+1)

T

,

where x̃i,jk+1 = x̂jk+1|k+1 − x̂i,jk+1|k+1 j = 1, . . . , J
}

Fig. 1. Flowchart of the HMM-FDI scheme.

At each time step, the GPB-2 algorithm runs UKF J2 times and
generates J2 state estimates x̂i,jk|k, i, j = 1, . . . , J . x̂i,jk|k denotes the
estimated state under the condition that the robotic system
switches from mode i to mode j at step k. In the meanwhile, the
GPB-2 algorithm also evaluates the posterior mode probabilities
(10). Then these J2 state estimates are merged together according
to the posterior mode probabilities, leaving J estimated states
at the end of each step. The GPB-2 algorithm is presented in
Algorithm 2.

4. HMM-FDI scheme

As we have mentioned in Section 1, model set design is the
most challenging part of the MM–FDI approaches. To solve this
problem,we propose to perform FDI in stageswithmixturemodels
of dynamic equations (7) and kinematic equations (8), resulting
in a hierarchical multiple-model FDI (HMM-FDI) scheme. Unlike
conventional MM–FDI approaches which detect and isolate faults
in one step with a large model set, the proposed HMM-FDI scheme
detects (multiple) faults as the first step, and then isolates the
faulty joints as the next step. If the joints fail successively, the
HMM-FDI schemekeeps refining itsmodel set in the isolation stage
until all faults have been isolated, or the robot is forced to give up
its task. The flowchart of the HMM-FDI scheme is shown in Fig. 1.

4.1. Fault detection

In the fault detection stage, the model set consists of only
two models: the dynamic model (2) and the kinematic model
(6). Roughly speaking, we tune the model parameters QD

k and QK
k

such that the dynamic model is more accurate than the kinematic
model under normal operation. In other words, we increase QK

k
or decrease QD

k such that the covariance of the estimated state
associated with the kinematic model becomes larger than that of
the dynamic model. Thus the GPB-2 algorithm favors the dynamic
model and assigns a higher posterior mode probability to it,
indicating that the robotic system is normal.

In the event of actuator faults, the faulty joints no longer satisfy
the dynamic model; however the kinematic model remains a good
approximation to the motion of all joints because it has nothing to
do with actuators’ torques. Thus the posterior mode probability of
the kinematic model increases. If it exceeds a predefined threshold
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TD, we assert the occurrence of faults. Note that 0 < TD < 1; hence
TD represents the least confidence level we must have when we
claim that the robotic system is faulty.

4.2. Fault isolation

In the fault isolation stage, we focus on finding out the faulty
joints instead of recognizing the types of faults, i.e. whether
the joint is locked or suffers from partial loss of the output
gain does not matter as long as we know that it has failed. For
easy illustration, we temporarily assume that multiple faults take
place successively, not simultaneously. Under this assumption, the
proposed model set for fault isolation is {K(1), K(2), . . . , K(n)}
(see Section 2 for an explanation of the notations). Suppose that
the jth joint has failed. Because all models but K(j) incorporate
the dynamic equation (7) for the jth joint, K(j) is least susceptible
to the fault of the jth joint. Therefore K(j) will be assigned
the highest posterior mode probability. If the posterior mode
probability ofK(j) exceeds a predefined threshold TI , we assert that
the jth joint has failed. Since 0 < TI < 1, TI represents the least
confidence level we must have to isolate the faulty joint.

Once the faulty joint has been isolated, the robotic system
may continue its operation, reconfigure its mission, or make an
emergency stop. The decision ismade by the control system,which
is beyond the scope of this paper. However, the FDI scheme must
be ready for detecting and isolating succeeding faults as long as
the robotic system remains operational. To do this, the HMM-FDI
scheme refines its model set as {K(j), K(1, j), K(2, j), . . . , K(j, n)}
after the fault of the jth joint has been isolated. The newmodel set
contains nmodels and all of them have the kinematic equation (8)
for the jth joint. n−1models include onemore kinematic equation
for one of the remaining n − 1 joints. Note that K(j) is the model
with thehighest posteriormodeprobability in theprevious stage. If
no more faults take place, K(j)will be selected. On the other hand,
if the mth joint has failed, m ≠ j, then by the same arguments
we infer that K(j,m) will be assigned the highest posterior mode
probability. If the posteriormodeprobability exceeds the threshold
TI , themth joint is isolated. The process continues until the robotic
system stops or all joints have been isolated.

Now we relax the assumption of no simultaneous faults. If
any two joints may fail at the same time, the proposed model
set is {K(i), K(i, j)|i, j = 1, . . . , n}, i.e. the model set contains Cn

1
+ Cn

2 models that include kinematic equations for any one or
any two joints. If the robot motion controller robustly alleviates
the dynamic couplings of the joints [39], then the fault of one
joint has minor effects on the other joints. Therefore K(j) gets the
highest posterior mode probability when a single fault occurs on
the jth joint. This is because K(j) includes the kinematic equation
for the faulty joint and the more accurate dynamic equations for
the other normal joints. Similarly, K(i, j) gets the highest posterior
mode probability when faults occur on the ith and jth joints
simultaneously. Consequently, both single faults and simultaneous
faults can be isolated. Then the model set is refined again. The
refining procedure is similar: using the kinematic equations for all
faulty joints, and one or two of the remaining normal joints.

Therefore we have established the procedure for FDI. Only
two models are used for fault detection and a small number
of models (depending on how many simultaneous faults are
considered) are required for fault isolation. The refinement of
the model set depends on the previously isolated faulty joints,
and thus the evolution of the model set forms a hierarchical
structure. Besides, no particular fault information (e.g. locked
joints or partial loss of output gains) is assumed. Hence the HMM-
FDI scheme is able to detect and isolate various types of unexpected
actuator faults. Furthermore, the implementation of the HMM-
FDI scheme can be computationally efficient in comparison with
conventional MM–FDI approaches due to the reduced-sizedmodel
set. Experiments in Section 5 will verify the ability of the HMM-
FDI scheme in immediate detection and isolation of a variety of
actuator faults.

4.3. HMM-FDI scheme vs. likelihood ratio test

To analyze the performance of the HMM-FDI scheme, we relate
its fault detection stage to the well-known likelihood ratio test and
evaluate the probabilities of false alarms and missed detections.
Recall that the likelihood function Li,jk defined in (11) is the PDF
of yk conditioning on y1, . . . , yk−1 as well as the mode transition
from i to j at step k. Since only two models are involved in the
fault detection stage, we use the superscript D and K to denote
that the variable is evaluated based on the dynamic model and the
kinematic model respectively.

According to Algorithms 1 and 2, Li,jk is a Gaussian function with
meanµ

i,j
k and covariancematrix Si,jk , i, j = D, K . However, the true

likelihood function, i.e. the PDF of yk conditioning on y1, . . . , yk−1,
is unknown and susceptible to faults. In the fault detection stage,
let LNk and LFk denote the true likelihood functions under normal and
faulty operations, respectively, i.e.

LNk = p (yk|y1, . . . , yk−1, the system is normal at step k)

LFk = p (yk|y1, . . . , yk−1, the system is faulty at step k) .

LNk and LFk are unknown and may not be Gaussian. Their
means and covariance matrices are denoted by µN

k ,µ
F
k and SNk , S

F
k ,

respectively and are unknown either. We explicitly distinguish
Li,jk , i = D, K , from LNk and LFk to emphasize the difference between
models and the physical system, especially when the accuracy of the
models are reduced purposely.

If we choose

Qi
k =

[
Q11,k 0
0 Qi

22,k

]
, i = D, K , and all k (12)

where Q11,k,Qi
22,k ∈ Rn×n are diagonal matrices, then direct com-

putation based on the UKF algorithm yields µ
i,D
k = µ

i,K
k , µi

k, and
Si,Dk = Si,Kk , Sik, i = D, K . Therefore Li,Dk (yk) = Li,Kk (yk) , Lik (yk)
for i = D, K , and all yk. Furthermore, if we choose themode transi-
tion probabilities defined in (9) to be πD,D

= πK ,K
= π0, then the

GPB-2 algorithm leads to the following fault detection criterion:

The fault is detected at step k ⇔ sKk ≥ TD ⇔
sKk−1L

K
k

sDk−1L
D
k

≥

π0
−(1−TD)
π0−TD

⇔ υk ≥ r where υk = ρk−1 + lk, ρk−1 = log
sKk−1
sDk−1

, lk =

log LKk
LDk
, and r = log π0

−(1−TD)
π0−TD

.

lk is the log likelihood ratio of the kinematic model to the
dynamic model. Therefore if (12) holds, the fault detection stage of
the HMM-FDI scheme is equivalent to the likelihood ratio test with
a time-varying threshold r − ρk−1, which depends on the ratio of
posterior mode probabilities at the previous step.

Let PMD
k and PFA

k denote the probabilities of missed detections
and false alarms at step k, respectively. Suppose that Rk = {yk ∈

Rn
|υk(yk) < r} is the set of outputs that do not trigger the alarm.

ℜ
C
k is the complement of ℜk. Then PMD

k and PFA
k are:

PMD
k = P (ℜk| the system has failed, y1, . . . , yk−1)

=

∫
ℜk

LFkdyk =

∫
1ℜkL

F
kdyk = EF 1ℜk


PFA
k = P


ℜ

C
k | the system is normal, y1, . . . , yk−1


=

∫
ℜ
C
k

LNk dyk = 1 − EN 1ℜk


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where 1S is the indicator function of the set S, i.e. 1S (yk) = 1 if
yk ∈ S, and 1S (yk) = 0 if yk ∉ S. E i

[·] and vari(·) denote the mean
and variance w.r.t. Lik, i = N, F . To further simplify the notations,
we use E i

k and V i
k for E

i
[lk] and vari(lk), i = N, F , respectively. Then

the following theorem gives theoretical upper bounds of the false
alarm and missed detection probabilities.

Theorem 1. If (12) holds, and π0 > TD > 0.5, then

PFA
k ≤


P̄FA
k , EN

k < r − ρk−1

1, EN
k ≥ r − ρk−1,

PMD
k ≤


P̄MD
k , EF

k > r − ρk−1

1, EF
k ≤ r − ρk−1

where

P̄FA
k = 1 −

1
2r2


(ρk−1 + EN

k − r)2 + VN
k + r2

−


[(ρk−1 + EN

k )
2 + VN

k ][(ρk−1 + EN
k − 2r)2 + VN

k ]


< 1 (13)

P̄MD
k = 1 −

1
2r2


(ρk−1 + EF

k − r)2 + V F
k + r2

−


[(ρk−1 + EF

k )
2 + V F

k ][(ρk−1 + EF
k − 2r)2 + V F

k ]


< 1. (14)

Proof. We derive (13) in detail and (14) can be established by the
same procedure.

Define Mk = {yk ∈ Rn
|υk(yk) < 0}. Since π0 > TD > 0.5, r is

positive. Therefore Mk ⊆ ℜk,


Mk
υkLNk dyk = EN


1Mk

υk

< 0, and

ℜk\Mk
υkLNk dyk ≥ 0. Besides, EN


1Mk


≤ EN


1ℜk


. Then

EN [υk] =

∫
Mk

υkLNk dyk +

∫
ℜk\Mk

υkLNk dyk +

∫
ℜ
C
k

υkLNk dyk

≥ EN 1Mk
υk

+ r


1 − EN 1ℜk


. (15)

Apply Cauchy–Schwarz inequality to EN

1Mk

υk

and rearrange

(15); then we obtain

ψ


EN

1ℜk


, rEN 1ℜk


+


EN

υ2
k


EN

1ℜk


+

EN

[υk] − r


≥ 0.

Note that ψ is a convex parabolic function of

EN

1ℜk


. It is

easy to show that ψ has two real roots and at least one of them is
negative. Therefore if EN

[υk] ≥ r , both roots are negative, implying
that ψ ≥ 0 for all 0 ≤ EN


1ℜk


≤ 1. On the other hand, if EN

[υk]
< r , thenwe can show thatψ has one positive rootwhich is always
less than 1. Under these circumstances, ψ ≥ 0 implies

0 ≤
1
2r


−


E

υ2
k


+


EN

υ2
k


− 4r


EN [υk] − r


≤


EN

1ℜk


≤ 1. (16)

Since PFA
k = 1 − EN


1ℜk


, EN

[υk] ≥ r implies PFA
k ≤ 1. In this

case, we say that the upper bound is trivial because it provides little
information about the false alarm probability. On the other hand,
if EN

[υk] < r , then (16) holds, implying PFA
k ≤ P̄FA

k < 1. �

Note that P̄FA
k is a function of EN

k and VN
k . It is straightforward

to show that the partial derivatives of P̄FA
k w.r.t. both EN

k and VN
k

are always nonnegative, i.e. P̄FA
k is a non-decreasing function of EN

k

and VN
k . Hence if EN

k ≤ ĒN
k and VN

k ≤ V̄N
k , then P̄FA

k


EN
k , V

N
k


≤

P̄FA
k


ĒN
k , V̄

N
k


. An upper bound of E i

k can be evaluated directly from
its definition as follows:

E i
k ≤

1
2


n log

λDn,k

λK1,k
+

trSik +
1µiD

k

2
λD1,k

−
trSik +

1µiK
k

2
λKn,k


,

i = N, F (17)

where λi1,k and λin,k are the minimum and maximum eigenvalues
of Sik respectively; 1µ

ji
k = µ

j
k − µi

k for i = D, K and j = N, F . ‖·‖
is the Euclidean norm and tr• is the trace of a matrix. Furthermore,
if LNk and LFk are Gaussian functions, then an upper bound of V i

k can
be found as follows [40]:

V i
k ≤


trSik

2  1
λD1,k

+
1
λK1,k

2

+ trSik

1µiD
k


λD1,k

+

1µiK
k


λK1,k

2

,

i = N, F . (18)

Substitute (17) and (18) into (13) and (14), and we can find the
theoretical upper bounds of the false alarm and missed detection
probabilities in terms of parameters of themodels, i.e.λi1,k, λ

i
n,k and

µi
k, i = D, K , and parameters of the physical system, i.e. trSjk and

µ
j
k, j = N, F .

Remark 2. (18) holds under the assumption that Lik is a Gaussian
function, i = N, F . However it is also possible to find an upper
bound of V i

k w.r.t. any other distributions [40]. We made the
Gaussian assumption because it facilitates the derivation of the
upper bound in terms of λi1,k and λ

i
n,k, i = D, K .

5. Experiments

5.1. Experimental setting

A two-joint manipulator was set up for experimental verifi-
cations. The schema and the photograph of the manipulator are
shown in the left and right sides of Fig. 2 respectively. Each link is
drivenby aDCmotorwith anoptical encodermounted on the shaft.
A motion controller and the HMM-FDI scheme are implemented
on a 32-bit floating point DSP chip (TMS320F28335). The sampling
time is 0.01 s. The dynamics of the DCmotors and the manipulator
can be lumped together as follows [34].[
θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2
θ7 + θ8 cos q2 θ7 + θ9

]
  

M̄(q)

[
q̈1
q̈2

]

+

[
−θ3q̇2 sin q2 −θ3(q̇1 + q̇2) sin q2
θ8q̇1 sin q2 0

]
  

C̄(q,q̇)

[
q̇1
q̇2

]

+

θ4 cos q1 +
g
l1
θ3 cos(q1 + q2)

g
l1
θ8 cos(q1 + q2)


  

Ḡ(q)

+

[
θ5q̇1 + θ6 sgn q̇1
θ10q̇1 + θ11 sgn q̇1

]
  

F̄(q̇)

=

[
v1

v2

]
(19)

where the control inputs v1 and v2 are armature voltages of the DC
motors within the range of ±24 V. θi, i = 1, 2, . . . , 11, are model
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Fig. 2. (Left) Schema of the two-joint manipulator. (Right) Photograph of the manipulator.
Table 1
Model parameters and their nominal values.

θ1 = [(I1 + m1l2c1 + m2l21)
1
r21

+ J1] 1
k1

0.3339

θ2 = (I2 + m2l2c2)
1

r21 k1
0.0048 θ3 = m2l1lc2 1

r21 k1
0.0054

θ4 = (m1lc1 + m2l1)g 1
r21

1
k1

2.1450 θ5 = b1 1
k1

2.8219

θ6 = fc1 1
r21

1
k1

1.5177 θ7 = (I2 + m2l2c2)
1

r22 k2
0.0240

θ8 = m2l1lc2 1
r22 k2

0.0280 θ9 = J2 1
r22 k2

0.00002

θ10 = b2 1
k2

1.2211 θ11 = fc2 1
r22

1
k2

1.6282

Table 2
Nomenclature of the model parameters.

I1, (I2) Moment of inertia of the 1st (2nd) link
m1, (m2) Mass of the 1st (2nd) joint
l1, (l2) Length of the 1st (2nd) joint
lc1, (lc2) Distance from the joint to the C.G. of the 1st (2nd) link
J1, (J2) Inertia of the motor’s rotor of the 1st (2nd) joint
r1, (r2) Gear ratio of the 1st (2nd) joint
k1, (k2) Lumped constants of motors in the 1st (2nd) joint
fc1, (fc2) Coulomb friction coefficients of the 1st (2nd) joint
b1, (b2) Combined viscous friction coefficients
g Gravity acceleration

parameters explained in Table 1. Their values are determined by
the system identification techniques [41], and are given in Table 1
too. SI unit system is adopted for all physical quantities of the
manipulator which are shown in Table 2.

A computed torque plus PID motion controller is implemented
on the manipulator such that the joint position follows a desired
trajectory. The controller has the following form:

v = M̄(q)
[
q̈d + Kv ˙̃q + Kpq̃ + KI

∫
q̃dt

]
+ C̄(q, q̇)q̇ + Ḡ(q)+ F̄(q̇)

where v = [v1, v2]
T and the definitions of M̄(q), C̄(q, q̇), Ḡ(q),

and F̄(q̇) are given in (19). Kv,Kp and KI are PID gain matrices
which are tuned manually to achieve a satisfactory performance.
The following values are used in the experiments:

Kp = diag(800, 500), Kv = diag(30, 15),
KI = diag(1.411, 0.3).

In the experiments, the desired trajectory in the joint space is

q1d(t) = −
π

2
+
π

4
(1 − e−2t3)+

π

9
(1 − e−2t3) sin(4t)

q2d(t) =
π

3
(1 − e−2t3)+

π

6
(1 − e−2t3) sin(3t).

Remark 3. If a closed-loop system consists of both a controller
and an FDI scheme, the FDI scheme is inevitably affected by
the controller. A robust controller reduces the fluctuation of the
system state caused bymodel uncertainties, external disturbances,
and faults as well, making the closed-loop system less sensitive
to faults. Moreover, some ‘‘soft faults’’, i.e. faults that are not
detrimental to the system stability and performance, may turn out
to be invisible from the input–output data due to the robustness
of the controller. However, integrated design of the controller
and the FDI scheme remains an open question and is beyond the
scope of this paper. To carry out experiments, we implement the
motion controller first and then manually tune the parameters of
theHMM-FDI scheme. Despite the non-optimal combination of the
controller and the FDI scheme, experimental results demonstrate
that tracking performance of the control system just deteriorates
slightly before the fault is detected and isolated. Hencewe consider
the performance of the HMM-FDI scheme satisfactory as far as the
manipulator’s safe operation is concerned.

In the fault detection stage, the model set consists of the dy-
namic model (2) and the kinematic model (6). In the fault isolation
stage, the model set is chosen to be {K(1), K(2), K(1, 2)} such that
simultaneous faults can be isolated. Since all combinations of faulty
joints are included in the lastmodel set, there is no need to refine it
during the isolation stage. The following parameters of the HMM-
FDI scheme are chosen: R = 0.0012I,Q11,k = 0.00262I,QD

22,k =

0.00232I,QK
22,k = 0.0032I, for all k, πD,D

= πK ,K
= 0.999, and

TD = 0.7, and TI = 0.75. Five types of faults in Table 3 are consid-
ered. Note that Type 5 fault is an incipient fault indicating a gradual
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Table 3
Five types of actuator faults.

Type Description

Type 1 The 1st joint is locked.
Type 2 Both joints are locked simultaneously.
Type 3 The 1st joint is locked first; then the 2nd joint is locked.
Type 4 The 1st joint loses 60% of its output torque.
Type 5 The output torque of the 2nd joint gradually decays to zero with time constant 0.15 s.
Fig. 3. The 1st joint is locked at t = 10 s. (a), (d) Joint positions: desired trajectory (solid line); real trajectory (dotted line). (b), (e) Joint velocities: desired velocities (solid
line); estimated velocities (dotted line). (c), (f) Armature voltages of both joints.
Fig. 4. (a) The fault occurs suddenly at t = 10 s. (b) Posterior mode probabilities of the dynamic model (solid line) and the kinematic model (dotted line). The fault is
detected at t = 10.04 s. (c) Posterior mode probabilities of K(1) (solid line), K(2) (dashed line) and K(1, 2) (dash–dot line). The faulty joint is isolated at t = 10.08 s.
loss of the actuator’s torque. All the others are abrupt faults. Type 2
is simultaneous faults, Type3 represents successivemultiple faults,
and all the others are single faults.

Note that it is difficult for the conventional MM–FDI methods
to model Type 4 and Type 5 faults since both the percentage of
loss and the time constant of the decay are unknown andmay vary
substantially. However, the HMM-FDI scheme can handle these
faults easily. Even if the models for these five types of faults are
established, the computational load is very demanding. Because
the model set contains at least six models (five fault models and
one normal model), the conventional MM–FDI methods have to
run at least 36 UKFs at each sampling time. On the other hand, the
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Fig. 5. Both joints are locked at t = 7.2 s. (a), (d) Joint positions: desired trajectory (solid line); real trajectory (dotted line). (b), (e) Joint velocities: desired velocities (solid
line); estimated velocities (dotted line). (c), (f) Armature voltages of both joints.
Fig. 6. (a) The fault occurs suddenly at t = 7.2 s. (b) Posterior mode probabilities of the dynamic model (solid line) and the kinematic model (dashed line). The fault is
detected at t = 7.23 s. (c) Posterior mode probabilities of K(1) (solid line), K(2) (dashed line) and K(1, 2) (dash–dot line). The faulty joint is isolated at t = 7.28 s.
HMM-FDI scheme uses at most three models in the model set and
runs at most 9 UKFs at each sampling time. Therefore the HMM-
FDI scheme not only extends the applicability of the conventional
MM–FDI methods, but also significantly improves the computa-
tional efficiency. Besides, the HMM-FDI scheme does not incorpo-
rate any particular fault information in the models. Hence these
five types of faults are all unexpected to the HMM-FDI scheme.
However, the HMM-FDI scheme is not restricted to detecting and
isolating only these five types of faults. More unexpected faults can
be detected and isolated with the HMM-FDI scheme unaltered.

5.2. Experimental results

• The 1st joint is locked (Type 1)
Suppose that at t = 10 s, the first joint is suddenly locked. The

results are shown in Figs. 3 and 4. Fig. 3 illustrates the positions,
velocities, and armature voltages of both joints. It can be seen
that the 1st joint is locked at t = 10 s while the 2nd joint operates
normally. Since the dynamics of both joints are coupled, the 2nd
joint is affected by the fault of the 1st joint. However, due to the
robustness of the controller, the tracking performance of the 2nd
joint just degrades slightly in the event of the locked 1st joint. It
can also be seen from Fig. 3(b), (e) that the estimated velocities are
close to the desired velocities, implying that the state estimators
included in the HMM-FDI scheme work well.

The posterior mode probabilities for fault detection and fault
isolation are shown in Fig. 4. During normal operation, the
posterior mode probability of the dynamic model is significantly
higher than that of the kinematic model. Therefore false alarms
caused by model uncertainties and external disturbances are
avoided. After the fault occurs, the posterior mode probability of
the kinematic model dominates. It takes 0.04 s to detect the fault.
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Fig. 7. The 1st joint is locked at t = 7 s and then the 2nd joint is locked at t = 13.5 s. (a), (d) Joint positions: desired trajectory (solid line); real trajectory (dotted line).
(b), (e) Joint velocities: desired velocities (solid line); estimated velocities (dotted line). (c), (f) Armature voltages of both joints.
Fig. 8. (a) The first fault occurs suddenly at t = 7.2 s and then the second fault occurs suddenly at t = 13.5 s. (b) Posterior mode probabilities of the dynamic model (solid
line) and the kinematic model (dashed line). The first fault is detected at t = 7.23 s. (c) Posterior mode probabilities of K(1) (solid line), K(2) (dashed line) and K(1, 2)
(dash–dot line). The first fault is isolated at t = 7.28 s. Then the second fault is isolated at t = 13.61 s.
Once the fault has been detected, the model set changes and the
fault isolation process starts. The posterior mode probability of
K(1) becomes highest. The time between the occurrence of the
fault and the time of the fault being isolated is 0.08 s.
• Both joints are locked simultaneously (Type 2)

Suppose that both joints are suddenly locked at t = 7.2 s.
The positions, velocities, and armature voltages of both joints are
shown in Fig. 5. Fig. 6 illustrates the posterior mode probabilities
for fault detection and fault isolation. The HMM-FDI scheme
detects and isolates the fault within 0.03 s and 0.08 s respectively.
• Both joints are locked successively (Type 3)

In this case, the 1st joint is locked at t = 7 s; then the 2nd
joint is locked at t = 13.5 s. Fig. 7 illustrates the positions, ve-
locities, and armature voltages of both joints. The posterior mode
probabilities for fault detection and fault isolation are shown in
Fig. 8. The fault of the 1st joint is detected and isolatedwithin 0.03 s
and 0.08 s respectively. At this moment, the model K(1) has the
highest probability since the 1st joint is locked. Then the 2nd joint
is locked at t = 13.5 s and the model with highest probability
switches to K(1, 2) at t = 13.61 s, indicating that both joints have
failed.

• The 1st joint loses 60% of its output torque (Type 4)
Suppose that the 1st joint suddenly loses 60% of its output

torque at t = 8 s. The experimental results are shown in Figs. 9 and
10.We can see fromFig. 9 that this type of fault hasminor effects on
the tracking performance because the controller has compensated
for the fault by increasing the armature voltage of the 1st joint after
the fault has taken place.
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Fig. 9. The 1st joint loses 60% of its output torque at t = 8 s. (a), (d) Joint positions: desired trajectory (solid line); real trajectory (dotted line). (b), (e) Joint velocities: desired
velocities (solid line); estimated velocities (dotted line). (c), (f) Armature voltages of both joints.
Fig. 10. (a) The fault occurs suddenly at t = 8 s. (b) Posterior mode probabilities of the dynamic model (solid line) and the kinematic model (dashed line). The fault is
detected at t = 8.07 s. (c) Posterior mode probabilities of K(1) (solid line), K(2) (dashed line) and K(1, 2) (dash–dot line). The faulty joint is isolated at t = 8.37 s.
The posterior mode probabilities are demonstrated in Fig. 10.
The fault is detected and isolated within 0.07 s and 0.37 s
respectively. Note that in the fault detection stage, the posterior
mode probability of the kinematic model is just above the
threshold TD when Type 4 fault has taken place. Some readers
may argue that if the loss of the output torque is less than 60%,
the fault may be undetected and the sensitivity to faults of the
HMM-FDI scheme is questionable. However the reason for not
detecting the slight loss of the output torque is that the controller
has alreadymade compensation for it. In such a case, a slight loss of
the output torque is usually regarded as model uncertainties due
to underestimation of actuator gains, and should be taken care of
by a robust controller. Instead, alarms triggered by small variations
of actuator gains may be considered as false alarms.
• The output torque of the 2nd joint gradually decays (Type 5)
Suppose that the output torque of the 2nd joint gradually

decays after t = 7 s. More precisely, let τ2 be the output torque
delivered by the controller to the 2nd joint, and τ2a be the actual
torque experienced by the 2nd link. For Type 5 fault, we assume
that τ2a (t) = e−0.15(t−7)τ2 (t) for t ≥ 7. Experimental results are
shown in Figs. 11 and 12.

Because the output torque of the 2nd joint gradually decays,
the controller gradually increases the armature voltage of the
2nd joint to compensate for the loss of the control torque. The
tracking performance degenerates slightly before the fault is
detected (see Fig. 11). Consequently the HMM-FDI scheme takes
a longer time to detect and isolate the fault (3.21 s and 3.51 s,
respectively). However we consider the detection and isolation
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Fig. 11. The output torque of the 2nd joint gradually decay, starting at t = 7 s. (a), (d) Joint positions: desired trajectory (solid line); real trajectory (dotted line).
(b), (e) Joint velocities: desired velocities (solid line); estimated velocities (dotted line). (c), (f) Armature voltages of both joints.
Fig. 12. (a) The ‘‘effective factor’’ of the 2nd joint. (b) Posterior mode probabilities of the dynamic model (solid line) and the kinematic model (dashed line). The fault is
detected at t = 10.21 s. (c) Posterior mode probabilities of K(1) (solid line), K(2) (dashed line) and K(1, 2) (dash–dot line). The faulty joint is isolated at t = 10.51 s.
Table 4
Summary of the experimental results.

Faults Detection delay (s) Isolation delay (s)

Type 1 0.04 0.08
Type 2 0.03 0.08
Type 3 0.03 0.08 (for the 1st fault)

0.11 (for the 2nd fault)
Type 4 0.07 0.37
Type 5 3.21 3.51

delay as acceptable since no significant performance deterioration
was observed during this delay time.

The experimental results are summarized in Table 4. The
detection delay and isolation delay refer to the time between the
occurrence of the fault and the time at which the fault is detected
and isolated, respectively. For the incipient fault (Type 5), the
occurrence time of the fault refers to the time when the output
torque starts decaying. It can be seen that all abrupt faults (Type
1–4) were detected and isolated successfully and immediately
after their occurrences. Although the detection delay and the
isolation delay for the incipient fault (Type 5) are longer, the
tracking performance just deteriorates slightly when the fault is
isolated. Therefore safe operation of the robot manipulator is still
preserved.

6. Conclusion

In this paper, we proposed the HMM-FDI scheme as a solution
to the model set design problem, which is the most challenging
part of the conventional MM–FDI approaches. The HMM-FDI
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scheme incorporated only a small number of models which are
mixtures of the dynamic and kinematic equations of the robot
manipulator. Therefore it is much more computationally efficient
than conventional MM–FDI methods. In addition, the HMM-FDI
scheme is applicable to various types of unexpected actuator faults,
including abrupt faults, incipient faults, and simultaneous faults.
Experiments were conducted on a two-joint robot manipulator.
The experimental results verified the good performance of the
HMM-FDI scheme.
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