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a b s t r a c t

The conventional force-directed methods for drawing undirected graphs are based on

either vertex–vertex repulsion or vertex–edge repulsion. In this paper, we propose a new

force-directed method based on edge–edge repulsion to draw graphs. In our framework,

edges are modelled as charged springs, and a final drawing can be generated by

adjusting positions of vertices according to spring forces and the repulsive forces,

derived from potential fields, among edges. Different from the previous methods, our

new framework has the advantage of overcoming the problem of zero angular resolution,

guaranteeing the absence of any overlapping of edges incident to the common vertex.

Given graph layouts probably generated by previous algorithms as the inputs to our

algorithm, experimental results reveal that our approach produces promising drawings

not only preserving the original properties of a high degree of symmetry and uniform

edge length, but also preventing zero angular resolution and usually having larger

average angular resolution. However, it should be noted that exhibiting a higher degree

of symmetry and larger average angular resolution does not come without a price, as

the new approach might result in the increase in undesirable overlapping of vertices as

some of our experimental results indicate. To ease the problem of node overlapping, we

also consider a hybrid approach which takes into account both edge–edge and vertex–

vertex repulsive forces in drawing a graph.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

As graphs are known to be one of the most important
abstract models in various scientific and engineering
areas, graph drawing (or information visualization in a
broader sense) has naturally emerged as a fast growing
research topic in computer science. Among various
graph drawing techniques reported in the literature, the
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so-called force-directed methods (see, e.g., [1,3,4,7,11,13,
15,18,25,28]) have received much attention and have
become very popular for drawing general, undirected
graphs. In such a framework, a graph is viewed as a
system of particles with forces acting between the parti-
cles, and then a good configuration or drawing of the
particles could be generated with locally minimal energy,
i.e., the sum of the forces on each particle is zero.

Generally speaking, the notions of repulsions in the
setting of conventional force-directed methods fall into
two categories, namely, vertex–vertex repulsion and vertex–

edge repulsion. First, Eades [4] presented a vertex–vertex

repulsion model in which vertices are replaced with charged
steel rings and edges with springs to form a mechanical
system. The equilibrium configuration, in which the sum
of repulsive forces due to rings and attractive forces due
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to springs is zero, normally results in a good drawing.
Frunchterman and Reingold [11] subsequently presented
an effective modification of the model.

In subsequent studies, vertex–edge repulsion models have
been proposed to prevent a vertex from being placed too
close to an edge, overcoming a potential shortcoming as a
result of using the vertex–vertex repulsion model. Davidson
and Harel [3] used the paradigm of simulated annealing,
suited for combinatorial optimization problems, to draw
graphs. Their method tries to find an optimal configuration
according to a cost function inclusive of a measure for the
distance between each pair of vertex and edge. This mea-
sure penalizes the vertex and edge that are too close to each
other. In addition, Bertault [1] presented a force-directed
method based on vertex–edge repulsion to ensure that two
edges cross in the final drawing if and only if they cross in
the initial layout as well.

Aesthetic criteria specify graphic structures and proper-
ties of drawing, such as minimizing number of edge cross-
ings or bends, minimizing area, and so on (e.g., see [24]), but
the problem of simultaneously optimizing those criteria is,
in many cases, NP-hard. Among important aesthetic criteria,
angular resolution refers to the smallest angle formed by two
neighboring edges incident to the common vertex in a
straight-line drawing, and constructing straight-line draw-
ings of huge graphs with large angular resolution is very
important in visualization applications and, in addition, the
design of optical communications networks [6].

Given a drawing of graph G, an angle formed by the two
adjacent edges incident to a common vertex v is called an
angle incident to vertex v. With respect to a vertex v, the
angular resolution is the smallest angle incident to vertex v.
The angular resolution of a drawing of G is defined as the
minimum angular resolution among all vertices in G. The
average angular resolution of a drawing of G is defined as
the average of the angular resolutions of all vertices in
G. The (average) angular resolution of a graph drawing is in
the range of [01, 1801]. It is worthy of pointing out the
fundamental difference between angular resolution and
average angular resolution. The angular resolution only
concerns the minimum angle in the drawing, while the
average angular resolution deals with angular resolutions of
all the vertices.

The main aesthetic criteria concerned in this paper are
symmetry, uniform edge length, and maximization of (aver-
age) angular resolution. Theoretical and experimental results
(e.g., see [5,4]) have suggested that force-directed methods
usually enjoy the merit of producing graph layouts with a
high degree of symmetry and uniform edge length. However,
their graph layouts may have the problem of zero angular

resolution, i.e., there exist at least two of the edges incident to
the common vertex overlapping, resulting in a bad drawing
with edge–edge and vertex–edge crossings simultaneously.
Note that the simulated annealing graph drawing method
[3] additionally considering a term of punishing zero angular
resolution can be applied, but it is not efficient and only can
be applied to moderate-size graphs.

In this paper, a new force-directed method using the
concept of edge–edge repulsion based upon the theory of
potential fields is presented to draw graphs without zero
angular resolution. The concept of potential fields has
already found applications in a variety of areas in com-
puter science and engineering, such as path planning [2]
and drawing of graph with nonzero-sized vertices [22],
among others. In our setting, the repulsive forces applied
to an edge are caused by the edge being present in the
potential field induced by its neighboring edges. Although
Chuang and Ahuja [2] have derived analytically formulas
of repulsive forces between two charged edges, respec-
tively, they are unnecessarily complicated to implement
practically. Therefore, as we shall see later in our deriva-
tion, the formulas of our edge–edge repulsion are very
simple and can be implemented easily.

Given a reasonably nice graph layout probably gener-
ated by one of those force-directed methods reported in
the literature as the input of our algorithm, the experi-
mental results reveal that our approach is capable of
producing a drawing not only preserving a high degree
of symmetry and uniform edge length but also preventing
zero angular resolution and usually having larger average
angular resolution. Like many aesthetic criteria which are
often in conflict with one another, exhibiting a higher
degree of symmetry and larger average angular resolution
does not come without a price, as the new approach
might result in the increase in undesirable overlapping of
vertices as some of our experimental results indicate.
To ease such a problem we also propose a hybrid
approach which takes into account both edge–edge and
vertex–vertex repulsive forces in drawing a graph.

Conventional force-directed methods cannot guarantee
the generation of nice drawings for all kinds of graphs
because they might not be able to reach global minimal
configurations, i.e., the repulsive forces among some vertices
(rings) might be too weak or too strong. Fortunately, some
local minimal problems can be resolved by adjusting para-
meters of the force models. Our approach, based on the
model of edge–edge repulsion, might not be able to escape
from the occurrence of a local minimal solution in general,
because we only consider the repulsive force between
neighboring edges locally. As a result, taking as an input a
reasonably nice drawing is very helpful for our algorithm to
converge to a solution corresponding to a drawing meeting
the aesthetic criteria for which our design is targeted.

The rest of this paper is organized as follows. Section 2
gives some preliminaries. In Section 3, our approach is
introduced in depth. Section 4 gives a variety of experi-
mental results. Finally, a conclusion is given in Section 5.

2. Preliminaries

In this section, we give formal definitions for the
problem at hand, as well as the necessary background in
force-directed methods.

2.1. Basic definitions

A graph is a pair G¼ ðV ,EÞ where V is the set of vertices
and EDV � V is the set of edges. A drawing of a graph G

on the plane is a mapping D from V to R2, where R is the
set of real numbers. That is, each vertex v is placed at
point D(v) on the plane, and each edge ðu,vÞ is displayed
as a straight-line segment connecting D(u) and D(v).
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2.2. Defining the problem

The drawing problem considered in this paper is
addressed as follows. Suppose we begin with an initial
‘‘reasonably nice’’ drawing of a graph, one is required to
produce a ‘‘nicer’’ drawing of the graph with respect to the
following aesthetic criteria: nonzero angular resolution,
maximization of (average) angular resolution, symmetry,
uniform edge length, and the minimization of the whole
drawing size. In addition, the efficiency of the drawing
algorithm is also factored into our design. Note that our
initial input drawing is a ‘‘reasonably nice’’ drawing, which
may be generated by a pervious force-directed method or
drawn manually. That is, our drawing method can be
regarded as a fine-tuning postprocessing stage of the
existing force-directed methods.

2.3. Previous work on force-directed methods

The graph drawing algorithm of Tutte [26,27] described
by pure mathematics can be regarded as the earliest force-

directed method. In the Tutte model, the set of vertices is
divided into two sets, a set of fixed vertices and a set of free
vertices. By nailing down the fixed vertices as a strictly
convex polygon and then placing each free vertex at the
barycenter of its neighbor in each iteration, the model can
yield a nice drawing.

Subsequently, since the introduction of the simple
force-directed method by Eades in [4] (a.k.a., spring

algorithm), there has been a number of variants of force-
directed approaches reported in the literature. Generally
speaking, such modifications fall into the following two
categories. One has to do with altering the repulsive force
and the spring force models, while the other attempts to
manipulate the local minima problem resulting from the
equilibrium between attractive and repulsive forces.

The model introduced by Eades uses logarithmic strength
springs in place of Hooke’s law for spring forces fa, and the
inverse square law for repulsive forces fr as follows:

f aðduvÞ ¼ c1 � log
9duv9

c2

� �� �
duv

9duv9
, ð1Þ

f rðduvÞ ¼�
cr

9duv9
2

 !
duv

9duv9
, ð2Þ

where c1 and cr are scaling constants for spring forces and
repulsive forces, respectively, c2 is the given spring natural
length, and duv is the vector from vertex u to vertex v.
Besides above considering repulsive forces between every
vertex–vertex pair, the model of considering repulsive forces
between every vertex–edge pair [1] also was developed to
preserve the edge crossing property. Subsequently, a number
of variations of spring algorithms have been proposed to
improve the performance as well as the drawing quality.
Notable examples include [3,7,11,18,25]. The algorithm in
[11] uses the following as alternate spring and repulsive
force formulas: f aðduvÞ ¼ ð9duv9

2
=kÞduv=9duv9 and f rðduvÞ ¼

�ðk2=9duv9Þduv=9duv9, respectively, where k is a constant.
As it turns out, this change makes the algorithm more
efficient than the original spring algorithm. In addition,
a parameter called temperature is used to terminate the
algorithm. Every vertex initially has a temperature value
and the value decreases by computing some cooling function
at the end of each iteration. Until all vertices cool down to
some constant value, the algorithm stops to attain a nice
drawing. In a similar work, the approach of GEM [7] makes
use of the history of the moving trajectory of all vertices to
compute the temperature.

As the algorithm in [3] indicates, the simulated anneal-
ing [19] approach also plays a constructive role in graph
drawing. The basic idea is as follows. Given an evaluation
function consisting of a set of criteria, e.g., number of edge
crossings, the temperature of every vertex decreases at
the end of each iteration, but the temperature of a vertex
may increase when the return value of the evaluation
function for the new position of the vertex is worse than
that regarding the original position of the vertex. The
algorithm terminates when the temperature of every vertex
is below some predefined value. In addition, Kamada and
Kawai [18] have used a potential formula to replace the force
formula, and the optimization procedure tries to minimize
the total energy of the system. Sugiyama and Misue [25]
have considered the force-directed method based on mag-
netic forces. Their method replaces some or all of the edges
of a graph by magnetized springs, and gives a global
magnetic field that acts on the springs. It gives three basic
types of magnetic fields (i.e., parallel, radial, and concentric)
to control the orientation of the edges, and hence can
generate drawings with different aesthetic criteria.

In the past, the force-directed techniques only can
handle moderate-sized graphs (about 50 vertices).
Recently, the multi-scale approaches [13,15,28] make them
successful with much larger graphs (over 10,000 vertices),
and an overall experimental comparison is given in [14].
An implementation of the multi-scale force-directed draw-
ing approaches on GPU can be found in [8]. In addition, the
force-directed methods in the multi-dimensional Euclidean
space and Non-Euclidean space can be found in [12] and
[20], respectively.

In the literature, there have existed a lot of applications
on force-directed methods, e.g., the visualization of distrib-
uted mobile object environments [9], online dynamic graph
drawing [10,17], drawings of metro maps [16], drawings of
time-varying graphs [21], and so on. It is worthy of pointing
out that if the drawing of each iteration of force-directed
methods is rendered, the animated process allows the user
to predict the dynamics of the drawing, which meets the
requirement in information visualization [23].

3. Our force-directed graph drawing method

Similar to other force-directed methods, our method
involves two parts, i.e., the force-directed model and the
optimal algorithm introduced in Section 3.1 and Section
3.2, respectively.

3.1. Model of edge–edge repulsion

Our force-directed method with edge–edge repulsion is
based upon the idea of replacing edges by charged springs,
as opposed to charging vertices as was done in [4]. The closer
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two adjacent charged edges are, the stronger the repulsive
force between them becomes. Intuitively, larger repulsive
forces should make the included angle between two neigh-
boring edges wider. In our design, in addition to stretching
the included angle, the repulsive forces also contribute to
increasing the lengths of the two edges. Thus the positions
acted by repulsive forces are set at the end points of the
incident edges as Fig. 1 explains. On the other hand, spring
forces pull vertices closer when spring lengths are longer
than their natural spring lengths. Finally, a drawing without
zero angular resolution is generated when the corresponding
model reaches an equilibrium between those repulsive
forces and spring forces. With a given embedding, two edges
are said to be neighboring edges if they share a common
endpoint, and one is the successor of the other along a
clockwise or counter-clockwise rotation. (See AB and AC

in Fig. 1.)
In what follows, the formulas for capturing spring

forces and repulsive forces are described. The formula of
a spring force is based upon the classical spring embedder
model [4], which uses Eq. (1) as the spring force formula.

The formulas of the repulsive force due to two charged
edges can be derived from the theory of potential fields. The
reader is referred to [2] for more about potential fields as
well as some of the detailed derivations of exact formulas.
However, those formulas derived in [2] appear to be a bit
complicated and consequently require special care when
implementing such a method. From a practical viewpoint,
such a complication may not be needed for the purpose of
drawing graphs. Therefore, by observing some characteris-
tics of edge–edge repulsion and experimental results of [2],
we are able to derive a simplified version of repulsive forces.
Experiments based on the model reveal encouraging and
promising results, as reported in the next section.

The key in our edge–edge repulsion model is to
express the repulsive forces between two neighboring
edges solely in terms of the lengths of the two edges and
the included angle between the two edges. To better
explain what this means, consider Fig. 1(b) as an example.
It is easy to observe that the magnitudes of the repulsive
force due to the two edges AB and AC are
1.
Fig
on
Positively correlated with the lengths of AB and AC ;

2.
 Negatively correlated with the angle between AB and AC .

Figs. 2(a) and (b) are curves, based upon the implementa-
tion of formulas derived in [2], displaying how the
. 1. A graph with three vertices A, B, and C and two edges modelled by charg

AB and AC , respectively. (b) The positions acted by repulsive forces f1 and f
magnitude of the repulsive force between AB and AC

(see Fig. 1(b)) is related to the length (Fig. 2(a)) and the
included angle (Fig. 2(b)) of two uniformly charged edges.
As Fig. 2(a) indicates, the relationship between the mag-
nitude of force and the total length of edges is nonde-
creasing and concave. Intuitionally, the magnitude should
approach to zero as edge lengths approach to zero, and
flatten out as edge lengths approach to infinity. It can be
captured by an arctangent function on ð0,1Þ, and thus the
component 9f 9e of magnitude of the repulsive force due to
the two edge lengths can be simplified as follows:

9f 9e ¼ c3 tan�1 9AB9
c4

 !
þtan�1 9AC9

c4

 ! !
, ð3Þ

where 9AB9 and 9AC9 are the lengths of AB and AC ,
respectively; c3 and c4 are constants to control the height
of the approaching horizontal line and the scale of the
horizontal axis, respectively.

Fig. 2(b) shows the relationship between the angle
included by AB and AC and the magnitude of force. It
turns out that the curve is positive, nonincreasing and
convex. The magnitude approaches to infinity as the
included angle approaches to zero. On the other hand,
the magnitude slowly flattens out as the included angle
grows. Such a behavior can be captured by a cotangent

function on ð0,p=2�, and hence the component 9f 9y of
magnitude of the repulsive force due to the included
angle can be set as follows:

9f 9y ¼ c5 cot
y
2

� �
, ð4Þ

where c5 is a constant to control the scale of the vertical
axis, and y is the angle included by AB and AC . Note that
Fig. 2(b) shows that the magnitude value at p is not zero,
which, in fact, should be regarded as the contribution to
edge lengths. In addition, for avoiding the appearance of
values near infinity, 9f 9y is set to some fixed value when y
is below certain small cutoff value.

Therefore, the total magnitude 9f 9 can be computed as
the sum of Eqs. (4) and (5) in the following:

9f 9¼ 9f 9eþ9f 9y: ð5Þ

In what follows, to compute the orientation of repul-
sive force, consider an angle included by two edges AB

and AC as shown in Fig. 3. There exist two angles included
by the two edges, and the angle with degree smaller than
p is denoted as y. In the process of computing orientation,
however, we need to determine which one is y, and which
ed springs. (a) The force model where f1 and f2 are repulsive forces acting

2 should be set at the end points B and C of incident edges of vertex A.



Fig. 3. Illustration of orientation of the repulsive force due to two edges

AB and AC with an included angle y.
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Fig. 2. Curves displaying the relationships between the magnitude of force and (a) the sum of edge lengths (the tendency between the magnitude of force

and the length of each edge is similar), and (b) the included angle of two uniformly charged edges. (c) The experimental results designed for measuring

the orientation of force. Consider a variety of 9AC 9 : 9AB9 to plot a versus y, where a denotes the acute angle included by f1 and AB.
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edge is its right or left included edge. Assume that uAB and

uAC are unit vectors of AB
�!

and AC
�!

, respectively, and uM is
the unit vector of the sum of them. Based upon uM and
one of uAB and uAC, Proposition 1 by using the formula of
cross product below allows us to judge which is the right

or left included edge of the smaller included angle y, and

then assign the right (resp., left) edge denoted as AB

(resp., AC ), and its corresponding unit vector as uAB (resp.,
uAC) accordingly.

Proposition 1. Assume that uAC ¼ ða,bÞ and uM ¼ ðc,dÞ, AC

is the left edge of the included angle y if and only if

ðc � b�a � dÞ40.

Because the angle included by uAB and uM is equal to
y=2, y=2 can be uniquely computed by the inner product
formula of cosine function as follows:

y
2
¼ cos�1 uM � uAB

9uM99uAB9

 !
¼ cos�1ðuM � uABÞ,
where 9uM9 and 9uAB9 are lengths of the unit vectors uM

and uAB, respectively, and both equal one.
f1 and f2 denote the repulsive forces acting at vertices B

and C, respectively. a denotes the acute angle included by

f1 and AB
�!

. In view of the curve shown in Fig. 2(c), it is

interesting to observe that y and a appear to be correlated
with each other according to the following simple linear
equation:

aþ y
2
¼
p
2

,

where a equals p=2 when y is zero, and a equals zero

when y is p. That is, a is the complementary angle of y=2,
and hence, the orientation uf 1

of f1 is perpendicular to uM,

i.e., g¼ p=2 in Fig. 3.
Therefore, uf 1

can be computed by rotating uM clock-
wise with degree of p=2 as follows:

uf 1
¼

f 1

9f 9
¼ R
�p
2

� �
� uM ¼

cos
�p
2

� �
�sin

�p
2

� �
sin
�p
2

� �
cos
�p
2

� �
0
B@

1
CA � uM

¼
0 1

�1 0

� �
� uM , ð6Þ

where Rð�p=2Þ is the rotation matrix of �p=2.
Therefore, f1 is a vector with magnitude 9f 9 in Eq. (5)

and orientation uf 1
in Eq. (6) computed as follows, and f2

equals �f 1:

f 1 ¼ 9f 9uf 1
: ð7Þ
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Note that the repulsive force in Eq. (7) has the
advantage that f1 is determined only by three parameters
AB, AC , and y, facilitating a simple implementation of our
drawing algorithm based upon edge–edge repulsion.

3.2. Graph drawing algorithm

Our drawing algorithm is sketched in Algorithm 1. The
algorithm mainly includes three parts: for each vertex,
first, Lines 6–15 compute the repulsive forces due to each
pair of neighboring edges incident to the vertex; second,
Lines 16–20 compute the spring force of each edge; third,
Lines 21 draws the graph according to certain scale of the
forces acting at each vertex.

Algorithm 1 EERepulsion (a nice drawing of graph

G¼ ðV ,EÞ).
Input: a reasonably nice drawing of G.

Output: a nice drawing without zero angular resolution.

Require: tmpForce½9V9� stores temporary forces of all vertices;

newPos and oldPos record the new and old positions of all vertices,

respectively.
1:
 assign initial locations of vertices in V
2:
 while convergeda1 or the maximum iteration number is

achieved do

3:
 converged’1
4:
 oldPosn’newPosn
5:
 initialize tmpForce½9V9� as zeros matrix
6:
 for each vertex v in V do

7:
 if the degree of vertex v is at least two then

8:
 determine the neighboring order of adjacency edges of

vertex v by using outer product
9:
 for each pair (ei,ej) where edge ei ¼ ðv,viÞ and edge

ej ¼ ðv,vjÞ are neighboring edges incident to v, and ei is the right

edge of their included angle with smaller degree do

10:
 calculate the repulsive force f1 at edge ei due to edge ej

according to Eq. (7)
11:
 tmpForce½vi�’tmpForce½vi�þ f 1
12:
 tmpForce½vj�’tmpForce½vj��f 1
13:
 end for

14:
 end if

15:
 end for

16:
 for each edge e¼ ðvi ,vjÞ in E do
17:
 calculate the spring force fa of edge e according to Eq. (1)
18:
 tmpForce½vi�’tmpForce½vi�þ f a
19:
 tmpForce½vj�’tmpForce½vj��f a
20:
 end for

21:
 simultaneously move each vertex according to minðc6 �

tmpForce½9V9�,tÞ where c6 (resp., t) is a constant to control the

magnitude (resp., upper bound) of movement, and then save

new positions to newPosn
22:
 if JnewPosn�oldPosnJ4E

23:
 converged’0
24:
 end if

25:
 end while
In Algorithm 1, parameter c6 (resp., t) are used to control
the magnitude (resp., upper bound) of movement of every
vertex, NewPos and OldPos are data structures used to record
the new and old positions of all vertices, respectively, and E
in line 22 is the tolerance of convergence for force which is
usually a very small positive number. Remind that para-
meters c1 and c2 in Eq. (1) (logarithmic spring force formula)
are used to control the force magnitudes and natural lengths
of springs, respectively; parameters c3 and c4 in Eq. (3) (the
magnitude of repulsive force due to two edge lengths) are
used to control the height of the approaching horizontal line
and the scale of the horizontal axis of the arctangent
magnitude function, respectively; parameter c5 in Eq. (4)
(the magnitude of repulsive force due to the included
angle) is used to control the scale of the repulsive force
magnitude due to the included angle. In addition, the flag
converged is used to control the convergence of the
algorithm. Note that the algorithm can reach convergence
if parameters c1–c6 and E are given appropriately.

Assuming that D is the maximum degree of vertices,
the algorithm in each iteration takes time complexity
Oð9V9D log DÞ to compute repulsive forces between each
pair of neighboring edges, Oð9E9Þ to compute spring forces,
and Oð9V9Þ to draw graph; hence, the time complexity of
the algorithm is Oð9V9D log Dþ9E9Þ. In order to evaluate
the total number of iterations experimentally, we execute
our algorithm on a number of graphs (9V9r10;000),
which have reasonably nice drawings initially. The experi-
mental evaluation shows that more than 1000 iterations
of our algorithm do not have much improvement on the
quality of the final drawing.

It should be noticed that the input of our algorithm
must be restricted to a reasonably nice graph layout
because our approach based on the model of edge–edge
repulsion that only locally considers repulsive force of
each pair of neighboring edges does not avoid the occur-
rence of any kind of local minimal problems.

4. Implementation and experimental results

Based on the formulas and algorithm detailed in the
previous sections, we develop a prototype system for
drawing undirected graphs. The implementation is in Cþþ
using OpenGL library, and runs on an Intel Core 2 Duo
E8400 3.00 GHz PC with memory of size 2.00 GB running
Windows XP. In this section, we detail the implementation
of our algorithm, and give some experimental results for
some simple graphs and then huge graphs.

4.1. Implementation

The analysis on the convergence and the adjustments
of parameters in force-directed methods has been
discussed a lot in previous works (e.g., see [3,5,15]).
On theoretical aspect, Eades and Lin [5] have shown that
the general framework of force-directed methods can lead
to a stable drawing in which many symmetries are
displayed. In fact, our force-directed approach only modi-
fies the force formulas, but does not have too much
modification on the optimized procedure of conventional
force-directed algorithms. Therefore, like [5], our
approach also can be shown to lead to a stable drawing,
under appropriate setting of parameters.

In Algorithm 1, it should be noticed that the setting of
c1–c6 and E influences not only the running time but also
the convergence of our approach and the quality of the
final drawing. In the following, we briefly explain how to
set those parameters in Algorithm 1 to achieve conver-
gence. W.l.o.g., we consider that the input graph is
connected; thus, each vertex must be exerted by nonzero
spring and repulsive forces. That is, if the total force acted at
a vertex is nonzero, then the vertex moves either inward
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into or outward from the other vertices of the graph. Since
parameters c6 (resp., t) control the magnitude (resp., upper
bound) of movement, the ranges in which vertices move are
bounded. That is, if those parameters are set smaller, then
the movement range of vertices is smaller. Note that
parameter E controls the tolerance of convergence, so under
larger E vertices do not move in smaller movement range.
As a result, smaller c6, t, as well as larger E narrow the
movement range of vertices, so our algorithm can achieve
convergence if the movement range are set appropriately.

In fact, given certain setting of parameters, the user
can easily verify whether the parameter setting achieves
convergence or not by observing the differences of the
drawings generated by some consecutive iterations of
Algorithm 1. If the algorithm under a given parameter
setting is divergent, the user can judge the divergence
type to adjust the parameters so that the algorithm
becomes convergent. The possible divergence types are
stated as follows:
1.
Fig
49-
Bigger movement magnitude parameter c6 makes
vertices move farther so that the final drawing may
be generated faster and hence the total running time
may be shorter. Note that t controls the upper bounds
of the movement. However, if some vertices move
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. 4. Experimental results on some simple graphs (a) tree_22: a 22-vertex tree, (b)

vertex mesh, (f) Petersen: the Petersen graph, (g) hypercube_3: a 3-hypercube a
back and forth between two consecutive drawings so
that the convergent positions of these vertices cannot
be determined, then it implies that the value of c6

should be decremented.

2.
 Bigger force convergence tolerance E can make the

algorithm achieve the convergence of forces faster.
However, if we observe that a further iteration exe-
cuted at the final drawing can obtain a drawing with
better placements of vertices, then it implies that the
value of E should be decremented.
3.
 As for the setting of parameters c1–c5, the quality of
the final drawing can be modified by adjusting those
parameters according to their implication in the design
of force formulas. Once one of those parameters is
needed to be increased to improve the drawing qual-
ity, the value might be set too large, which makes the
drawing divergent. In this situation, parameter c6

should be decremented appropriately.

4.2. Experimental results for simple graphs

Some of the experimental results for a variety of simple
graphs using the classical method [4] and our method are
presented in Figs. 4 and 5, and their corresponding statistics
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tri_mesh_9: a 9-triangle mesh, (c) onion, (d) pentagon, (e) mesh_49: a

nd (h) hypercube_4: a 4-hypercube.
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are shown in Table 1. From Table 1, those graphs are simple
(with at most 64 vertices); both the classical and our
methods under our setting of parameters are executed very
efficiently (the total running time for each graph using
either method is less than 0.5 s); the number of iterations
for each graph using our method is less than 1000.

For convenience, the ‘‘arrow’’ sign in each case in Figs. 4
and 5 means that the concerned method takes the source of
the ‘‘arrow’’ sign as the input, and produces the final drawing
at the sink of the ‘‘arrow’’ sign. That is, the classical method
takes the initial drawing as the input (see each case in Figs. 4
and 5), while our method takes either the drawing generated
by the classical method (see each case in Figs. 4 and 5 except
for Fig. 4(c)) or the initial drawing (see Fig. 4(c)) as the input.
In addition, for explanatory convenience, the drawing pro-
duced by our (resp., the classical) method is said our (resp.,
the classical) drawing in the rest of this paper.

We can observe from each case in Figs. 4 and 5 that our
method usually preserves the original properties of a high
degree of symmetry and uniform edge length. As shown
in Fig. 4(a), our method has the capacity of guaranteeing
the drawing of a 22-vertex tree with evenly angular
resolution, but the classical method may not. As shown
in Figs. 4(b) and (c), given stronger springs, our method
may reach the situation of the drawing with the largest
angular resolution, but the classical method may not.

As shown in Figs. 4(d) and (e), although the classical
method may already produce a nice drawing, our method
may further improve its average angular resolution (the
information can be found in Table 1). Note that in Fig. 4(e),
the classical drawing has larger angular resolution but
smaller average angular resolution than our drawing, in
which almost all the angles incident to each vertex perform
well except for those incident to the vertices on the
boundary of the drawing. Hence, it is concluded that our
method may lack the capacity of drawing the vertices on the
boundary well. We put this as the future work.

A special case is shown in Fig. 4(f), in which the
drawing using our method given stronger springs (our-
s) results in the central star spinning, and hence appears
more compact and has more uniform edge length, though
the (average) angular resolution is smaller. That is, we
observe in this case that there is a trade-off between the
area and the angular resolution.



Table 1
Statistics on the experimental results of simple graphs.

Graph name 9V9 9E9 Method StdDev

AvgLen

AngResl AvgAngResl Number of

iterations

Total running

time (s)

tree_22 (Fig. 4(a)) 22 21 Classical 0.12 24.93 45.67 1234 0.172

Our 0.11 113.10 117.07 378 0.016

tri_mesh_9 (Fig. 4(b)) 11 19 Classical 0.15 40.43 58.82 269 o103

Our 0.01 59.23 60.08 366 0.016

onion (Fig. 4(c)) 18 30 Classical 0.06 0.13 63.06 345 0.031

Our 0.05 11.38 124.24 673 0.046

pentagon (Fig. 4(d)) 10 30 Classical 0.29 20.45 55.71 72 o103

Our 0.10 49.85 70.06 36 o103

mesh_49 (Fig. 4(e)) 49 84 Classical 0.21 80.88 86.90 513 0.359

Our 0.02 78.17 88.63 265 0.046

Petersen (Fig. 4(f)) 10 30 Classical 0.29 35.79 44.66 76 o103

Our-w 0.29 35.98 44.99 22 o103

Our-s 0.14 25.16 30.58 120 o103

cube (Fig. 4(g)) 8 24 Classical 0.13 48.40 62.10 83 o103

Our 0.00 60.00 75.00 35 o103

hypercube_4 (Fig. 4(h)) 16 64 Classical-w 0.35 2.28 24.60 163 0.016

Classical-s 0.00 33.30 39.17 505 0.032

Our 0.02 43.14 44.07 25 o103

hypercube_4_plus (Fig. 5(a)) 17 80 Classical 0.20 0.09 25.00 117 0.078

Our 0.23 14.24 23.27 397 0.046

hypercube_5 (Fig. 5(b)) 32 160 Classical 0.00 32.80 35.78 610 0.187

Our 0.01 35.34 38.04 295 0.062

hypercube_6 (Fig. 4(c)) 64 384 Classical 0.01 19.98 21.66 380 0.469

Our 0.01 29.30 29.70 314 0.125
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Figs. 4(g)–(h) and 5(a)–(c) draw the Z-hypercubes1

with Z¼ 226. Because the model of edge–edge repulsion
does not restrict at least two vertices coinciding, our
method may produce drawings with more symmetries.
Especially in Figs. 4(g), 5(b) and (c), although our draw-
ings are improper (noting that a drawing is improper if
there exist at least two vertices overlapping), our method
has center symmetry with clear displays, while the
classical method only has axial symmetry with somewhat
confused displays. As a consequence, it can be observed
from the above that the drawings with more symmetries
may be in conflict with the aesthetic criterion of avoiding
vertex–vertex overlapping.

In practice, the improper drawings may be prevented by
applying a hybrid model of edge–edge repulsion and
vertex–vertex repulsion, which simultaneously considers
three kinds of forces: the edge–edge repulsive force f1 for
each pair of neighboring edges according to Eq. (7), the
spring force fa of each edge (spring) according to Eq. (1), and,
different from the original model of edge–edge repulsion,
the vertex–vertex repulsive force fr for each pair of vertices
(rings) according to Eq. (2). That is, fr is added to the model
of edge–edge repulsion, which only considers f1 and fa
originally. By taking the improper drawings generated by
our approach as the input of the algorithm based on the
1 Introduction to hypercubes: http://mathworld.wolfram.com/

Hypercube.html
hybrid model, vertex–vertex overlapping would be avoided
due to the vertex–vertex repulsive forces between vertices,
and the output drawings may inherit a high degree of the
merits of those improper input drawings, under appropriate
setting of parameters, in which the parameter used to
control the magnitude of vertex–vertex repulsive forces can
be assigned a small value as long as there is no vertex–vertex
overlapping.

In our experimental results above, Figs. 5(b) and (c) are
the only two improper drawings. Hence, the hybrid model
of edge–edge repulsion and vertex–vertex repulsion is
used for the postprocessing of those drawings. The
experimental results for Figs. 5(b) and (c) using the hybrid
model under different strengths of the scaling parameter
cr of vertex–vertex repulsive force fr in Eq. (2) are given in
Figs. 6(a) and (b), respectively. We observe from those
drawings that vertex–vertex overlapping is avoided if
cra0 (i.e., the vertex–vertex repulsion is acted), and a
high degree of symmetries is preserved in compared to
our original drawings. It is reasonably easy to see that a
large cr value has the effect of keeping vertices apart.

For evaluating the drawing quality in a quantitative way,
the measures that are mainly concerned include the normal-
ized standard deviation of edge lengths (StdDev=AvgLen), the
angular resolution of the drawing (AngResl) and the average
angular resolution of the drawing (AvgAngResl), as shown in
Table 1.

Observing StdDev=AvgLen in Table 1, our method
seems to have equal or more uniform edge length than

http://mathworld.wolfram.com/Hypercube.html
http://mathworld.wolfram.com/Hypercube.html
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2 http://staffweb.cms.gre.ac.uk/�c.walshaw/partition/
3 http://www.ogdf.net/
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the classical method, except for graph hypercube_4_plus

(Fig. 5(a)) and hypercube_5 (Fig. 5(b)). Observing AngResl

in Table 1, the classical method may have the problem of
almost zero or few angular resolution (e.g., see Figs. 4(c)
and 5(a)), while our method normally has larger angular
resolution than the classical, except for graph mesh_49

(Fig. 4(e)). Observing AvgAngResl in Table 1, our method
normally has larger average angular resolution than the
classical, except for graph hypergraph_4_plus (Fig. 5(a)).

Since we knew that the drawings produced by the
classical method have a high degree of symmetry and
uniform edge length, our method taking the classical
drawings as the input (which can be viewed as a fine-
tuning postprocessing stage of the classical method) with
not costing too much running time also inherits the same
merits, according to the experimental results compared to
the classical. In addition, from the experimental results,
our method also has the merit of producing drawings
with larger (average) angular resolution. As a result, it is
concluded that our method can prevent zero angular
resolution, and normally has the capacity of producing
drawings with a high degree of symmetry, uniform edge
length and larger (average) angular resolution.

4.3. Experimental results for huge graphs

Some experimental results for huge graphs (with
about 10,000 vertices) are given in this subsection. The
test graphs include: graph rnd_graph_100 (Fig. 7) is a
random grid graph that is produced by first establishing a
100�100 regular square grid graph and then randomly
removing 3% of the vertices and their adjacent edges;
graph sierpinski_08 (Figs. 8 and 9) is a graph associated
with the Sierpinski triangle after 8 iterations; graph crack
(Fig. 10) is taken from real-world applications from C.
Walshaw’s graph partition archive.2

Hachul and Jünger [14] have given an overall experi-
mental comparison for some multi-level force-directed
methods for huge graphs, among which the Fast Multipole

Multilevel Method (FM3) [13] obtained comparable or
better results in reasonable time [14]. Note that the
implementation of the FM3 used here comes from the
OGDF library,3 which has implemented a variety of graph
drawing algorithms. Therefore, in the following, our
method takes the drawings generated by FM3 as the input
to produce our drawings. The experimental results using
the FM3 and our method are presented in Figs. 7–10, and,
and their corresponding statistics are shown in Table 2.

Since those huge graphs are more complicated, it is not
easy to find an appropriate setting of parameters to make
our algorithm convergent for force at a good placement of
vertices. Hence, our method for huge graphs stops until
the given maximal number of iterations is achieved. After
an experimental evaluation for a variety of huge graphs,
we find that the final drawings do not have a lot of
modification after executing 1000 iterations of our
method. Hence, most of our experimental results in this
subsection are evaluated by executing 1000 iterations of
our method. As for the running time, drawing a graph
with about 10,000 vertices executed by 1000 iterations of
our method takes about one minute (see Table 2).

In Fig. 7, for graph rnd_grid_100, the drawing produced
by the FM3 is given in (a); the drawings produced by our
method after 1000 and 10,000 iterations are given in (b)

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
http://www.ogdf.net/


Fig. 7. Drawings of rnd_grid_100: (a) FM3; (b) our (inputting (a) after 1000 iterations); and (c) our (inputting (a) after 10,000 iterations).

Fig. 8. Drawings of sierpinski_08: (a) FM3; (b) our (inputting (a)); (c) local view of (a); and (d) local view of (b).
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Fig. 9. Drawings of sierpinski_08: (a) manual; (b) our (inputting (a)); (c) local view of (a); and (d) local view of (b).

Fig. 10. Drawings of crack: (a) FM3; (b) our (inputting (a)); (c) a local view of (a); (d) a local view of (b); (e) a local view of (a); and (f) a local view of (b).
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Table 2
Statistics on the experimental results of huge graphs.

Graph name 9V9 9E9 Method StdDev

AvgLen

AngResl AvgAngResl Number of

iterations

Total running

time (s)

rnd_grid_100 (Fig. 7) 9700 18,640 FM3 0.17 6.00 79.81 – 24.938

Our 0.05 17.91 88.64 1000 43.531

Our 0.04 17.42 88.87 10,000 448.019

sierpinski_08 (Fig. 8) 9843 19,683 FM3 0.41 0.00 25.32 – 16.750

Our 0.25 7.67 44.38 1000 45.843

Our 0.20 11.20 47.55 4150 190.891

sierpinski_08 (Fig. 9) 9843 19,683 Manual 0.01 59.97 59.98 – –

Our 0.07 44.65 57.17 1000 45.875

crack (Fig. 10) 10,240 30,380 FM3 0.25 0.13 53.20 – 23.016

Our 0.29 12.60 56.33 1000 68.406
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and (c), respectively. Obviously, the drawings in (b) and
(c) give clearer visualization than (a), which has some
distortion on the boundary of the drawing. Since graph
rnd_grid_100 is a grid graph originally, our method pro-
duces a neat unfold drawing in (b) or (c), so that it is
helpful for users to realize the original grid structure,
though there are still a few edge crossings on the drawing
boundary. As mentioned in the previous subsection, we
put the local minimal problem for the vertices on the
drawing boundary as the future work. As for the compar-
ison between drawings (b) and (c), the contour of drawing
(c) is more rectangular, but takes more running time than
drawing (b). But, from Table 2, the aesthetic measures do
not differ a lot between the two drawings. Therefore, from
the quantitative point of view, we consider that it should
be enough to execute 1000 iterations of our method for
huge graphs with at most 10,000 vertices.

In Fig. 8, for graph sierpinski_08, the drawings produced
by the FM3 and our method are given in (a) and (b),
respectively; the local views of (a) and (b) are given in (c)
and (d), respectively. It seems that there are no much
difference between (a) and (b) from the visualization, except
the vertices look denser in (b). In fact, from the local views
in (c) and (d), our method makes each triangle look clear
than the FM3. From the quantitative point of view, we
observe from Table 2 (see the row of Fig. 8, especially,
noting the drawing produced by FM3 has the zero angular
resolution problem) that our method obviously improves
the drawing from the three aesthetic measures.

From Figs. 8(c) and (d), we observe that there still exist
some edge crossings. That is, our method still cannot handle
the local minimal problem of the original drawing in
Fig. 8(c). Hence, we wonder whether our method has the
capacity of not producing more edge crossings. Consider
Fig. 9(a), in which each triangle of graph sierpinski_08 is
manually drawn as a right triangle, and hence there is no
edge crossing in the drawing. Fig. 9(b) shows the drawing
using our method taking Fig. 9(a) as the input. We observe
from the local views shown in Figs. 9(c) and (d) that our
method may not produce more edge crossings.

In Fig. 10, for graph crack, the drawings produced by the
FM3 and our method are given in (a) and (b), respectively;
the local views for two parts of graph crack using the FM3

and our method are given in (c)–(f). From the visualization,
it is not easy to say which method is better if observing
only (a) and (b). But, if the local views (c) and (d) as well as
(e) and (f) are referred, we observe that our drawing has a
high degree of symmetry (see the comparison between (c)
and (d)), and has a more smooth drawing boundary (see
the comparison between (c) and (d) as well as (e) and (f)).

5. Conclusion

Different from the conventions of force-directed meth-
ods, a new force-directed method based on edge–edge
repulsion for generating a straight-line drawing not only
preserving the original properties of a high degree of
symmetry and uniform edge length but also without zero
angular resolution has been proposed and implemented.
In addition, the drawings generated by our method
usually have larger average angular resolution. The sim-
plified formulas of edge–edge repulsion can be derived
from the theory of potential fields.

A line of future work is to overcome the local minimal
problem for the vertices on the drawing boundary (which
also poses difficulties for the conventional force-directed
methods) by multilevel techniques or using optimal heur-
istics, such as simulated annealing, genetic algorithm, etc.
It is also of importance and interest to provide more
experimental results on graphs of huge size and theoretical
results on the power of the model of edge–edge repulsion.
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