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Hybrid Unified Kalman Tracking Algorithms for
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Abstract—Location estimation and tracking for mobile stations
have attracted a significant amount of attention in recent years.
Different types of signal sources are considered available to pro-
vide measurement inputs for location estimation and tracking in
heterogeneous wireless networks. Various techniques have been
studied and combined for location tracking, e.g., the least square
methods for location estimation associated with the Kalman filters
for location tracking. In this paper, the hybrid unified Kalman
tracking (HUKT) technique is proposed to provide an integrated
algorithm for precise location tracking based on both time of ar-
rival (TOA) and time difference of arrival (TDOA) measurements.
A new variable is incorporated as an additional state within the
Kalman filtering formulation to consider the nonlinear behavior
in the measurement update process. The relationship between this
new variable and the desired location estimate is applied in the
state update process of the Kalman filter. Three different designs
of hybrid factor are proposed to adaptively adjust the weighting
value between the TOA and TDOA measurements. Moreover,
similar concepts are also utilized in the design of unified Kalman
tracking schemes for pure TOA and TDOA measurement inputs
in this paper. Compared with existing schemes, numerical results
illustrate that the proposed HUKT algorithm can achieve en-
hanced accuracy for mobile location tracking, particularly under
environments with an insufficient number of measurements in one
of the signal paths.

Index Terms—Kalman filter, mobile location estimation and
tracking, time difference of arrival (TDOA), time of arrival (TOA).

I. INTRODUCTION

IRELESS location technologies, which are designed to
estimate and track the position of a mobile station (MS),
have drawn a lot of attention over the past few decades. Self-
navigation and target tracking are the two main applications.
With the acquisition of the MS’s location information, differ-
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ent types of location-based services (LBSs) can be explored,
including enhanced 911 (E-911) subscriber safety services [2],
location-based billing, navigation systems, and applications for
intelligent transportation systems [3]. Due to the emergent
interests in LBSs, it is required to provide enhanced precision
in location estimation and tracking of the MS under different
types of environments.

A variety of localization techniques have been investigated
and proposed in wireless standards [4]. Network-based location
estimation schemes are widely employed in wireless communi-
cation systems. These schemes locate the position of an MS
based on the measured radio signals from either its neighbor-
hood base stations (BSs) in cellular networks or anchor nodes
in wireless sensor networks (WSNs) [5], [6]. For convenience,
these signal sources are represented as BSs in this paper. The
location estimation algorithms can be categorized into range-
free and range-based techniques. The range-free schemes [7]-
[9] utilized the status of network connectivity between MS and
BSs for localization, which possesses the benefits of simplicity
and low cost. These schemes are primarily adopted in WSNs
with the features of limited computation power and less require-
ment on positioning accuracy. On the other hand, to provide
precise location estimation, range-based schemes are consid-
ered, which include received signal strength (RSS) [10], angle
of arrival (AOA) [11], time of arrival (TOA) [12], and time
difference of arrival (TDOA) [13]. The RSS schemes record
the incoming signal strength from different wireless BSs for
converting to distance measurement, and the AOA methods
are in general implemented at the BSs to observe the signal
bearing via the antenna array. The TOA schemes measure the
arrival time of the radio signals coming from the BSs, whereas
the TDOA algorithms measure the time difference between the
radio signals.

One of the important issues for range-based positioning is
its inherent nonlinear feature for location estimation, which
results in complex computation and difficulties for analysis.
Recursive Bayesian estimation [14]-[16] computes the poste-
rior probability density function of the state variables based
on both the incoming measurement inputs and the Markov
state model recursively over time. With the estimated posterior
probability density function, either the minimum mean square
error (MMSE) or the maximum a posteriori estimation can be
calculated. The Kalman filter is one of the simplest methods for
Bayesian estimation and is proved to be an optimal realization
of MMSE under the linear model perturbed by Gaussian noises
[14]. Although the signal and noise are not jointly Gaussian,
it is still considered an optimal linear MMSE (LMMSE) esti-
mator. Moreover, the operation of the Kalman filter [16]-[18]
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is linear, which offers efficient computation for real-time im-
plementation. In [19] and [20], the Kalman filer has been
extensively utilized to further enhance the precision for location
estimation. It provides the estimation of internal states with
dynamic weighting adjustment between the prediction and the
observation input in recursion form. This feature alleviates the
estimation outputs from severe signal variations and can finally
converge to the true value. Several researches have adopted the
Kalman filter to track the MS’s position with considerations of
the nonline-of-sight (NLOS) interferences [21] and the mobility
information of moving MS [22], [23]. Compared with the
methods for stationary location estimation, these tracking
schemes take advantage of the previous location and movement
of the MS, which can result in a smoothed MS trajectory with
better estimation accuracy.

On the other hand, owing to the feasibility of provid-
ing synchronization between cellular BSs, the TDOA mea-
surements have been extensively adopted for location esti-
mation and tracking in existing telecommunication systems,
e.g., the WiMax [24] standard. However, in urban canyons
problem, it has been observed that the number of received
Global Positioning System or cellular signals is insufficient for
location estimation due to signal blockage in urban environ-
ment. Moreover, the study in [25] suggests the adoption of
TOA-based signal sources for dedicated short-range commu-
nications (DSRC) to avoid the complex infrastructure required
for TDOA measurements. To provide feasible precision for
location estimation, it is sensible to combine these two types
of signal sources under a variety of environments, e.g., to addi-
tionally include TOA-based sensor anchors or roadside DSRC
devices with TDOA-based cellular signal sources. Therefore, it
will be beneficial to design a hybrid technique that can facilitate
location estimation and tracking based on these two types of
measurement inputs. Moreover, the performance of the location
estimation schemes varies depending on the environmental
conditions and the operational parameters. The Cramer—Rao
lower bound [14] associated with the geometric dilution of
precision (GDOP) [26] is utilized as the theoretical limitation
on estimation variance to provide a benchmark for comparison
between different estimators. Previous works [22], [27], [28]
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(Left) HCLT scheme. (Middle) HKT scheme. (Right) Proposed HUKT scheme.

have been dedicated to combining multiple location techniques
for enhanced positioning precision with the theoretical lower
bound derived in [27].

In the location tracking problem, the relationship between
the measurement and the state variable is observed to be non-
linear. Since the computation of recursive Bayesian estimation
requires several integrals without analytic solutions, it is not
possible to obtain an optimal solution to this problem in prac-
tice. The particle filter [29] has been proposed as a nonlinear/
non-Gaussian method for this type of problem. However, the
number of particles to establish the probability distribution
function should be infinite to achieve the optimal solution.
Therefore, in the location tracking problem, there are several
methodologies for obtaining the suboptimal solution to deal
with the nonlinear relationship between the distance measure-
ment and the estimated position. As shown in the left plot of
Fig. 1, the hybrid cascade location tracking (HCLT) scheme
proposed in [22] utilizes the two-step LS method [12], [13] for
initial location estimation of the MS. The two-stage architecture
handles the nonlinear relation in the location estimator. There-
fore, the Kalman filtering technique is adopted to smooth out
the estimation error by tracking the positions and velocities of
the MS. The fusion algorithm is utilized to combine the tracking
results from two different sources to obtain the final location
estimation of the MS. In the middle plot of Fig. 1, the hybrid
Kalman tracking (HKT) scheme extends the Kalman tracking
(KT) scheme in [23] by separating the linear components from
the originally nonlinear equations for location tracking. The
linear aspect is directly processed within the Kalman filtering
formulation, whereas the nonlinear term is served as an external
measurement input to the Kalman filter. However, both HCLT
and HKT algorithms have the drawback of additional hardware
cost due to their cascaded infrastructures. The Kalman filter
is only utilized to deal with the linear behaviors of location
tracking problem by adopting these two types of architectures.
The nonlinear terms are considered outside of the Kalman filter
by performing LS linearization technique, which can result in
information loss and cause larger location tracking errors. This
type of structure can result in information loss, which causes
larger location tracking errors. Moreover, both algorithms
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require sufficient numbers of signal sources from either the
TOA or the TDOA path, which cannot resolve the signal
insufficiency problem in urban canyons.

In this paper, a hybrid unified KT (HUKT) algorithm is
proposed based on both TOA and TDOA signal inputs. Owing
to the benefit of a linear relationship between the measurement
and estimated states, the Kalman filter is adopted to provide
computational efficiency for real-time implementation. As il-
lustrated in the right plot of Fig. 1, the HUKT scheme integrates
the nonlinear relation into the Kalman filtering formulation
for location tracking based on both TOA and TDOA signal
sources from heterogeneous BSs. The major design novelty
of the HUKT scheme is that the nonlinear parameters within
their respective TOA- and TDOA-based location estimators are
mathematically combined into a single state variable, which is
to be updated within the Kalman filter. This type of unified
architecture for location tracking problem with heterogeneous
signal inputs has not been proposed in previous works. In
the measurement update of the Kalman filter, the nonlinear
parameter is utilized to linearize the measurement equation by
assigning all the nonlinear terms into an extra state variable.
The constraint between this extra variable and the estimated
position is further considered in the state update process of the
Kalman filter. The proposed HUKT scheme is feasible to be
adopted under environments with heterogeneous signal sources
and is tolerant to an insufficient number of BSs from individ-
ual signal paths. The determination of the hybrid factor that
combines the TOA and TDOA signal sources is investigated
based on different criterions. Furthermore, the proposed HUKT
algorithm can directly be simplified into a unified KT (UKT)
scheme for location tracking under the situation with only
homogeneous signal sources, i.e., either the TOA or TDOA
measurement input is available. Performance evaluation and
comparison of the proposed HUKT and UKT schemes are
conducted via simulations. Compared with existing schemes,
simulation results show that the HUKT/UKT algorithm can
achieve higher accuracy for location estimation and tracking.

The remainder of this paper is organized as follows. The
mathematical modeling of signal sources and the existing
location tracking techniques are summarized in Section II.
Sections III and I'V describe the proposed HUKT algorithm and
the simplified UKT scheme, respectively. Performance evalua-
tion and comparison of the proposed schemes are conducted in
Section V via simulations. Section VI draws our conclusions.

II. SYSTEM MODELING AND EXISTING LOCATION
TRACKING SCHEMES

A. Mathematical Modeling of Signal Inputs

In this section, the mathematical models for both TOA and
TDOA measurements are presented. The 2-D coordinate of the
MS is to be obtained in the proposed HUKT scheme. The TOA
measured distance 7; j, between the MS and the ith BS at the

kth time step can be represented as
Tik=Ctir=Cr+nir+ter t=12,....,N (1)

where ¢; ;, denotes the TOA measurement with respect to the ith
BS at the kth time step, and c is the speed of light. The measured
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Fig. 2. Schematic diagram of Kalman filter.

distance r; j, is corrupted by both the measurement noises 7; j
and the NLOS error ¢; ;, under urban and suburban areas. The
parameter N refers to the total number of TOA measurements.
The noiseless distance ¢;  in (1) is

Gik = [(lk - 1”6)2 + (g — yi’k)Q] 1/2 @

where (x,yr) represents the MS’s true position, and
(@i,k, i,k is the coordinate of the ith BS at time step k. Based
on the preceding TOA signal model, the TDOA measurement
can be formulated as the subtraction of two TOA measure-
ments, which conforms to the physical meaning of difference in
propagation time. The relative distance 7, ;' can be obtained
by computing the TDOA measurement Ejm, k» which is the time
difference between the MS with respect to the jth and mth BSs
from (1) as

Fimk = C timp = (gj,k — gmk) + (7. — Mo k)

+ (& —€mr) m=13=2,....N. (3
Note that the first BS of the TDOA system is in general
denoted as the reference BS, e.g., the serving BS in cellular
networks. The TDOA measurements are taken between the
reference BS and the other neighbor BSs. The parameter N
is the number of BSs for the TDOA system, which comprises

(N — 1) independent TDOA measurements.

B. Kalman Filter

The Kalman filter [18], [30], which is derived based on the
Markov chain perturbed by Gaussian noises, is an efficient
Bayesian estimator to solve the linear problem. Fig. 2 illustrates
the concept of the Kalman filter that consists of measurement
and state updates. With prior information coming from the
state update and likelihood information from the measurement
update, the Kalman filter will obtain a posterior estimate in
the MMSE sense. Even with non-Gaussian noises, the LMMSE
solution can still be acquired by adopting the Kalman filter. The

! In the paper, it is considered that the TDOA and the TOA measurements
come from two different types of networks. For notational convenience, the
variables with a tilde are denoted for the measurements from TDOA system,
€.2., Tjm,k; While the variables without the tilde (e.g., ;) are utilized for
TOA measurements.



CHIANG et al.: HUKT ALGORITHMS FOR HETEROGENEOUS WIRELESS LOCATION SYSTEMS 705

measurement and state equations for the Kalman filter can be
represented as

Y = My + my 4)
T =FrZp_1 +wp_1 +Dr_q (5)

where I, represents the estimated state/output, y; denotes the
measurement input of the Kalman filter, and uj_; indicates
the control input for the state model. In the location tracking
problem, the states that are of interest include the MS’s position,
velocity, and acceleration. The matrices M, and F, refer to
the linear relations for the measurement and state models,
respectively. The variables m and p;,_; respectively denote
the measurement and the processing noises associated with
the covariance matrices Ry and Qj within the Kalman filter
formulation. Based on the measurement and state equations as
in (4) and (5), the Kalman filter estimates the states during
the prediction phase in Fig. 2 as &;, = Fy &1 + up—1 with
its estimate covariance C, = Fka,lFE 4+ Qp. On the other
hand, within the correction phase, the measurement input will
be corrected via innovation process as Y, = y;, — M &, with
innovation covariance Cj = MkC,;Mg + Rg. The optimal
Kalman gain can be obtained as K, = C;; M [C}]~!. There-
fore, the corrected state estimate will be acquired as &), = &, +
K. x;. associated with the corrected estimate covariance C;, =
(I —K;M;)C,. Based on the foregoing linear operations,
the Kalman filter can efficiently update the state estimates at
different time instants.

C. HCLT Scheme

The left plot of Fig. 1 illustrates the architecture of the HCLT
scheme [22]. The HCLT system consists of an LS location
estimator, e.g., the two-step LS method, followed by a Kalman
filtering technique at the next stage. Different versions of two-
step LS methods have been proposed for distinct occasions,
such as TOA [12], TDOA [13], and TDOA/AOA [31] mea-
surement inputs. The concept of the two-step LS method is
to acquire an intermediate location estimate in the first step
with the definition of a new variable to represent the nonlinear
term, which is mathematically related to the MS’s position. This
assumption effectively transforms the nonlinear equations for
location estimation into a set of linear equations, which can
directly be solved by the LS method. The second step of the
method primarily considers the fact that the newly defined vari-
able is related to the MS position, which was originally assumed
to be uncorrelated in the first step. An improved location esti-
mate can be obtained after the adjustment from the second step.

The MS’s estimated position from the output of the two-
step LS estimator will be postprocessed by the Kalman filtering
technique according to [17]. The Kalman filter smoothes out
and tracks the estimation errors by adopting linear prediction
from the previous estimation data while the MS is dynamically
moving in the network. According to the Bayesian inference
model [15], [32], the tracking results from the two disparate
TOA and TDOA paths will be combined by the fusion mecha-
nism based on their corresponding signal variations. The MS’s
estimated position, i.e., (&, Jx ), can therefore be acquired. The
detail algorithm of the HCLT scheme can be found in [22].

D. HKT Scheme

Since the equations associated with the network-based loca-
tion estimation are inherently nonlinear, different mechanisms,
e.g., linearization, are utilized within the existing algorithms for
location tracking. The KT scheme [23] considers the nonlinear
term as an external measurement input to its Kalman filtering
formulation. It distinguishes the linear part from the original
nonlinear equations for location estimation and tracking. How-
ever, the KT scheme does not specifically indicate the method
for acquiring the nonlinear term. For comparison purpose, the
KT scheme that was originally proposed based on the TDOA
measurement inputs is reformulated and extended in this paper
to consider both TOA and TDOA signal sources. The middle
plot of Fig. 1 illustrates the architecture of the HKT scheme.
The nonlinear terms can be obtained from external location
estimators, e.g., by adopting the two-step LS method. With the
formulation of the HKT scheme, a feasible accuracy can be
acquired for location tracking, including position, velocity, and
acceleration of the MS. However, the accuracy is significantly
affected by the precision of the external location estimator. The
detailed algorithm of the KT scheme can be found in [23].

III. PROPOSED HYBRID UNIFIED KALMAN
TRACKING SCHEME

The proposed HUKT scheme will be described in this sec-
tion. The formulation of the HUKT algorithm is explained in
Section III-A, and the determination of the hybrid factor (3 at
time step k will be discussed in Section III-B. The variable J
will be determined from three different approaches to address
the various weighting factors between the TOA and TDOA
measurements for the HUKT scheme.

A. Formulation of HUKT Algorithm

The right plot of Fig. 1 illustrates the architecture of the
proposed HUKT scheme. Unlike the previous algorithms, e.g.,
the HCLT and HKT methods, the main design concept of the
HUKT scheme is to provide a unified methodology for location
estimation and tracking. The purpose of the HUKT algorithm
is to obtain the updated state variables via the Kalman filtering
technique directly from both TOA and TDOA measurements as
the system inputs. The measurement update and the state update
equations of the Kalman filter can be respectively acquired from
(4) and (5), where &y, = [ G R Ok Oy dup Gy x|T is the
state vector that includes the MS’s estimated position (Z, ¥k ),
the estimated velocity (0 x,0y,x), the estimated acceleration
(G k, Gy 1 ). and the estimated variable .. Note that R, rep-
resents the estimated nonlinear term for the hybrid location
estimation. The updating process of Ry will be addressed later.
To formulate the input/output relationship for Kalman filter
based location tracking, error-free measurements will first be
examined, i.e., 1; r = (; 5. The following equation for TOA
measurement can be obtained by combining (1) and (2) as

i — Kik = =22 kv — 2yi ki + Ri (6)

where K ) = :cfk + yfk and Ry = x% + y,% Similarly, the
following relation can also be acquired from the TDOA
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measurements (3) by substituting m = 1 as

2

7 — (Kjn — Kig)

= —=2(Tjx — T1h)Tk — 2(Ujk — J1.k)Yk — 2716751 (7)
where 7 ;, indicates the measured distance from the MS to
the reference BS via the TDOA system. To design a unified
structure for location tracking, the purpose of the proposed
HUKT scheme is to obtain an effective method to combine
both TOA and TDOA measurements. More specifically, a new
variable §f€k is introduced to combine the nonlinear terms Ry
in (6) and 71 1, in (7). Without loss of generality, the nonlinear
term 71 , in (7) can be represented as /x5 + yi by shifting the
entire coordinate, i.e., both TOA and TDOA systems, such that
(Z1,6,91,%) = (0,0). With the definition of a hybrid factor Gy,
the following relationship can be obtained by multiplying (7)
with 3y /71,1 and adding to (6) as

K K
2 ~ J.k 1,k 2
Tik — Kik + BrTjie — Br—"— + B;
JLk
Tjk— T1k
J, ,
Z%k—z(wuﬁ-ﬁk - )xk
1Lk
Y1,k

—2(yzk+ﬁyﬂr’ ®)

Jjlk

i

where Ry = (/23 + yi — corresponds to the variable
that combines the effects from both TOA and TDOA measure-
ments. It is included in the state vector &y, for state updating

k)
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within the Kalman filtering formulation. The hybrid factor gy, is
considered as a weighting between the TOA- and TDOA-based
measurements, which can be determined according to the signal
qualities of the two different paths. The detail design and
selection for the value of (3, will be addressed later in the
next section. Note that (8) is obtained as a linear combination
from (6) and (7). Since the Kalman filter is well known for
its linear operations, it is not required to apply scaling factors
to achieve this combination from two different types of signal
sources. As a result, the measurement data vy, and the matrix
M), associated with the measurement process in (4) can be
acquired as in (9), shown at the bottom of the page. Note
that there are (N + N — 2) linearly independent equations
associated with both y;, and M. There are N hybrid equations
formed by all the TOA measurements, i.e., from 71 3 to 7y k,
and the first TDOA measurement 71 ;. The remaining N -2
hybrid equations are established by using the first TOA mea-
surement, i.e., 1y, and the remaining TDOA measurements,
i.e., from 73y to 7g . Under the assumption of constant
acceleration model, the hpdating process of Z, and ¢y, is deter-
mined as

1
Ty =Bp—1 + Op g1 AL + de,kflAtz (10

e L
P =P+ Oy 1 A+ Say g A2 (11)

where At denotes the sampling time interval. To provide the
updating process for the new variable %y, similar to (8), the
relation among Ry, T, and i can be acquired by summing all

K1k+ﬂkr21k—ﬁk%+ﬂz ]
rok? — Ko + Brfo1k — ﬂk% + 32
TNJCQ — KNk + BrTo1k — ﬂk% + 67
Yr = - K3 - K
e — Bk + Bifaie — B =5 + 5
Kap-K
e — Kip + Bl e — B =" + 67
L Klk"’ﬂkTle ﬁk +ﬁk
(Il K+ Bk mzfmil k) -2 (yl K+ B yz:mil ’”) I 014 |
<$2 k + Bk :1:2:219: s ) -2 (y2 k + Bk nyzly: k) 1 01x4
N 2($Nk+ﬁk12:212”) Z(iUNk-i-ﬁ yQT’;lTk) 1 0144 ©
=
-2 (I1 K+ Bk msfmil k) -2 (yl K+ Bk ys,fglil ’”) 1 0144
2 (331 k + Bk M:M? s ) 2 (yl,k + Bk y4f41y: k) 1 01x4
2($1k+ﬁk ) -2 (y1k+ﬁkyNT;1fk> 1 01x4 |
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N TOA measurements of (6) and N — 1 TDOA measurements

of (7) as
where
1 (N N 1
wem ity (Dt D) ot —
N 1 i=1 ZJ o i1k
N
Bed T ﬁkZK,wﬂk( ~ 1)Ky,
J=2 j=2
X _Eﬁil Tik | Bre Z] 2(Tjk — T1,k)
Sik = N N
Z]:Qr‘]lrk
N /-~ -
Ve, — Zfil Yi,k I Bk Zj:Z(yj,k —U1k)
SETTON N - -
Zj:zrjl,k

Following the methodology as in (10) and (11), the updating
process for the estimated variable j, becomes

R =R 1 +2(Xsk — Xsh 1)k 1
+2(Ysx — Ysr-1)0k—1 + 2X 5 105 k-1 At
+ 25 50y ko1 A + Xg g -1 A

+ Yo rby -1 A + (Wi — Wi_1). (13)
Finally, the state matrix F;, associated within the state equation
in (5) for the proposed HUKT scheme can be obtained as in
(14), shown at the bottom of the page. The control input wy_1
can also be acquired as

up1=[0 0 Wy—Wiq) 0 0 0 0]". (15
To summarize, the proposed HUKT scheme integrates the
measurement inputs from heterogeneous location estimation
systems based on a unified Kalman filtering structure. The
iterative operations of the Kalman filtering technique primarily
consist of processes for state update as prediction and measure-
ment update as correction. The equations for state update are
represented as

707
The equations for measurement update become
- _ -1
K; =C, M} (M,C, M} + Rzll“OA,k + R}{“DOA,k) (18)
&, =25 + K (y, — Myiy) (19

where K, represents the Kalman gain, and the matrix Cy, is
denoted as the estimate error covariance. The covariance matri-
ces associated with the TOA and TDOA measurement update
processes for hybrid estimation are respectively represented
as RTOA k= BRTOA kB and RTDOA k= BRTDOA kB

where the matrices B and B are established to fulfill the
requirement for matrix My, in (9), i.e.,

| 0
0 1 0
I M
B—{[CHWN }— 00 1
(N-2)xN 1 0
|1 0 0]
-1 1 0 0 07
-11 00 0
_ D -
B:[[E]UYUX{V}: -1 .0 10 0
[ }(Nfl)xN -1 0 0 1 0
L—-1 0 0 0 1]

The corresponding covariance matrices Rroa x and Rrpoa x

can respectively be acquired as
Rroax =LgJp 1Ly (21)

Rrpoax = LxJpn Ly (22)

where Ly = diag{Ci x,Cok,----CN k) JTnp = diag{aik,
O3 pr > 0% i }s L = diag{Cix, Cat, - - o Cyptsand Jp g =
diag {57, 53 4 0%

B. Determination of Hybrid Factor (3,

As shown in (8), the hybrid factor ( at time step k is
utilized to provide the weighting between the TOA and TDOA

T, =Frp 1 +up (16) . .
measurements to merge these two types of inputs for hybrid
C, =F; Ck,lFf + Qr. (17)  location tracking. Therefore, it is essential to develop feasible
r 1 0 0 At 0 1A 0 1
0 1 0 0 At 0 LA
Z(Xs)k — X&kfl) Z(Ys)k — YS,kfl) 1 ZXSJCAt ZYS’kAt XS,;CAtQ YS7kAt2
Fi = 0 0 0 1 0 At 0 (14)
0 0 0 0 1 0 At
0 0 0 0 0 1 0
L 0 0 0 0 0 0 I
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mechanisms that can dynamically adjust the hybrid factor in
accordance with the variations of estimation quality in the two
signal paths. Note that the sign of the weighting value, i.e., the
hybrid factor 3, will not be influential based on the design of
hybrid system in (8), whereas its magnitude is considered cru-
cial to affect the performance of the hybrid location estimation.
With larger absolute value of (;, more weighting is assigned
to the TDOA signal compared with TOA measurement input.
In the following three sections, different types of design for the
hybrid factor will be presented.

GDOP-Based Hybrid Factor (GHF): The main concept for
the design of GHF [, ;. is to consider the geometric relation-
ship between the TOA and TDOA signal inputs. The GDOP
[26] describes the geometry influence on location estimation
accuracy. For a set of spatially separated BSs or sensors, the set
of relative distances from the MS to its respective BSs affects
the estimation accuracy for the MS’s position. In general, when
the MS locates around the center of the BSs, the GDOP value is
lower than the case that the MS is situated around the geometric
edge formed by the BSs. Therefore, the GDOP criterion that
provides the relative distance information between the MS and
BSs can be utilized to determine the hybrid factor [ that
represents the weighting between the TOA and TDOA mea-
surements. Considering the MS located at @y, = (z, yx) with
the TOA range measurements 7; j, for ¢ = 1 to N associated
with Gaussian noise, the GDOP value G, Toa for x; at time
step k can be obtained as

Y1172
Gy ToA = {trace { (Hgyng;}kHQk) H (23)

where J g . is the same as Jy, . in (21), and

Tk—%1,k Y —Y1,k
1,k T1,k
Tp—T2k Yk —Y2,k
T2,k T2,k
Hg. = (24)
Tk TN,k Yk —YN.k
TN,k TN,k

On the other hand, considering the TDOA case with the range
difference measurements 71 for j = 2 to IV, the formulation
for the GDOP value can be obtained as

B 5 5 1 1/2
Gy TDOA = [trace { (Hg,ng;}kﬂg,k) H (25)

where
05 +061 01 51
~2 ~2 | ~2 ~2
~ o1 3+ 07 o1
Jor = ) Yy (26)
01
s 52 e
rax—Ty _ x— Y—Y2 _ Yy—91
o 71 o 1
l’jCEB _ ijl yt.ﬂS _ ngl
T T3 1 T3 71
Heg ) = 27
ToTy  z—% Y=YUN _ y—i

Consequently, the GHF 3, ; that is designed to be the ratio
between the TOA and TDOA estimation systems can be for-
mulated as

Gg,TOA .
- Tl,k-

Bg,k = (28)

Gg,, TDOA

Note that the original TDOA equation in (7) is divided by 71
to formulate the hybrid formulation as in (8). Therefore, the
multiplication of 7 j in (28) is to scale back to the original
magnitude order of the TDOA measurements in (7). For com-
putational simplicity, the value of 7y j, is utilized instead of the
original 7;; ;, value. Furthermore, it is noted that both G, Toa
and G, Tpoa are nonzero values, which result in a countable
value of 3, . The case with zero GDOP value denotes that
there is no signal variance that is unlikely to happen in realistic
estimation problems. On the other hand, when the MS is located
exactly on the same location as one of the BSs, singularity will
occur in the above matrix operations, which leads to undefined
behavior between MS and BSs. Both situations of zero signal
variance and matrix singularity will not be considered in this
paper.

Minimum Variance-Based Hybrid Factor (MVHF): The
main purpose of this scheme is to obtain the hybrid factor
MVHF j,,  to achieve minimum variance for the hybrid
estimation system. From the formulation of the HUKT scheme
as shown in (8), the hybrid measurement update equation is
composed by the TOA measurement from the ith BS and the
TDOA measurement via the jth BS and the serving BS. To
facilitate the design of MVHF §3,, 1., an equivalent set of BSs
is defined as (2eqk(4,5), Yeq.k(1,7)) = (@i + Bk (Tjn —
T4k /Ti1,k)s Yik + Bk (Uj.k — J1,6/Tj1 ) for i =1 to N if
j=2,and 7 =3 to N if i = 1. Note that there are a total
of N + N — 2 sets of equivalent BSs. Therefore, the original
hybrid measurement update in (8) can be rewritten as

~ Kir— K
(ﬂm,krﬂ,k — B p—2——=

+ B — K, ) + [ri(i, 5)]?
T‘ij ’

— _zxeq,k(imj)xk - zyeq,k(ivj)yk‘ + §Rk (29)
where 7 (i,7) =1 fori =1to N if j =2, and r(i,7) =
ri for j =3 to N if i = 1. Note that (29) can be considered
as an extended formulation of the TOA measurements in (6).
Therefore, it is implicitly suggested by (29) that there exists
a set of equivalent BSs (Zeq x(%,7), Yeq.k (¢, 7)) for each entry
of the hybrid measurement equation, where the equivalent
BS is a composition of both TOA and TDOA BSs with the
ratio 6m,k, ie., (xeq,k(iaj)v yeq,k(i7j)) = (xi,k + ﬁm,k(jj,k -
Z1k/Ti1k)s Yik + Bk (Ui — U1,/ Ti1,k))-

As a result, the target of MVHF is to acquire an optimal
By i such that the variance of the hybrid system can be mini-
mized as

1/2
-1

: T -1

B = arg Vﬂmlkne]R {trace { (HM,kJM,kHM,k)

(30)
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where
xkfmeq,k(1a2) ykfyeq,k(1>2)
T‘k(l,2) T‘k(172)
Tp—Teq,k(2,2) Yk —Yeq,k(2,2)
Hy = 7(2,2) 7(2,2) 31)

Yk —Yeq,k (17])
i (4,5)

rk_zeq,k(ivj)
rx(4,5)

with its rank equal to (N 4 N —2). The matrix Jy; =
R, Ak T R, A, can directly be acquired based on the
composition of (21) and (22). Note that the minimization
problem in (30) can be interpreted as to search for the variance
lower bound for the hybrid tracking system. Moreover, it is
recognized that the complicate optimization process in (30)
for obtaining 3,, ; will not be feasible for real-time imple-
mentation. An alternative method is to perform the numerical
search for each specific network layout. For a predetermined BS
topology that can be computationally divided by small grids in
region, the optimal values of 3,, j, for each grid can be acquired
to construct the offline table. Based on the inherent tracking
information within the Kalman filter, the predicted a priori
knowledge of the MS’s position will be provided to obtain 3,,, 1
based on table lookup for real-time implementation.

Kalman Filter-Based Hybrid Factor (KHF): As stated in
Section III-B1, the design concept of GHF is straightforward,
which determines the hybrid factor based on the GDOP values
acquired from TOA and TDOA measurements. However, the
characteristics of the hybrid structure for location tracking have
not been considered in the design of the GHF value. On the
other hand, the MVHF designed in Section III-B2 considers the
variances of the proposed HUKT system to explore the optimal
solution for the hybrid factor. Nevertheless, an approximated
solution is obtained due to the complexity of solving the opti-
mization problem in real-time implementation. In this section,
the KHF (3¢, is designed based on the dynamic adjustment
of Kalman filtering formulation within the proposed HUKT
scheme. It is closely related to the prediction and updating
features of the Kalman filter-based location tracking system.

Since the variable Ry consists of the hybrid factor and
is estimated along with other variables in the state vec-
tor, the KHF [} can also be tracked to further enhance
the estimation performance under the presence of measure-
ment errors. Considering the tracking process of the pro-
posed HUKT scheme at the (k — 1)th time step, the posteriori
estimation gf the state vector can be acquired as &, 1 =
[Zr-1 Gk—1 Rie—1 Oz 1 Dy k-1 G k-1 Gy,x—1)" . The KHF Sy
at time step k can be predicted according to the definition of
Ry._1 in (8) at the (k — 1)th time step as

N N 1/2 o
Brr = (2% 1+ 0% 1) 2 (Rp) 2.

Note that the solution with minus sign is selected in (32)
within its multiple solutions for computation simplicity since
the sign of (3 is not influential based on the original design
of the hybrid system in (8). The proposed KHF 3 can be
implemented directly along with the real-time tracking process
of the proposed HUKT scheme. In Section V, the performance
of location tracking based on these three types of hybrid factor
will be evaluated and compared via simulations.

(32)

IV. SIMPLIFIED TIME OF ARRIVAL- AND
TIME DIFFERENCE OF ARRIVAL-BASED
UNIFIED KALMAN TRACKING SCHEMES

Considering environments with only a homogeneous type of
signal inputs, the proposed HUKT algorithm can be simplified
to the UKT scheme to support either TOA or TDOA measure-
ments, i.e., the UKT-TOA and UKT-TDOA schemes. Note that
the HUKT algorithm can be adopted under situations where
there is insufficient number of measurements at one of the
heterogeneous signal paths. With homogeneous signal sources,
the MS and network operator that utilize either UKT-TOA or
UKT-TDOA technique can have the flexibility to terminate the
hybrid estimation mode to reduce computational complexity. In
the next two sections, the formulations of both UKT-TOA and
UKT-TDOA schemes will be described.

A. UKT-TOA Scheme

The formulation of the proposed HUKT algorithm can be
reduced to the UKT-TOA scheme in the case that there only
exists TOA measurements for location estimation and tracking.
Based on the rearranged TOA measurements in (6), the same
Kalman filter formulation as described in (4) and (5) can still be
utilized for measurement and state updates, respectively, where
the state vector becomes &), = [, Ui Ry D ko Dy ko Ao o Gy i) -
Within the state vector, it can be observed that the original
nonlinear term 3, for the hybrid system is substituted into the
variable ]:Bk = :%% + f/,% which denotes the nonlinear variable
derived from pure TOA-based measurements. Therefore, the
measurement data y;, and the matrix M; of the N TOA
measurements in the measurement update process become

-2
L5 Ky
2
Tok — Kok
Y =
2
Lrve — KNk
r—2z1  —2y1x 1 O1xq
—2x2;  —2y2r 1 O1xa
M, = .

L—2xnkr —2yngk 1 Oixq

The covariance matrix Rroa i, associated with the measure-
ment equation in (4) is obtained from (21). Based on the
same assumption of constant acceleration model, the state
update process of Z; and g can still be acquired based on
(10) and (11). By summing up and rearranging all the N
measurement equations, the following relationship can be ob-
tained as

Ry = Wrp +2X7 - &p + 2Y7 1 - O (33)
where

N N

Wri =Y rix = Kix
i1 i—1
N N

Xrk = Zl’qk Yre = Z%k (34)
=1 =1
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With (10), (11), and (33), the update process of the state
variable R becomes

Ri =Ry 1 +2(Xrp — Xrgo1)dk 1
+2(Y7 e — Yrh1)Uk—1 + 2X7 1500 k1 AL
+ 27 Oy k1 A+ X iy k1 AF

+ Y7 by g1 A+ (Wr g — Wrg_1). (35)
Based on the derivations as above, all of the state variables
can be obtained for the UKT-TOA scheme. The matrix Fy
associated with state equation (5) can be expressed by replacing
Xs 1 and Yg j, in (14) with X7 ; and Y7 5, in (34), respectively,
for all k. The control input uy_; in (5) can also be acquired by
changing Wy, in (15) to W, for all k.

B. UKT-TDOA Scheme

Under the network scenarios that there only exists TDOA
measurement inputs, the UKT-TDOA scheme can be utilized
to perform location estimation and tracking for the MS. The
formulation of the UKT-TDOA scheme is similar to that of the
UKT-TOA method, as stated in the previous section. The major
difference is that the third nonlinear state variable in the state
vector is replaced by 71 = [(Zx — il_’k)2 + (& — ng)z]l/z
instead of I%k for the UKT-TOA scheme, i.e., the state vector
becomes Ty =[x Ur 1.k Vpk Vyk Gak dyyk]T. Note that
the variable 7y j represents the estimated distance from the
MS to the reference BS based on the TDOA system. With the
available N TDOA BSs, there will exist N — 1 time difference
measurements. Therefore, from (7), the measurement data vy,
and the matrix My, in (4) can be acquired as shown at the
bottom of the page. The covariance matrix RTDO A% Within the
Kalman filter measurement update is the same as (22). Similar
to the methodology stated in the UKT-TOA scheme, the state
variable 71 ;, can be represented as

"1t =Wpr+2Xp i Tk +2YD k- Uk (36)
where
1
WD,k} - N
2 Zi:Q Til,k
N . N ~ ~
< > K=Y iy~ (N = DKy x| (37)
i=2 i=2
Xp g = i (Fok = 1)

N - -
Zi:Q(yi,k’ - yl,k)

S itk

Consequently, based on (10), (11), and (36), the update process
of the variable 7 ;, can be obtained as

Ypr = (38)

16 =T16-1+ (XD — XD k—1)Tr-1
+ Ypx — YD k-1)Uk-1 + XD Uz k1AL

1
+ YD Uy k1 At + EXD,k&z,k—lAtQ
1 .
+ EYD,kay,k—lAt2 + Wbk —Wpr-1). (39

Finally, the state matrix F; of (5) can be obtained by sub-
stituting X, and Yg, in (14) with Xp /2 and Yp /2 in
(38), respectively. The control input ug_; in (5) is acquired by
replacing Wy, in (15) with Wp . in (37) for all k. Performance
evaluation of both UKT-TOA and UKT-TDOA schemes will be
conducted in the next section.

V. PERFORMANCE EVALUATION

The performances of the proposed HUKT, UKT-TOA, and
UKT-TDOA schemes are evaluated via MATLAB simulation
platform. Realistic network simulations are performed to follow
the models and parameters for practical systems, including
TOA signals from the DSRC network and TDOA signals from
the cellular network. Ranging schemes are utilized in these
network systems to measure the signal arrival time between the
MS and BS, which is adopted to align the time frame of re-
ceived/transmitted packets and to measure the relative distances
for positioning purpose. Since system bandwidth is reserved
for the ranging schemes in both networks, perfect scheduling
for the TOA and TDOA measurements can be assumed in
network simulation. Based on the simulation procedure and
parameters adopted in [33], the noise models that are utilized
in the simulations are described in Section V-A. Performance
comparisons of the proposed HUKT scheme under ideal and re-
alistic network scenarios are conducted in Sections V-B and C,
respectively. Section V-D describes the performance evaluation
of UKT-TOA and UKT-TDOA schemes under homogeneous
networks.

A. Noise Models

Different noise models [33] for the TOA measurements are
considered in the simulations. The measurement noise n;
in (1) is chosen as the zero-mean Gaussian distribution with
standard deviation o, i.e., n;j ~ N(0,0?%), where o will be
selected in the following sections based on different network

r K 2 —2(T3 — X
Y = 75 p — (K3 — Kig) M, ( S,k' 1,k)

—2(Zo e —T1k) —2(T2k —U1k) 27216 Oixa
—2(U3,6 —U1,k) 27316 Oixa
_2(551\7,1@ — T1k) _2@1\7,k —J1.k) _27ZN1,k 014



CHIANG et al.: HUKT ALGORITHMS FOR HETEROGENEOUS WIRELESS LOCATION SYSTEMS 711

environments. On the other hand, the NLOS noise e¢;j, is
modeled by an exponential distribution pe, , as

Pern(v) = { - exp (_AL) » v>0 (40)

, otherwise

where \; = c-7; = ¢ 7,,( p. The parameter 7; is the RMS
delay spread between the ith BS and MS, 7, represents the
median of 7;, and e is the path loss exponent assumed to be 0.5.
The shadow fading factor p is a lognormal random variable with
zero mean, and its standard deviation o, is set to be 4 dB in the
simulation. The value of 7,,, will be determined later according
to various circumstances.

For the TDOA measurements, since it is formed by the
subtraction of two TOA signals, the same parameter set with the
TOA noise model is utilized except for the standard deviation
of Gaussian noise o and the mean value of the RMS delay
spread T7,,,. In the hybrid scenario, both values of o and 7, for
TDOA-based cellular signals are selected to be larger than
that of the TOA-based sensor measurements. The reason for
selecting larger values in the cellular network is mainly due to
the larger communication ranges of the BSs, which will result
in higher Gaussian and NLOS errors. Moreover, a constant
acceleration model is assumed for the Kalman filter, and the
sampling time interval At = 1 s is selected for the total simu-
lation time of 300 s.

B. Performance Comparison of HUKT Scheme Under
Ideal Network Scenarios

The effectiveness of the proposed HUKT scheme associated
with the three hybrid factors is evaluated in this section. The
simulation scenarios for validating the proposed HUKT algo-
rithm are to consider ideal network environments with only
Gaussian noises and sufficient signal sources. There are eight
BSs deployed as a regular polygon in the network, which
includes four TOA and four TDOA measurements, as illustrated
in Fig. 3. Within the total 300-s simulation time, it is assumed
that the signals from all the BSs can always be received by
the MS such that the precision for location tracking will not
be affected by different numbers of available BSs. The source
of estimation error is restricted to only Gaussian noise for val-
idation purposes. Zero-mean Gaussian distributions each with
standard deviation of 60 m A/(0, 3600) and 120 m N(0, 14 400)
are chosen for TOA and TDOA measurements, respectively.

Fig. 4 shows the performance validation of the proposed
HUKT scheme by observing the position errors in each time
step associated with their corresponding hybrid factors, i.e.,
By k> Bm,k» and By, which are denoted as HUKT-GHF,
HUKT-MVHF, and HUKT-KHF schemes. Note that the aver-
age position error is defined as AP, = > || Tx — xx||/m,
where xj, is the MS’s true position at time k, and m = 10 is
the number of simulation rounds for each time step in the entire
300-s simulation time. It can be observed from Fig. 4 that the
values of GHF 3, j vary in a relatively small range compared
with the other two hybrid factors since it is only determined by
the geometric relationship between the MS and the associated
BSs. The GHF f,, cannot completely react to the operating

1000} >
O 0]
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E 9 > S
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500}
o e O
~1000 } >
0 500 1000 1500 2000
X (m)

Fig. 3. BS layout and tracking route for the proposed HUKT-GHF, HUKT-
MVHEF, and HUKT-KHF schemes (triangles: TDOA-based BSs; circles: TOA-
based BSs).
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Fig. 4. Position errors associated with the hybrid factors from the proposed
HUKT-GHF, HUKT-MVHE, and HUKT-KHF schemes.

status of the proposed HUKT scheme, which results in a larger
position error compared with that from the other two hybrid fac-
tors 3y, and (3 ;.. It can be seen that the KHF 3y ;, can quickly
respond to variations of position error, e.g., a larger value of
By.1 is assigned to compensate for the excessive position error
at simulation time of around 200 s. Therefore, the proposed
HUKT-KHF scheme can provide the smallest average posi-
tion error of the MS compared with the other two methods.
Fig. 5 illustrates the performance comparison of average po-
sition errors among the HCLT algorithm, the HKT method, and
the proposed HUKT scheme based on the three determination
methods for hybrid factors By, Bm k., and By . Note that
the two-step LS method is adopted as the location estimator
for both HCLT and HKT schemes, as shown in Fig. 1. It
can be seen that the proposed HUKT algorithms outperform
the other two existing schemes, e.g., the HUKT-KHF scheme
results in around 220 m less in position error compared with
the HCLT scheme under 90% average position error. The
estimation accuracy for both HCLT and HKT methods relies
greatly on the performance of the location estimator. These two-
stage location tracking schemes induce larger estimation error
compared with the proposed single-stage HUKT algorithm. The
nonlinear behavior is also predicted and updated within the
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Fig. 5. Performance comparison among the HUKT-GHF, HUKT-MVHEF,
HUKT-KHF, HKT, and HCLT schemes.

HUKT formulation, which results in higher location estimation
and tracking accuracy for the MS. Furthermore, similar to the
observation in Fig. 4, the HUKT-KHF scheme results in the
smallest position error in comparison with the HUKT-MVHF
and HUKT-GHF methods. The main reason is that the
HUKT-KHF algorithm closely follows the KT process for ad-
justing the hybrid factor 3; ;,, which can effectively reduce the
tracking error for the MS.

C. Performance Comparison of HUKT Scheme Under
Realistic Network Scenarios

In this section, performance comparisons among HUKT,
HKT, and HCLT schemes are implemented under realistic net-
work environments with NLOS noises and insufficient number
of signal sources. The network scenario for the simulation is de-
scribed as follows. As shown in Fig. 9, for MS’s location track-
ing, the BSs deployed in a regular cellular layout are considered
to perform TDOA measurements, whereas the randomly dis-
tributed short-range sensors conduct TOA measurements. Note
that the empty circles represent the locations of the cellular
BSs, and the empty triangles indicate the sensor BSs. The noise
distributions for the TOA and TDOA measurements are chosen
as N(0,3600) and N (0,32400), i.e., with 60 and 180 m of
standard deviation, respectively. The RMS delay spread 7,,, for
the NLOS noises is set to be 0.1 for TOA measurements and 0.3
for TDOA measurements. Fig. 6 illustrates the total number of
available BSs for TOA and TDOA measurements, respectively,
during the simulation time of 300 s. It is noticed that situations
with insufficient signal sources are arranged in the simulations,
i.e., the number of BSs is less than three and four for TOA and
TDOA BSs, respectively.

Fig. 7 shows the position errors along with the corre-
sponding hybrid factors from the proposed HUKT-GHEF,
HUKT-MVHEF, and HUKT-KHF schemes. It can still be ob-
served that the proposed HUKT-KHF scheme outperforms the
other two methods under the existence of NLOS noises. Fig. 8
illustrates the performance comparison on the average position
errors among HKT, HCLT, and the three proposed HUKT

7 . . ;
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Number of Bs
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1
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Fig. 6. Number of available BSs from TOA and TDOA measurements.
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Fig. 7. Position errors associated with the hybrid factors from the proposed
HUKT-GHF, HUKT-MVHEF, and HUKT-KHF schemes.
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Fig. 8. Performance comparison among the HUKT-GHF, HUKT-MVHE,
HUKT-KHF, HKT, and HCLT schemes.

schemes. The proposed HUKT-KHF algorithm can provide
better performance compared with all the other schemes, e.g.,
around 100 m less in position error compared with the HKT and
HCLT schemes under 67% average position error. The HUKT
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Fig. 9. Trajectory tracking of the MS using the HCLT, HKT, and HUKT-
KHF schemes (solid lines: true trajectories; dotted lines: estimated trajectories;
triangles: TDOA BSs; circles: TOA BSs).
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Fig. 10.  Velocity tracking of the MS using the HCLT, HKT, and HUKT-KHF
schemes (solid lines: true velocities; dotted lines: estimated velocities).

formulation tracks the nonlinear behavior as the information
feedback to enhance the measurement update, which results
in higher location estimation and tracking accuracy for the
MS. Furthermore, the signal insufficiency problem from the
individual measurement path can also be alleviated by adopting
the proposed HUKT algorithm. Figs. 9-11 show the trajectory
tracking for the MS’s position, velocity, and acceleration by
adopting the HUKT-KHF, HCLT, and HKT schemes. It can
be seen that the proposed HUKT-KHF algorithm can provide
better tracking capability compared with the other two schemes.
Both tracking results obtained from HCLT and HKT schemes
severely deviate from their true trajectories as the acceleration
has been altered. Furthermore, at the tail of route, the insuffi-
ciency of signal sources made both HCLT and HKT algorithms
unable to maintain accurate location tracking for the MS. The
proposed HUKT-KHF algorithm can still provide consistent
performance, including position, velocity, and acceleration,
under the variations of MS’s mobility.
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Fig. 11. Acceleration tracking of the MS using the HCLT, HKT, and
HUKT-KHF schemes (solid lines: true accelerations; dotted lines: estimated
accelerations).

= Abscissa (%)
o o o o o
o > N ® ©

I
~
T

Average Position Error <
o
()

0.2f —©— UKT-TOA| ]
01 —p— KT |
' —a— CLT
0 (6 1L 1 1 1 1
0 100 200 300 400 500 600

Position Error (m)

Fig. 12. Performance comparison among the UKT-TOA, KT, and CLT
schemes for TOA measurements.

D. Performance Comparison of UKT-TOA and UKT-TDOA
Schemes

In this section, the performances of the proposed UKT
scheme for pure TOA and TDOA measurement inputs are
evaluated. The BSs are designed to locate in the regular cellular
layout for both situations. The noise model for both types
of signal inputs are Gaussian measurement noises with 60 m
standard deviation, i.e., n;; ~ AN(0,3600), and exponential
NLOS noises as (40) with RMS delay spread 7,,, = 0.3. Figs. 12
and 13 respectively show the performance evaluation for the
UKT-TOA and UKT-TDOA schemes compared with both KT
and cascade location tracking (CLT) algorithms. Note that the
KT and CLT schemes are also implemented with pure TOA
and TDOA measurement inputs for the purpose of performance
comparison.

Similar to the results obtained from the HUKT algorithm,
the simplified versions, i.e., the UKT-TOA and UKT-TDOA
schemes, can still outperform both KT and CLT algorithms with
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Fig. 13. Performance comparison among the UKT-TDOA, KT, and CLT
schemes for TDOA measurements.

homogeneous measurement inputs. For example, as shown in
Figs. 12 and 13, under 67% average position error, the proposed
UKT-TOA scheme can provide around 60 m less position error
compared with the other two methods, whereas the UKT-TDOA
algorithm results in 120 m less of position error compared with
the CLT scheme. The proposed UKT schemes can additionally
track the variation of the nonlinear variable to provide better
location tracking accuracy. The effectiveness of the proposed
single-stage architecture can be revealed by directly extracting
the observation results from original measurement inputs to
mitigate the error propagation phenomenon in multiple-stage
systems. This benefit of adopting the unified structure for
achieving higher precision on location estimation and tracking
can therefore be observed.

VI. CONCLUSION

In this paper, an HUKT technique has been proposed for lo-
cation estimation and tracking. Based on heterogeneous signal
inputs, the HUKT scheme integrates the location estimation
and tracking problems within a unified Kalman filtering for-
mulation. Different hybrid factors are designed for the HUKT
algorithm to enhance the location tracking accuracy. Compared
with other existing wireless location techniques, simulation
results show that the proposed HUKT scheme can both provide
higher precision for mobile location tracking and adapt to
environments with insufficient signal sources.
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