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We present theoretical studies of magnetism in II-VI
magnetic nanocrystals (NCs) containing single electron
coupled to substitutional magnetic ions Mn2+. By using
exact diagonalization techniques, we explore the mag-
netic phases of magnetic polarons in NCs doped with
few Mn2+ ions, as functions of NC size, Mn number
and positions. We show that ferromagnetic magnetic po-
larons (MPs) are stably formed in small magnetic NCs
due to strong quantum confinement.

By contrast, magnetic polarons with short ranged
Mn-clusters in larger NCs exhibit various distinct
magnetic phases, from ferromagnetism (FM) to anti-
ferromagnetism (AF), sensitively depending on NC size.
The stability of magnetic polarons in NCs with arbitrary
number of Mn ions are analyzed within a proposed solv-
able model, supported by the numerical results calcu-
lated by using local mean field theory (MFT).

1 Introduction Spin interactions are known to play
an essential role in the carrier-mediated magnetism of
diluted magnetic semiconductors (DMSs) [1]. In III-V
DMSs, magnetic ion dopants, typically Mn2+ with spin
5/2, act as acceptors providing not only the sp-d spin
interaction with itinerant carriers but also additional attrac-
tive potentials to them [2]. The spin interactions between
carriers and localized magnetic dopant in III-V DMSs can
be further enhanced as holes are bound by Mn2+ accep-
tors due to the high local density at Mn site, i.e. forming
magnetic polarons (MPs). Fascinating magnetic properties
such as high Tc ferromagnetism of III-V DMSs, especially
in the insulating regime or in that of near metal-insulating
transition, are related to the formation of bound magnetic
polarons [3]. As compared with III-V DMSs, such bound
magnetic polarons however are not necessarily formed
stably in II-VI DMSs because divalent Mn ions are iso-
electronic in II-VI materials. Recent experimental and
theoretical studies nevertheless suggest that the magnetic
properties of II-VI DMSs could be optimized by reducing
the dimensionality of DMS material, e.g. quantum dot,

with the stable formation of magnetic polarons improved
by quantum confinement [4–6].

In this work, we present theoretical stdies of carrier-
mediated magnetism in II-VI magnetic nanocrystal quan-
tum dots containing single electron coupled to arbitrary
number of magnetic ions Mn2+. By using exact diago-
nalization techniques, we calculate the energy spectra and
magnetization of NCs doped with few Mn’s (up to Mn
number NMn = 3). We show that ferromagnetic mag-
netic polarons (MPs) are stably formed in small magnetic
NCs with isoelectronic Mn’s due to strong quantum con-
finement of NCs. Remarkably, magnetic polarons with
short ranged Mn-clusters in larger NCs exhibit various
distinct magnetic phases, from ferromagnetism (FM) to
anti-ferromagnetism (AF), controllable by engineering NC
size and Mn positions. The stability of magnetic polarons
in NCs with arbitrary number of Mn ions are analyzed
within a proposed solvable model, supported by the nu-
merical results calculated by using local mean field theory
(MFT).
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2 Model Hamiltonian We start with the Hamilto-
nian for a magnetic NC containing a single electron cou-
pled to many magnetic ions, given by

H = |p|2/(2m∗) + V0(r) −
∑

I

|J (0)
eM |s · MIδ(r − RI)

+
1
2

∑
I �=J

|JMM (RIJ)|MI · MJ , (1)

where m∗ is the effective mass of electron, V0(r) the
effective confining potential of NC, s (MI ) denotes the
spin of electron (the spin of the I-th Mn ion at posi-
tion MI ), r (p) the position (momentum) coordinate
of electron. The third (fourth) term describes contact
ferromagnetic interaction between electron and Mn2+

(short ranged anti-ferromagnetic interaction between
Mn’s). The Mn-Mn interactions are mainly mediated
by the superexchange mechanism, an indirect Coulomb
exchange interaction mediated by anions [1,7]. Exper-
imental measurements show that the typical values of
the nearest neighbor Mn-Mn interactions in most II-
VI:Mn alloys are at the scale of 10−1 − 100meV, de-
caying rapidly with increasing Mn-Mn distance [1,7].
Throughout this work, we take J

(0)
eM = 10.8meV ·nm3 and

JMM (RIJ ) = J
(0)
MMexp[−λ(RIJ/a0 − 1)] with the near-

est neighbor Mn-Mn exchange energy J
(0)
MM = 0.5meV

and λ = 5.1, where RIJ ≡ |RI−RJ| denotes the distance
between two Mn ions and a0 = 0.55nm lattice constant of
NC material [8].

Taking the hard wall spherical model for effective con-
fining potential V0 [9–11], we have the single electron wave
functions and eigen energies of spherical NCs, explicitly
given by Enlm = h̄2α2

nl

2m∗a2 and ψnlm(r) = 〈r|nlm〉 =√
2
a3

Jl(
αnl

a r)

Jl+1(αnl)
Ylm(θ, ψ) , respectively, where r = (r, θ, φ)

is the position of electron in polar coordinate, a the radius
of spherical NC, Jl(r) the spherical Bessel function, αnl

the nth zero of Jl, and Ylm(θ, ψ) the spherical Harmonic
function, n is the principal quantum number, l the angular
momentum, m the z-component of angular momentum.

3 Numerical results and analysis
3.1 Exact diagonalization To find the energy spec-

tra of NCs with few Mn ions at high accuracy, we use the
exact diagonalization technique for solving the eigenvalue
problem for Eq. (1). We take the outer product of few sin-
gle electron orbitals and all possible Mn spin configura-
tions as basis, i.e. |nlm; sz〉 ⊗ |Mz

1 ,Mz
2 , ..Mz

N 〉, build up
the Hamiltonian matrix for Eq. (1), and finally carry out
direct diagonalization. Convergence of numerical results is
tested by increasing number of electron orbitals taken for
the construction of e-Mn configurations. Since the typical
energy quantization (at the scale of ∼ 102meV) of NCs has
two order of magnitude larger than e-Mn and Mn-Mn inter-
actions (∼ 100meV), a single electron in magnetic NCs is
nearly frozen in the lowest orbital and the satisfactory nu-

merical convergence is achieved even only one electronic
orbital (i.e. the lowest s-orbital |100〉) is taken.

Figure 1(a) shows the calculated low-lying energy
spectra (relative to the ground state energy) of singly
charged NCs doped with three long ranged Mn2+ ions
at R1 = (X1, Y1, Z1) = (a/2, 0, 0), R1 = (−a/2, 0, 0)
and R3 = (0, 0, a/2), respectively. With the long spatial
separation between Mn’s (a � a0 and JMM → 0), the
FM e-Mn interactions are predominant and give rise to
magnetic ordering of Mn spins, i.e. forming ferromagnetic
MPs with total spin MGS = 5NMn/2 = 15/2. Figure 2
shows the calculated binding energies of the 3-Mn MPs,
defined by Eb ≡ EGS(JeM → 0) − EGS , as function of
NC radius, where EGS is the ground state (GS) energy of
system and EGS(JeM → 0) is the energy of the lowest
states calculated with disabling the e-Mn coupling. The
binding energies Eb are positive over the range of NC
sizes under consideration and increase with decreasing NC
size. Significant increase of Eb is observed as NC size is
smaller than the effective Bohr radius a < aB ∼ 3.1nm
(here m∗ = 0.15m0 and the dielectric constant ε = 8.9 are
taken for CdSe NCs).

In reality, Mn ions are likely randomly distributed in
NCs. To explore the effects of disorder, we study another
case of non-uniformly Mn-doped NC. Figure 1(b) shows
the numerically calculated relative energy spectra of singly
charged NCs containing three nearest neighbor (NN) Mn’s
at R1 ∼ R2 ∼ R3 ∼ (a/2, 0, 0). The NCs with short
ranged Mn-clusters are found to exhibit distinctive mag-
netic phases, from anti-ferromagnetism (M = 0) to fer-
romagnetism (M = 15/2), sensitively depending on NC
size. This is because, with decreasing NC size, FM e-Mn
interaction increases its strength and eventually become
comparable to or even overwhelm the strong AF interac-
tions between the nearest neighbor Mn’s.

3.2 A solvable simplified model We see from
Fig. 2 that the quantum size effect of small NCs drives
MPs into FM phases and results in rapid increase of Eb (at
the scale above > 101 meV) regardless of Mn disorder. To
gain more physical insights, we carry out an analysis based
on a solvable model Hamiltonian [12]

Heff = −|Jc|s · M +
|JM |

2

∑
I �=J

MI · MJ , (2)

in which constant e-Mn and Mn-Mn interactions are as-
sumed. Here we can take the estimates for the coupling
constants Jc ≈ J

(0)
eM/ΩNC and JM ≈ JMM (〈RIJ 〉) ∝

exp[−λ(4xMn)−1/3], where ΩNC = 4πa3/3 is the vol-
ume of NC, 〈RIJ〉 indicates the averaged value of Mn-
Mn distance, and xMn is the fractional composition of
Mn. It is clear that Jc (JM ) increases with decreasing
NC size (with increasing Mn concentration and/or decreas-
ing NC size). Following Ref.[12], we have the eigen en-
ergies of the low lying states: E(J = M + 1

2 ,M) =
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Figure 1 The energy spectra relative to the ground state (GS) energies of singly charged NCs with various sizes doped with (a) three
Mn ions positioned at R1 = (X1, Y1, Z1) = (a/2, 0, 0) , R2 = (−a/2, 0, 0) and R3 = (0, 0, a/2), and (b) three nearest neighbor
Mn ions at R1 ∼ R2 = (a/2, 0, 0) ∼ R3 = (a/2, 0, 0). The results are calculated by using exact diagonalization. The GSs of the
NCs containing the long ranged Mn’s are stably in the FM phases. By contrast, the ground states of the NCs with three short ranged
Mn’s undergo a series of magnetic phase transitions, from anti-ferromagnetism (AF) to ferromagnetism (FM) with decreasing NC size.

−Jc

2 M + JM

2 [M(M +1)− 35NMn/4]. The total Mn spin
of GS, MGS , is determined by solving ∂E

∂M |M=M0 = 0 and
chosen as the integer (half-integer) value closest to M0 for
even (odd) number of Mn. Accordingly, one can derive that
MGS = integer part[Jc/JM + c] − c, where c = 0(1/2)
for even (odd) number of Mn. The binding energy of mag-
netic polaron, defined by Eb ≡ EGS(Jc → 0) − EGS , is
given by

Eb =
Jc

2
MGS − JM

2
[MGS(MGS + 1) − c′] , (3)

where c′ = 0(3/4) for even (odd) number of Mn. Accord-
ingly, we have the binding energies of three Mn MPs in FM
phase estimated by

Eb =
15Jc

4
− 63JM

2
∼ (

45
16π

) · J
(0)
eM

a3
− 63JMM (〈RIJ 〉)

2
,

(4)

where the first (second) term is the positive (negative) con-
tribution from the FM e-Mn (AF Mn-Mn) interaction to
MP binding energy, tunable by NC size (averaged Mn con-
centration and spatial distribution). With the parameters
for CdSe:Mn NCs used in this work, the binding energy
of MP for a Mn-dilute (JM → 0) NC is estimated by
Eb ∼ NMn(aB/a)3 ·10−1meV. This accounts for the sig-
nificant increase of Eb caused by quantum confinement as
a ∼ aB(∼ 3.1nm) shown in Fig. 2. On the other hand, Eq.
(3) indicates that the stability of MP characterized by Eb

decrease as average Mn-Mn instance decreases or Mn con-
centration increases. This implies that averaged magnetiza-
tion of Mn-rich NCs should decrease with increasing Mn
concentration, as reported by previous experiments in Refs.
[5,6]. In the analysis above, the Mn magnetization of a Mn-
doped NC might be overestimated if the Mn distribution in
the NC is very disordered. This is because the Mn-Mn in-
teractions in the short range regime are much more senstive
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Figure 2 Binding energies Eb of magnetic polarons (MPs)
formed by three Mn ions bound by a single electron in NCs for
various NC sizes and Mn position configurations. The dashed line
indicates the binding energies of 3-Mn MPs in the FM phase es-
timated by the simplified model described by Eq. (4).

to the Mn-Mn distance than those in the long-range regime.
Nevertheless, it provides us a qualitative description of the
magnetic properties of uniformly Mn-doped NCs and al-
lows us for capturing the basic underlying physics.

3.3 Local mean field theory For NCs with more
Mn’s, we employ the local mean field theory to calculate
the averaged Mn magnetization for comparison of the anal-
ysis shown above [4,13]. In the theory, the model Hamil-
tonian of a singly charged NC with many Mn’s is written
as

HMF
σ = He − szhsd(r) , (5)

where He = |p|2/(2m∗) + V0(r) is the non-interacting
single electron Hamiltonian and hsd is the local field
experienced by the spin electron given by hsd(r) =
J

(0)
eMnMn〈Mz(r)〉 where nMn denotes the density of Mn

ions. The averaged local magnetization of Mn’s reads

〈Mz(r)〉 = MBM (Mb(r)/kT ) , (6)
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where BM is the Brillouin function and b(r) is the effec-
tive field felt by a Mn, provided by the local spins of other
Mn ions and electron. The local spin of electron is sup-
posed to be determined by solving the eigen problem of
the single electron Hamiltonian Eq. (5), for which an it-
erative self-consistent calculation is needed. However, for
strongly quantized NCs at sufficiently low temperature, the
effective field can be simply written as

b(r) ≈ J
(0)
eM

2
|ψ(r)|2 − JM 〈Mz(r)〉 . (7)

Here we consider only the AF Mn-Mn interactions be-
tween the nearest neighbor (NN) Mn’s and take the form of
the effective AF coupling JM = 6 exp{−λ[(4xMn)−1/3−
1]}. Eq. (7) is derived under the condition where electron
spin is nearly fully polarized and the influence of hsd on the
electronic structure of NC is neglected because of strong
quantization of NC. One can show that the condition is ful-
filled as kT � 〈hsd〉 ∼ NMnJ

(0)
eMΩ−1

QD. For the NCs con-
sidered in this work with typical volume ΩQD ∼ 102nm3,
the condition is satisfied as long as NMn > 10 and the
thermal energy of temperature kT � 1 meV.

The magnetism of a Mn-doped NC is characterized
with the averaged Mn magnetization defined by

〈M〉MF ≡ 1
ΩNC

∫
〈Mz(r)〉d3r. (8)

Figure 3 shows the average Mn magnetization 〈M〉MF

of Mn-doped NCs versus NC size and Mn concentra-
tion calculated by numerically solving the coupled Eqs.
(5)-(7). For NCs with fixed size, average Mn magnetiza-
tion 〈M〉MF decreases monotonically with increasing Mn
concentration, consistent with the analysis given by Eq.
(3). Ferromagnetic MPs are stably formed in NCs (i.e.
〈M〉MF → 5/2) only if the Mn concentration and NC size
are sufficiently small (xMn < 2%) and a < 3nm. Under
the mean field treatment, the spatially discrete magnetic
moments provided by magnetic Mn ions are replaced by
an effective continuous field of Mn magnetization. Thus,
the MFT might overestimate the effective strength of AF
Mn-Mn interactions for NCs with low Mn concentration,
but underestimate that of Mn-Mn interactions for non-
uniformly Mn-doped NCs with short ranged Mn-clusters.
Nevertheless, the magnetic phases of magnetic NCs pre-
dicted by MFT here show similar basic features to those
given by previous ED studies and analysis.

4 Summary In summary, we present theoretical
studies of magnetic properties of magnetic polarons bound
in singly charged II-VI semiconductor nanocrystals with
magnetic ions Mn2+. The exact diagonalization studies
show that ferromagnetic magnetic polarons (MPs) are sta-
bly formed in small magnetic NCs with few long ranged
Mn ions due to strong quantum confinement. By contrast,
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Figure 3 Averaged Mn magnetization of magnetic NCs, calcu-
lated by the local mean field theory for T → 0, as a function of
Mn concentration xMn and NC radius.

NCs containing short ranged Mn-cluster might exhibit rich
distinctive magnetic phases, from anti-ferromagnetism to
ferromagnetism, sensitively depending on NC size. The
stability of formation of magnetic polarons in NCs with
arbitrary number of magnetic ions is analyzed within a
simplified solvable model, supported by the numerical
results calculated by local mean field theory.
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