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Abstract: We propose a chiral Fabry-Perot cavity in which only the
cavity modes in almost pure spin (circular polarization) states lase in the
presence of gain. In absence of imposed nonreciprocal environments and
time-reversal symmetry breaking of emitter states to favor the emission of
circularly-polarized photons, only the resonance of modes with a specific
spin orientation remains in the cavity. We demonstrate a prototype of the
cavity using distributed Bragg reflectors and cholesteric liquid crystals. This
reciprocal cavity may provide a method to control the angular momentum
state of emitters based on stimulated emissions.
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1. Introduction

Nonvanishing angular momenta in quantum mechanical systems often come along with the
time-reversal symmetry (T symmetry) breaking. For example, the Zeeman splitting of elec-
tron spin states requires a magnetic field which breaks the T symmetry. In optics, in addition
to nonreciprocal responses such as the magneto-optic effect which distinguishes the two cir-
cular polarization (spin) states in a time-irreversible way, we gain another access to angular
momenta of optical fields via reciprocal photonic structures. Such examples include quarter-
wave plates which transform linearly polarized (LP) beams into circularly polarized (CP) ones,
or cholesteric liquid crystals (CLCs) in the chiral phase that filter CP components of inci-
dent waves [1, 2]. Specific mask patterns can also transfer orbital angular momenta to optical
beams [3–9]. In these schemes, the angular momentum difference between the incoming and
outgoing beams is balanced by those of mechanical objects which may exhibit observable ro-
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tations [10, 11] if they are not too bulky.
While the coherent CP radiation can be simply produced with proper placements of quarter-

wave plates in front of LP lasers (spin-state designation after photons leave the cavity), it is
more interesting to speculate another route: the immediate and almost perfect spin-state as-
signment of photons when photons are generated, namely, direct intra-cavity emissions of CP
photons. The latter category brings about more understandings and perspectives to the matter-
field interactions and related carrier (gain) dynamics. Such attempts could be carried out by
preparing the excited levels of emitters in specific angular-momentum states, of which only
one type of CP photons are emitted due to the angular-momentum conservation in the involved
radiative transitions. Examples of this kind include the CP lasing due to spin-polarized carriers
in vertical cavity surface emitting lasers through the spin-selective optical pumping [12, 13] or
the spin-aligned electrical injection [14,15]. These schemes usually require explicit T-symmetry
breaking (CP optical pump or magnetic spin aligner) to distinguish specific angular-momentum
emitter states from others. However, the corresponding degree of circular polarization often de-
pends critically on the operation temperature [16]. Another category is the CP radiation of
dye-doped CLC bandedge [17–20] or defect lasers [20–23]. Nevertheless, it is not obvious that
the direct and nearly pure spin assignment of photons is achieved in this case. Take bandedge
CLC lasers as an example. The polarization profiles of the Bloch modes that experience the
most gain from excited dye molecules are strongly coupled to the chiral structure of CLCs and
resemble LP helices along the CLC helical axis [24]. The polarizations of lasing modes do
not spin much inside the CLC cavity while the CP radiation is mainly decomposed from these
modes at outputs. Therefore, the spin orientation of photons could not be viewed as directly set
during emissions unambiguously.

The degree of circular polarization from CLC lasers, on the other hand, is more robust than
that of the scheme based on external T-symmetry breaking because the circular polarization re-
sults from the less fragile photonic effect at room temperature. Despite the indirect spin assign-
ment of emitted photons in the CLC case, chirality generally affects the spin and propagation
(helicity) of photons. Experimentally, the photon emission from quantum dots coupling to the
two CP radiation reservoirs through the planar chiral structure has been attempted [25]. Our
concern is whether with chiral cavities, the high purity of photon spin states can be achieved
directly as photons are emitted. If this condition is achievable, we may control the angular-
momentum states of emitters without imposed T-symmetry breaking such as an external mag-
netic field. Note that in reciprocal (or time-reversal invariant without loss or gain) cavities,
spontaneous emissions (SPEs) cannot distinguish pairs of time-reversal states. However, the
stimulated emissions (STEs) can do the job. This point will be addressed in section 2.

In this paper, we present a one-dimensional (1D) Fabry-Perot (FP) chiral cavity which ex-
hibits significant intra-cavity CP photon emissions when lasing. Under certain criteria, the po-
larizations of the two lasing modes turn into the same spin state while the other spin state has
no cavity resonance associated with it. As a result, only one circular polarization stands out
in the presence of gain. We show that such a FP laser is realizable using isotropic distributed
Bragg reflectors (DBRs) and CLCs, of which a few combinations had been considered in liter-
ature [26–28]. With an isotropic gain and randomly oriented dipole currents perpendicular to
the propagation axis of the FP cavity, both of which do not favor particular CP emissions, we
show that CP photon emissions are indeed due to chirality only.

In the remaining part of this paper, we first define reciprocal cavities and discuss the relation
of spontaneous and stimulated emissions to T-symmetry breaking in these cavities (section
2). The features of FP cavities utilizing a unique type of chiral reflectors are then discussed,
and we will show how to characterize the polarization state of the intra-cavity field with the
1D dyadic Green’s function and Stokes parameters (section 3). A prototype of the chiral FP
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cavity using CLCs and DBRs will be demonstrated, and the intra-cavity Stokes parameters are
calculated to verify that the lasing mode is indeed significantly circularly-polarized inside the
cavity (section 4). Although we begin with a reciprocal condition, we show that the feedback
from CP stimulated emissions may turn the cavity nonreciprocal (section 5). A conclusion will
be given at the end (section 6).

2. Time-reversal symmetry breaking from photon emissions in reciprocal cavities

A reciprocal cavity is a resonance structure (assuming a relative permeability of unity) in which
two current sources Js,1(r,ω) and Js,2(r,ω) and the corresponding electric fields E1(r,ω) and
E2(r,ω) oscillating at a frequency ω satisfy the Lorentz reciprocity theorem in the regime of
linear optics [29, 30]:∫

Ω
drJs,1(r,ω) ·E2(r,ω) =

∫
Ω

drJs,2(r,ω) ·E1(r,ω), (1)

where Ω is a region outside which Js,1(r,ω) and Js,2(r,ω) vanish. A nonreciprocal cavity is the
one in which the integral identity in Eq. (1) does not hold. Violations of the theorem occur when
the permeability tensor ¯̄εr(r,ω) represented in a real orthonormal basis set (for example x̂, ŷ,
and ẑ) is nonsymmetric, namely ¯̄εr(r,ω) �= ¯̄εT

r (r,ω), where the superscript “T” means matrix
transpose. Thus, we classify the cavity as reciprocal or nonreciprocal based on whether ¯̄εr(r,ω)
is symmetric [30, 31]. For the nonlinear regime such as lasers, we generalize this criterion of
symmetric matrices to the effective permittivity tensor dressed by nonlinearities [31]. Note that
the term (non)reciprocal here refers to the validity of the Lorenz reciprocity theorem rather than
certain distinct behaviors of specifically-polarized waves which still satisfy Eq. (1) [23].

In reciprocal cavities, spontaneous emissions cannot break the T symmetry of emitter states
by distinguishing the occupation number of one of the time-reversal paired states from the
other. To see that, let us compare the SPE rate Rsp,cv between states c and v (apart from a local
correction factor due to dielectric constituents) [32] with that Rsp,c̃ṽ between the time-reversal
states c̃ and ṽ at the same location rs in a reciprocal cavity:

Rsp,cv −Rsp,c̃ṽ =
2μ0ω2

cv

h̄
Im

[
μμμ∗

vc · ¯̄Gee(rs,rs,ωcv)μμμvc

]
− 2μ0ω2

c̃ṽ

h̄
Im

[
μμμ∗

ṽc̃ · ¯̄Gee(rs,rs,ωc̃ṽ)μμμ ṽc̃

]

=
2μ0ω2

cv

h̄
Im

[
μμμ∗

vc ·
{

¯̄Gee(rs,rs,ωcv)− ¯̄GT
ee(rs,rs,ωc̃ṽ)

}
μμμvc

]
= 0, (2)

where μo is the vacuum permittivity; h̄ is the Planck constant divided by 2π; μμμvc and ωcv

(μμμ ṽc̃ and ωc̃ṽ) are the dipole moment and transition frequency between states c and v (c̃
and ṽ), respectively (μμμ ṽc̃ = μμμ∗

vc up to a constant phase; and ωcv = ωc̃ṽ in absence of T-
symmetry breaking); ¯̄Gee(r,r′,ω) is the dyadic Green’s function at frequency ω , which con-
nects the current density at r′ to the optical field at r and exhibits the symmetry property
¯̄Gee(r,r′,ω) = ¯̄GT

ee(r
′,r,ω) (represented in a real orthonormal basis set) in a reciprocal en-

vironment; and we have used the fact that for a scalar X , X = XT. From Eq. (2), if the initial
occupation probabilities of states c and v are identical to those of c̃ and ṽ, respectively, sponta-
neous emissions cannot make their occupations uneven at later times.

On the other hand, from Poynting’s theorem, the STE rates Rst,cv and Rst,c̃ṽ triggered by the
two transitions in the same cavity could be different. Let us look into the difference between
the two transition rates:

Rst,cv −Rst,c̃ṽ =
ε0

2h̄

∫
dr′Im

[
Evc(r′) ·Δ ¯̄ε∗r,a(r′,ωcv)E∗

vc(r
′)−Eṽc̃(r′) ·Δ ¯̄ε∗r,a(r′,ωc̃ṽ)E∗

ṽc̃(r
′)
]

=
2ε0μ2

0 ω4
cv

h̄

∫
dr′Rst,cv,c̃ṽ(r′,rs), (3a)
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Fig. 1. The schematic diagram of the 1D FP cavity. Reflector 1 is isotropic while reflector
2 is chiral with specific characteristics of reflections.

Rst,cv,c̃ṽ(r′,rs) = Im
[
μμμ∗

vc ·
{ ¯̄G†

ee(r
′,rs,ωcv)Δ ¯̄ε†

r,a(r
′,ωcv)

¯̄Gee(r′,rs,ωcv)

− ¯̄GT
ee(r

′,rs,ωcv)Δ ¯̄ε∗r,a(r′,ωcv)
¯̄G∗

ee(r
′,rs,ωcv)

}
μμμvc

]
, (3b)

where ε0 is the vacuum permittivity; Rst,cv,c̃ṽ(r′,rs) is an integrand proportional to the dif-
ference between two local transition-rate densities at r′; “†” means hermitian conjugates of
matrices; Δ ¯̄εr,a(r′,ω) is the variation of the permittivity tensor due to the presence of gain and
is symmetric when represented in a real orthonormal basis set [Δ ¯̄εT

r,a(r
′,ω) = Δ ¯̄εr,a(r′,ω)] in

reciprocal environments; and Evc(r′) [Eṽc̃(r′)] is the field generated by μμμvc (μμμ ṽc̃):

Evc(ṽc̃)(r
′) = 2μ0ω2

cv(c̃ṽ)
¯̄Gee(r′,rs,ωcv(c̃ṽ))μμμvc(ṽc̃). (3c)

Further applying the symmetric form of the reciprocal dyadic Green’s function to Eq. (3b) and
assuming an isotropic gain [Δ ¯̄εr,a(r′,ω) = iΔεr,a,I(r′,ω) ¯̄I3, where Δεr,a,I(r′,ω) describes the
isotropic gain; and ¯̄I3 is the 3-by-3 identity matrix], we simplify Rst,cv,c̃ṽ(r′,rs) in Eq. (3b) as

Rst,cv,c̃ṽ(r′,rs) =−2Δεr,a,I(r′,ωcv)tr
{

Im
[

¯̄Gee(rs,r′,ωcv)
¯̄G∗

ee(r
′,rs,ωcv)

]
Im

[
μμμvcμμμ†

vc

]}
, (3d)

where “tr” means the trace sum. In Eq. (3d), the tensor product ¯̄Gee(rs,r′,ωcv)
¯̄G∗

ee(r
′,rs,ωcv)

[identical to ¯̄Gee(rs,r′,ωcv)
¯̄G†

ee(rs,r′,ωcv)] is a hermitian matrix. If this product is real hermi-
tian, the integrand Rst,cv,c̃ṽ(r′,rs) always vanishes. On the other hand, in chiral (anisotropic) but
reciprocal cavities, this product can be complex hermitian, leading to nonzero Rst,cv,c̃ṽ(r′,rs).
In particular, the nonvanishing integrand Rst,cv,c̃ṽ(rs,rs) at r′ = rs means that the transition rate
densities of μμμvc and μμμ ṽc̃ feedback by the corresponding dipole-induced fields (self-triggered
STEs) may be different even with identical initial occupations of states c and c̃ (v and ṽ). Phys-
ically, this phenomenon originates from the dipole-triggered lasing mode which carries a net
angular momentum inside the cavity. In the next section, we will describe how to construct FP
cavities of this type with a nearly perfect intra-cavity CP field when lasing.

3. Fabry-Perot cavities with a special chiral reflector

To construct FP cavities with a nearly perfect intra-cavity CP field, we incorporate the chirality
into the reflector at one side of the cavity. Figure 1 shows the schematic diagram of the 1D
FP cavity with a length h. The FP cavity is filled with an isotropic gain medium in the region
z ∈ (z1,z2). Reflector 1 (2) characterized by the reflection matrix ¯̄r1 ( ¯̄r2) in the LP basis (x̂ and
ŷ) is located at z1 (z2). These matrices connect the cartesian components of the incident wave to
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Fig. 2. The polarization states (a) v1,2 (case I), and (b) u1,2 (case II) when κ �= 0. The phase
angle of κ is set to arg(

√
a−b). When κ = 0, the polarization states v1,2 become ê− while

u1,2 turn into ê+.

those of the reflected one. We set reflector 1 isotropic and adopt a special design for reflector 2.
The reciprocity requires ¯̄r2 (matrix elements indexed by x, y) to be symmetric [33]:

¯̄r2 ≡
(

r2,xx, r2,xy

r2,yx, r2,yy

)
=

(
a, c
c, b

)
, (4)

where a, b, and c are complex numbers. The reflection matrix ¯̄r2,CP in the CP basis [matrix
elements indexed by ± corresponding to the basis ê± = (x̂± iŷ)/

√
2] is transformed from ¯̄r2

with the change of basis:

¯̄r2,CP ≡
(

r2,CP,++, r2,CP,+−
r2,CP,−+, r2,CP,−−

)
= ¯̄p† ¯̄r2 ¯̄p =

( a+b
2 , a−b

2 − ic
a−b

2 + ic, a+b
2

)
, (5a)

¯̄p =

(
1/
√

2, 1/
√

2
i/
√

2, −i/
√

2

)
, (5b)

where ¯̄p is a unitary matrix describing the transformation between CP and LP representations.
The polarization states of cavity modes are closely related to eigenvectors of ¯̄r2 ( ¯̄r2,CP). Let

us consider two special cases that one of the off-diagonal matrix elements in ¯̄r2,CP is much
less significant than the other, namely, (a− b)/2∓ ic = κ2 (−,+ for case I, II) and |κ |2 	
|a− b|. In both cases, we solve the eigenvalue problem ¯̄r2,CPw = Λw and obtain identical sets
of eigenvalues Λ:

Λ = Λ1,2 =
(a+b)

2
±κ

√
(a−b)−κ2 (1,2 for +,−). (6a)

The eigenvectors w corresponding to case I (II) are denoted as v1,2
CP (u1,2

CP) and written as

w = v1,2
CP =

(
v1,2

CP,+

v1,2
CP,−

)
=

1
D(a,b,κ)

( ±κ√
(a−b)−κ2

)
(case I), (6b)

w = u1,2
CP =

(
u1,2

CP,+

u1,2
CP,−

)
=

1
D(a,b,κ)

( √
(a−b)−κ2

±κ

)
(case II), (6c)

where D(a,b,κ) =
√

|κ |2 + |(a−b)−κ2|. As shown in Figs. 2(a) and 2(b), when κ �= 0 [phase
angle of κ is set to arg(

√
a−b)], the polarization eigenvectors v1,2 = v1,2

CP,+ê++v1,2
CP,−ê− (u1,2 =
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u1,2
CP,+ê+ + u1,2

CP,−ê−) of ¯̄r2 are two clockwise (counterclockwise) elliptical polarizations which
resemble ê− (ê+). When κ = 0, the two elliptical polarizations v1,2 (u1,2) become the identical
circular polarization ê− (ê+) with degenerate eigenvalues Λ1,2 = (a+ b)/2. In this condition,
the reflection matrix ¯̄r2,CP ( ¯̄r2) is turned into the Jordan canonical form [34]. The two identical
eigenvectors only represent one degree of freedom, while the other one has to be manually
introduced. In the case of ¯̄r2,CP here, the remaining degree of freedom corresponds to one of the
circular polarizations.

The polarization state of the field inside the FP cavity could be an almost pure spin state if the
cavity modes carrying any of the two polarizations v1,2 (u1,2) are amplified. It does not matter
which of v1,2 (u1,2) becomes the dominant polarization because they both resemble ê− (ê+). To
maintain the polarization eigenstates of reflector 2 throughout the FP cavity, isotropic reflector 1
is therefore adopted. In addition to these considerations, two issues still require clarifications.
First, the two polarization eigenvectors v1,2 (u1,2) are linearly independent unless κ is strictly
zero. Whenever κ �= 0, photons might have tended to be emitted in a combined polarization
state of v1,2 (u1,2) which carries no spin angular momentum. This point can be resolved with
the Stokes parameter S3(z,ω) inside the cavity, which is an indicator on the degree of circular
polarization. Second, we need a prototype of reflector 2 to validate the feasibility of the concept
in principle. Both issues will be addressed in section 4.

To see whether a nearly perfect CP field indeed exists inside the FP cavity with gain, we
consider a SPE source Js(z,ω) which only has the in-plane (xy) components relevant to the
transverse polarization state and satisfies the following ensemble average:

〈J∗s,α ′(z′,ω)Js,α(z,ω)〉= δα ′α δ (z− z′)∑
c,v

Dcv(z,ω)
| jsp,vc(ω)|2

2
, (7)

where α ′,α = x,y; Dcv(z,ω) is the dipole density due to the radiative transition between states
c and v, which contains the information of state filling and is only present inside the cavity;
and jsp,vc(ω) is the amplitude of the SPE dipole current. For simplicity, only the randomness
of the SPE source along the z direction [δ (z− z′) in Eq. (7)] is taken into account, which is
pertinent to the fundamental transverse mode of typical FP lasers. The Kronecker delta δα ′α
indicates that the SPE source does not favor emissions in specific transverse polarization states.
In the case of equal amounts of opposite-oriented but uncorrelated CP dipoles (no T-symmetry
breaking), the form of the ensemble average remains identical to that in Eq. (7). Therefore, the
polarization state of the intra-cavity lasing field is determined by the cavity alone. The optical
field E(z,ω) is connected to the SPE source through a response integral:

E(z,ω) =
∫ z2

z1

dz′ ¯̄Gee(z,z
′,ω)iωμ0Js(z

′,ω), (8a)

where the dyadic Green’s function ¯̄Gee(z,z′,ω) is a 2-by-2 tensor now because only the in-plane
components are considered. This Green’s function ¯̄Gee(z,z′,ω) satisfies the reflection boundary
conditions at z1 and z2 and can be analytically expressed in terms of two dyadic response kernels
¯̄G<

ee(z,z
′,ω) [z ∈ (z1,z′)] and ¯̄G>

ee(z,z
′,ω) [z ∈ (z′,z2)] in different regions:

¯̄Gee(z,z
′,ω) =U(z′ − z) ¯̄G<

ee(z,z
′,ω)+U(z− z′) ¯̄G>

ee(z,z
′,ω), (8b)

¯̄G<
ee(z,z

′,ω) =
ηeikh

2iωμ0

[
eik(z−z1) ¯̄r1 + e−ik(z−z1) ¯̄I2

][
¯̄r2 ¯̄r1e2ikh − ¯̄I2

]−1

×
[
e−ik(z′−z2) ¯̄r2 + eik(z′−z2) ¯̄I2

]
, (8c)
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¯̄G>
ee(z,z

′,ω) =
ηeikh

2iωμ0

[
e−ik(z−z2) ¯̄r2 + eik(z−z2) ¯̄I2

][
¯̄r1 ¯̄r2e2ikh − ¯̄I2

]−1

×
[
eik(z′−z1) ¯̄r1 + e−ik(z′−z1) ¯̄I2

]
, (8d)

where U(z) is the Heaviside step function [U(z) = 1 if z > 0; 0 otherwise]; η is the impedance
of the gain medium; and k is the complex propagation constant incorporating the gain effect.

The spectra of the four Stokes parameters Sn(z,ω) (n = 0− 3) inside the cavity are then
calculated from E(z,ω) [33]:

Sn(z,ω) = E∗(z,ω) · ¯̄MnE(z,ω), (9)

where ¯̄M0 = ¯̄I2 (2-by-2 identity matrix), ¯̄M1 = ¯̄σ3, ¯̄M2 = ¯̄σ1, ¯̄M3 = ¯̄σ2 [ ¯̄σn (n = 1 − 3) are
Pauli matrices]. The parameter S0(z,ω) represents the intensity of the field. While S1(z,ω)
and S2(z,ω) are both the intensity differences of the two orthogonal LP components, S3(z,ω)
reveals how significant a CP component is. To obtain the polarization state inside the FP cavity,
we substitute the expressions of E(z,ω) and ¯̄Gee(z,z′,ω) in Eq. (8a) to (8d) into the Stokes
parameters in Eq. (9) and then take the ensemble average 〈Sn(z,ω)〉 with the aid of Eq. (7).
For a perfect CP field, the magnitude |〈S3(z,ω)〉| is equal to 〈S0(z,ω)〉 while 〈S1(z,ω)〉 and
〈S2(z,ω)〉 vanish. If we further assume that the dipole density Dcv(z,ω) is uniform (valid
for short cavities), and the amplitude of SPE source jsp,vc(ω) and Dcv(z,ω) are frequency-
independent, the dominant frequency dependence of the Stokes parameter 〈Sn(z,ω)〉 comes
from an integral In(z,ω) defined as

In(z,ω)≡
∫ z2

z1

dz′tr
[

¯̄Gee(z,z
′,ω) ¯̄G†

ee(z,z
′,ω) ¯̄Mn

]
. (10)

The integral In(z,ω) can be calculated analytically with the expression of ¯̄Gee(z,z′,ω) in
Eq. (8b) to (8d). Note that if we apply the reciprocity condition ¯̄G†

ee(z,z
′,ω) = ¯̄G∗

ee(z
′,z,ω)

in Eq. (10), the integrand tr[ ¯̄Gee(z,z′,ω) ¯̄G†
ee(z,z

′,ω) ¯̄M3] in I3(z,ω), which describes the de-
gree of circular polarization, is closely related to Rst,cv,c̃ṽ(z′,z) in Eq. (3d) when μμμvc = |μμμvc|ê+
is a CP dipole moment in a homogeneous active region:

Rst,cv,c̃ṽ(z
′,z) ∝ Re

[
tr
{

¯̄Gee(z,z
′,ω) ¯̄G†

ee(z,z
′,ω) ¯̄M3

}]∣∣∣
ω=ωcv

. (11)

If we integrate both sides of Eq. (11) over z′ in the active region [z′ ∈ (z1,z2)] with a homo-
geneous gain, the real parts Re[I3(zs,ωcv)] and Re[〈S3(zs,ωcv)〉] (zs is the z coordinate of the
dipole moment μμμvc) turn out to be proper indicators of the difference Rst,cv−Rst,c̃ṽ between two
dipole-triggered STE rates which are related to each other via the T symmetry in Eq. (3a).

The resonance effect of the FP cavity is also one of the causes to the potential CP field. When
reflector 1 is isotropic ( ¯̄r1 = Γ ¯̄I2, where Γ is the reflection coefficient), the dyadic Green’s
function ¯̄Gee(z,z′,ω) is a matrix function of ¯̄r2 only, as indicated by Eq. (8b) to (8d). Thus,
the polarizations v1,2 (u1,2) are also the eigenvectors of ¯̄Gee(z,z′,ω). In particular, the dyadic
Green’s function ¯̄Gee(z,z′,ω) contains a matrix [Γexp(2ikh) ¯̄r2 − ¯̄I2]−1, and the operation of
¯̄Gee(z,z′,ω) on v1,2 (take case I for example) leads to an eigenstate relation as follows:

¯̄Gee(z,z
′,ω)vn=

gn(z,z′,ω)

ΓΛne2ikh −1
vn (n = 1,2), (12a)

gn(z,z
′,ω)=

{ ηeikh

2iωμ0

[
eik(z−z1)Γ+ e−ik(z−z1)

][
e−ik(z′−z2)Λn + eik(z′−z2)

]
z ∈ (z1,z′),

ηeikh

2iωμ0

[
eik(z′−z1)Γ+ e−ik(z′−z1)

][
e−ik(z−z2)Λn + eik(z−z2)

]
z ∈ (z′,z2),

(12b)
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where gn(z,z′,ω) is a regular scalar function. With the right frequency ω and gain effect, the
magnitude of the denominator |ΓΛn exp(2ikh)− 1| in Eq. (12a) can be small, indicating huge
responses for v1,2. This is just the round-trip oscillation condition of FP modes. Thus, if Js(z,ω)
contains the components of v1,2, these components would be significantly induced on E(z,ω).

A seeming paradox is related to the identical SPE rates in Eq. (2) and polarization states
v1,2 (u1,2) in Eq. (6b) [Eq. (6c)]: the polarization states of resonant cavity modes both resemble
one of the two circular polarizations and should solely favor the SPEs from the CP dipole
with the same spin orientation (Purcell effect), but in fact, both types of CP dipoles have the
identical SPE rates, as indicated in Eq. (2). The paradox originates from the inconsistency
between the SPE calculations based on the dyadic Green’s function ¯̄Gee(r,r′,ω) and Fermi’s
golden rule. In fact, Fermi’s Golden rule (Purcell effect) fails to take into account the condition
that the polarization of spontaneously-emitted photons from the opposite-oriented CP dipoles
can be partially converted to those of resonant cavity modes by reflector 2 when the photons are
reflected. Thus, SPEs from those opposite-oriented CP dipoles are not inhibited. In other words,
while Fermi’s golden rule always requires angular momentum conservations for both SPEs and
STEs in radiative transitions, this conservation law only applies to STEs in chiral (anisotropic)
cavities because the STE effect is a duplication process of photons. The spontaneously-emitted
photons can acquire additional angular momenta from chiral (anisotropic) structures, and the
emissions are not limited by angular momentum conservations in radiative transitions.

4. Construction of the chiral cavity

To implement the FP cavity, we use a quarter wavelength distributed Bragg reflector (λ/4 DBR)
with a high reflectivity in its stop band as reflector 1 and the cascaded structure of a λ/4 DBR
and CLC as reflector 2, as shown in Figs. 3(a) and 3(b), respectively. Thus, the reflector (cavity)
is chiral. The DBR insertion in reflector 2 is critical. Although CLCs alone satisfy the matrix-
element condition of |(a− b)/2∓ ic| 	 |a− b| for ¯̄r2, their characteristic of a ≈ −b leads
to small magnitudes |Λ1,2| and makes the resonance condition ΓΛ1,2 exp(2ikh) ≈ 1 difficult.
The additional insertion of DBR boosts |Λ1,2| (despite the smaller margin |a− b| for the goal
condition) and makes lasing easier.

In the calculations, we set the DBR center wavelength to 850 nm. The refractive indices of
the high- and low-index regions in both DBRs are assumed nondispersive with values 3.8 and
3.4, respectively. The thicknesses of the two regions are one quarter of the center wavelength
divided by the corresponding refractive indices. Reflector 1 (2) has 15 (7) DBR pairs. For the
CLC, the ordinary (extraordinary) refractive index no (ne) is 1.55 (1.65). We choose a chiral
pitch of 531.25 nm to match the 850 nm wavelength due to the possibility of near-infrared
lasing in CLCs [35]. The number of pitches is 20. Outside reflectors 1 and 2 are two free spaces
with refractive indices of 3.5 and 1.6, respectively. In the FP cavity, the complex refractive
index of the gain medium is also frequency-independent with a value 3.5−0.0118i. The cavity
length h is 486.3 nm.

The reflectivity spectrum of reflector 1 in Fig. 4(a) is calculated with the transfer-matrix
method. The DBR has a high reflection (|Γ|2 > 99.3 %) near 850 nm. Similarly, we obtain
the reflection matrix of ¯̄r2 from propagation matrices of the CLC and DBR [36]. Due to the
reciprocity in Eq. (5a) and (5b), the two diagonal matrix elements of ¯̄r2,CP must be identical,
reflecting the identical spectra of the square magnitudes for these two matrix elements in the
upper graph of Fig. 4(b). In contrast, the square magnitude |r2,CP,+,−|2 is much larger than
|r2,CP,−,+|2 [lower graph of Fig. 4(b)], which is the criterion for the resemblance between two
polarizations u1,2 and ê+ (case II). From the two reflection matrices, we calculate the Stokes
parameters inside the FP cavity in Fig. 5. The two peaks on the spectra correspond to the FP
modes of u1 and u2 while the patterns in the z direction reflect the standing waves of the cavity
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Fig. 3. (a) Reflector 1 is a λ/4 DBR at the left side of the gain medium. (b) Reflector 2 is
the cascade of a λ/4 DBR and CLC at the right side of the gain medium.

750 800 850 900 950
0.0

0.2

0.4

0.6

0.8

1.0
(a)

R
ef

le
ct

iv
ity

Wavelength (nm)
750 800 850 900 950

10-13

10-9

10-5

10-1
0.0
0.2
0.4
0.6
0.8
1.0

Sq
ua

re
 m

ag
ni

tu
de

Wavelength (nm)

 |r2CP,+,-|
2     |r2CP,-,+|

2

|r2CP,+,+|
2=|r2CP,-,-|

2
(b)

Fig. 4. (a) The reflectivity of reflector 1 versus the wavelength. (b) The square magnitudes
of matrix elements in ¯̄r2 versus the wavelength. The square magnitudes |r2,CP,+,+|2 and
|r2,CP,−,−|2 are equal (upper graph), while |r2,CP,+,−|2 is much larger than |r2,CP,−,+|2
near 850 nm (lower graph).

modes. The magnitudes of 〈S1(z,ω)〉 and 〈S2(z,ω)〉 are smaller than those of 〈S0(z,ω)〉 and
〈S3(z,ω)〉 by about two orders of magnitude, indicating an almost perfect CP field. The ratio
〈S3(z,ω)〉/〈S0(z,ω)〉 is an indicator of the degree of circular polarization, and its maximum
value at the main FP peak is about 99.8 % inside the cavity. Since we adopt an isotropic gain
and a SPE source which does not favor particular CP emissions, an intrinsically reciprocal but
chiral cavity is sufficient for the stimulated emission of photons in a nearly pure spin state. The
transmission out of the isotropic reflector preserves the polarization state inside the cavity, and
a nearly perfect CP radiation should be observable outside reflector 1.

5. Effect of circularly-polarized stimulated emissions on reciprocity

If the gain medium consists of emitter systems which contain degenerate time-reversal paired
states, the STEs in this chiral FP cavity can make the occupation numbers of the time-reversal
pairs uneven. This effect may further change the appearance of the permittivity tensor. In par-
ticular, the dressed permittivity tensor represented in a real orthonormal basis set may become
nonsymmetric, which breaks the reciprocity of the cavity.

To see the origin of this phenomenon, we use a simple model of double two-level systems
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Fig. 5. (a)−(d) Spectra of the Stokes parameters 〈Sn(z,ω)〉 (n = 0−3). The magnitudes of
〈S1(z,ω)〉 and 〈S2(z,ω)〉 are much smaller than those of 〈S0(z,ω)〉 and 〈S3(z,ω)〉.

1/ 2,1/ 2c 1/ 2, 1/ 2c

3/ 2,3 / 2v

Photon
ˆvc e ˆvc e

 

cf cf

vf vf

3/ 2, 3 / 2v
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Fig. 6. The energy levels of double two-level systems forming a time-reversal pair. The
dipole moment μμμvc between states c (|1/2,1/2〉) and v (|3/2,3/2〉) is −μ ê− and that μμμ ṽc̃
between c̃ (|1/2,−1/2〉) and ṽ (|3/2,−3/2〉) is μ ê+. Due to the dominance of photons with
a spin quantum number ms,ph = 1, only the STEs from c̃ to ṽ take place.

which form a time-reversal pair for the gain medium. As shown in Fig. 6, the excited state
c (c̃) is the spin angular momentum eigenstate |s,ms〉 = |1/2,1/2〉 (|1/2,−1/2〉) with the z
angular momentum quantum number ms = 1/2 (−1/2) [the z axis here is identical to that of
the chiral FP cavity]. The ground state v (ṽ) is the angular momentum state | j,m〉= |3/2,3/2〉
(|3/2,−3/2〉) with the z angular momentum quantum number m = 3/2 (−3/2) in the total
angular momentum space j = 3/2. The dipole moment μμμvc = −μ ê− (μμμ ṽc̃ = μ ê+) between
states c and v (c̃ and ṽ) is circularly-polarized. Selection rules ensure that radiative transitions
from c to v (c̃ to ṽ) are only accompanied by free-space photon emissions in the polarization
state ê− (z spin angular momentum quantum number ms,ph = −1), and those between states
c̃ and ṽ result in photon emissions in the polarization state ê+ (ms,ph = 1). Such examples
of the double two-level systems can be the fundamental heavy-hole excitons or the bandedge
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states of unstrained or compressively-strained [001] quantum wells [37]. Let us approximate
polarization eigenstates u1,2 of the two cavity modes in the chiral FP cavity as ê+ for simplicity.
Since only photons in the polarization state ê+ experience cavity resonances and dominate in
STEs, the population consumption in state c̃ is much faster than that of c. As a result, the
occupation number fc̃ of c̃ is smaller than that fc of c, and the occupation fṽ of ṽ is larger
than the counterpart fv of v. This unbalance in state occupations leads to unequal occupation
differences: fv − fc �= fṽ − fc̃, which is the sign of T-symmetry breaking.

From the density-matrix formalism [37] and the assumption that the double two-level sys-
tems remain degenerate except for state occupations, the effective permittivity tensor ¯̄εr(ω) due
to the feedback from the CP STEs can be written as

¯̄εr(ω) = εr,bgd
¯̄I3 +

Ne

h̄ε0

1
ωcv −ω − iγcv

[
μμμvcμμμ†

vc( fv − fc)+μμμ ṽc̃μμμ†
ṽc̃( fṽ − fc̃)

]
, (13a)

where εr,bgd is the background permittivity; Ne is the volume density of emitters; and γcv is
the dephasing parameter for the radiative transition between states c and v. If we substitute the
expressions of dipole moments μμμvc =−μ ê− and μμμ ṽc̃ = μ ê+ into Eq. (13a) and represent ¯̄εr(ω)
in the basis set {x̂, ŷ, ẑ}, the matrix form of ¯̄εr(ω) becomes

¯̄εr(ω) = εr,bgd
¯̄I3 +

Ne

h̄ε0

μ2

ωcv −ω − iγcv

{
[( fv − fc)+( fṽ − fc̃)]

2

( ¯̄I2, 02×1

01×2, 0

)

+
[( fv − fc)− ( fṽ − fc̃)]

2

( − ¯̄σ2, 02×1

01×2, 0

)}
, (13b)

where 02×1 (01×2) is the 2-by-1 (1-by-2) null matrix. If fv − fc �= fṽ − fc̃, the antisymmetric
Pauli matrix ¯̄σ2 makes the permittivity tensor ¯̄εr(ω) nonsymmetric and turns the chiral FP
cavity nonreciprocal. In fact, the matrix form of ¯̄εr(ω) is similar to the permittivity tensor in the
presence of the magneto-optical effect, which explicitly breaks the reciprocity.

In Eq. (13b), the asymmetry of the permittivity tensor vanishes in the quasi equilibrium
condition: fv − fc ≈ fṽ − fc̃, which is often equivalent to fc ≈ fc̃ and fv ≈ fṽ. Unless the occu-
pations relax rapidly between angular momentum states forming time-reversal pairs, namely,
fast angular momentum relaxation, the reciprocity is generally broken in this chiral FP cavity.
In principle, the model in sections 3 and 4 should take this nonreciprocal effect into account.
Nevertheless, the calculations based on reciprocal cavities and reasoning from Eq. (13a) and
(13b) indicate that the reciprocity (in a generalized sense for lasers) may be unstable in the
presence of both chirality and gain.

6. Conclusion

In summary, we have analyzed the criterion of the T-symmetry breaking of the emitter state
in absence of imposed nonreciprocal environments, and proposed a prototype of reciprocal
FP cavities which make the stimulated emission of photons directly in a nearly pure spin state
possible. Due to the special chiral reflector, which is constructed with a λ/4 DBR and CLC, the
potential lasing modes only have polarization states close to one of the circular polarizations.
In this case, chirality in turn may lead to a nonreciprocal cavity via the CP stimulated emission.
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