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We present a momentum-space solution for the time-dependent Schro¨dinger equation of a realistic hydrogen
atom in a strong laser pulse. The method can integrate the nonperturbative system to thousands of optical
cycles, previously thought not yet feasible. A hydrogen atom under a 285-nm~4.357-eV!, 97.5-TW/cm2 short
pulse is found to produce two prominent photoelectron peaks above threshold, and significant intermediate
bound-state resonance with the 4p state. With a 248-nm~5-eV! probe laser pulse that is ten times longer, the
resonant structure is explored.

PACS number~s!: 32.80.Rm, 32.80.Fb, 32.90.1a

The multiphoton excitation of atoms under intense laser
fields has been a subject of great interest. Among the studies,
most of the experimental works are on rare gas atoms while
many theoretical investigations are on the hydrogen atom.
The case of atomic hydrogen is of special interest, for there
is no electron correlation which complicates the problem.
The first above-threshold-ionization~ATI ! measurement on
the hydrogen atom was in a short-wavelength, long-pulse,
and moderate-intensity regime@1#. The progress of laser and
experimental technology allows the study of the hydrogen
atom in short intense laser fields. Kyrala and Nichols mea-
sured the ionization rate of ground-state hydrogen under
248-nm, subpicosecond pulses at TW to 100-TW/cm2 inten-
sities@2#. Recently, a series of experiments on hydrogen with
intense subpicosecond lasers by Feldmann and co-workers
have been reported@3–9#. On the theoretical part, Chu and
Cooper @10# explained the peak suppression of ATI and
branching ratios by Floquet theory. Kulander@11# calculated
the multiphoton ionization rate, and Gao and Starace@12#
used a variational method to study the two- and three-photon
processes in the perturbative regime. The calculations to the
248-nm experiment were tried by LaGattuta@13# and Pin-
dzola and Do¨rr @14#. Calculations related to Refs.@3–9# were
given by Dörr et al. @15# and Gontier and Trahin@16#.

It is generally believed that the direct solution of the time-
dependent Schro¨dinger equation for this problem has not
been feasible yet for a realistic pulse of 1 ps or 100 cycles of
field @9,17,18#. The basic difficulty of the calculation is the
nonlocalized ionized electronic wave function in the coordi-
nate space. The spreading of a wave packet in space as time
passes usually demands a large grid which strains the capac-
ity of even high speed computers. We present in this paper a
momentum-space finite element method which enables us to
integrate the system easily to thousands of field cycles on a
moderate desktop workstation. It generalizes the approaches
we developed for the one-dimensional cases@19,20#. A
momentum-space approach is ideally suited for problems in-
volving continuum dynamics, since both the bound and the
ionized wave functions are localized in momentum space.
The wave function thus does not significantly spread in time,

making accurate direct calculations tractable. We will em-
ploy our method to study the intensity resonance in the mul-
tiphoton ionization of hydrogen. This kind of problem on
some inert gas atoms has been studied experimentally@21–
25#. The mechanism of ionization is not very clear. We will
investigate the ionization dynamics with similar conditions
imposed on the hydrogen atom and study the excitation
mechanisms. It is known that the short laser pulse will ex-
pose the resonant structures@26#, but we need a longer pulse
to resolve the resonances due to the uncertainty principle
@21–24#. We propose a numerical experiment with a 285-nm
pump laser of 97.5 TW/cm2, full width at half maximum
~FWHM! 400 fs, plus a 248-nm probe laser with ten times
longer duration and one-tenth of the intensity. The reasons
and results will be explained below.

Let us describe the method first. Consider the integral
Schrödinger equation in momentum space,
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It can be expanded into piecewise constant basis functions as
defined below. To simplify our notation, we use atomic units,
wheree5\5me51. We will use the finite element expan-
sion for the radial momentum coordinatep and expand the
angular part as a sum of spherical harmonics,

c~p!5 (
j ,l ,m

v j
lm~ t !f j~p!Ylm~u,f!. ~2!

The finite element basis consists of orthonormalized piece-
wise constant functions:
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Under the dipole approximation and the Coulomb gauge, we
obtain an interaction termA–p. For fields linearly polarized
in thez direction,m in ~2! is a good quantum number and we
drop the indexm hereafter.

Substituting~2! into the Schro¨dinger equation~1!, and
multiplying by the basis functionsYlm andf j , we obtain the
system of coupled ordinary differential equations
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HereQl is the Legendre function of the second kind@27#. We
use a staggered leapfrog algorithm to integrate~4! in time
@28,29#. For a typical calculation on a workstation, we
choose 15 partial waves and 250 momentum elements for
each of them. The first 200 momentum elements are uni-
formly spaced between 0 and 1 a.u., with increasingly wider
elements for largep. This grid resolves the ground state

accurately and contains enough continuum. Note that the
states corresponding to a very high energy will never be
populated using the interactions that we study.

In order to find out the resonant condition, we do a simu-
lation of the hydrogen ground state under a short-pulse field

E(t)5 ẑEmsin
2(pt/2Tp)sin(vpt), wherevp is the frequency

of the pump laser andTp is the pulse duration. We keep the
laser intensity at 100 TW/cm2 and FWHM 400 fs. Figure 1
depicts the ionization probability versus laser wavelengths
between 270 nm and 310 nm. We find that the maximum
ionization occurs around 285 nm, and a local maximum at
300 nm. We will see that the former is due to the enhance-
ment of ionization from a three-photon bound state resonant
with a 4p state, and the latter is mainly due to a three-photon
bound state resonant with a 3p state. In the next calculation,
we focus the wavelength at 285 nm, and with the same flu-
ence 40 J/cm2. We scan the intensity between 20 and 200
TW/cm2; Fig. 2 shows more accurately that the intensity for
maximum ionization is 97.5 TW/cm2. The ionization prob-
ability rises quickly near this intensity and is saturated after
that. The projections of final-state wave function to the un-
perturbed eigenstates for some cases are shown in Table I. In

FIG. 1. Ionization probability of hydrogen ground state vs
wavelength at fixed laser intensity and fluence.

FIG. 2. Ionization probability vs laser intensities at 285 nm and
fixed fluence.

TABLE I. The dominant projection probabilities of the final wave function to the unperturbed eigenstates.
The 100-TW/cm2 case is for 300 nm, the others are for 285-nm cases.

States 1s 3p 4p 4 f es ep ed e f eg

65 TW/cm2 0.977 0.00 0.00 0.00 0.0008 0.0004 0.0076 0.0003 0.0057
bounded equal to 0.985, ionized equal to 0.015

97.5 TW/cm2 0.152 0.00 0.160 0.077 0.076 0.068 0.30 0.0736 0.0431
bounded equal to 0.436, ionized equal to 0.564

pump plus probe 0.143 0.00 0.161 0.0823 0.064 0.077 0.30 0.0718 0.0455
bounded equal to 0.439, ionized equal to 0.561

100 TW/cm2 0.406 0.175 0.00 0.00 0.077 0.030 0.12 0.171 0.0143
bounded equal to 0.587, ionized equal to 0.413
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the 285-nm, 97.5-TW/cm2 case, we can see that there is sig-
nificant bound-state probability to the 4p state. When the 4p
level is shifted upward by 0.32 eV, it hits the three-photon
resonance and is the strongest one among the intermediate
resonances. The study shows that a significant fraction of the
ionization is resonant and two step in nature. The laser first
pumps the electron from the ground state to these bound
states via three-photon absorption and then excites it into
continuum. For the 65-TW/cm2 case, the electron remains in
the ground state at 98% probability after the excitation. But
for the 300-nm, 100-TW/cm2 case, we found strong bound-
state resonance with the 3p state. The evidence shows that
the intermediate-state resonance enhances the ionization
probability and is the dominant process in the ionization
mechanisms. The saturation of ionization probability for in-
tensity higher than 97.5 TW/cm2 is due to the same 4p reso-
nance.

Figures 3 and 4 show that the time evolution of wave
functions corresponds to the two cases of 285 nm. The spikes
correspond to the ATI peaks. But the subpicosecond-pulse

duration is too short and not able to resolve the resonances.
So we do a further investigation in the 97.5-TW/cm2 case by
an additional probe laser. We choose the probe laser at 248-
nm, 4-ps FWHM at an intensity of 9.75 TW/cm2. The elec-
tric field shape is sin2(pt/2Tb)sin(vbt), wherevb is the fre-
quency of the probe laser. The probe laser pulse duration
Tb is ten times longer thanTp , and the one-tenth intensity
makes ponderomotive effect negligible.Note that the pulse
duration is 6820 times the laser period. It is far beyond the
mentioned calculation bottleneck of 100 field cycles
@9,17,18#. The projection of the final wave function to unper-
turbed eigenstates is shown in Table I. It is most likely the
same as the 97.5-TW/cm2 pump case as expected because
the additional probe laser intensity is weak. But the photo-
electron energy resolution is much improved.

We show in Fig. 5 the photoelectron spectra of the case
with pump laser only, and with additional probe laser case.
The former case resolves only two dominant ATI peaks at
3.48 and 7.86 eV that are exactly coincident with the latter
case. They originate from four- and five-photon ionization of
pump laser photons. The insets in Fig. 5 are from the probe
laser only. The peaks are at the photoelectron energies 1.43,
2.3, 2.86, 3.02, 4.12, 4.46, 6.43, 7.3, and 8.46 eV. The
peaks come from 3\vb2Vion51.4, En541\vb54.15,
En551\vb54.456, 4\vb2Vion56.4, En5312\vb
58.49. The resonant peakEn531\vb53.49 happens to be
coincident with the first main ATI peak and cannot be re-
solved.Vion is the ionization potential of the hydrogen atom,
which is 13.6 eV. The peak at 2.86 eV is from
En531\vp52.85. From the analysis of angular momentum,
we believe that the peaks at 2.3 and 3.02 eV are from pon-

FIG. 3. Time evolution of the radial momentum wave functions.
The time from the bottom is 0, 0.2, 0.4, 0.6, 0.8, and 1.0 inTp ,
whereTp is the laser duration of pump laser.

FIG. 4. The same as Fig. 3 but for resonant intensity.

FIG. 5. Photoelectron kinetic energy spectra, the two main ATI
peaks are exactly coincident for both the pump and the pump with
probe laser cases. The insets are only from pump plus probe exci-
tation. Explanations for the resonances are in the text.
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deromotive shifted weak resonances ofEn53

1\vp . The resonance at 7.3 eV is obviously from
2.31\vb . We can see that the probe laser exposes the reso-
nances clearly.

In summary, our momentum-space finite element method
enables us to analyze the detailed mechanism of strong field
ionization for a real hydrogen atom. Calculations of this kind
can now be pushed to thousands of optical cycles. The de-

signed pump plus probe laser excitation should be interesting
in this field. We plan to publish further details of our method
and study on other topics elsewhere.
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Dörr, R.M. Potvliege, and R. Shakeshaft, Phys. Rev. A49,
4837 ~1994!.

@10# S.-I. Chu and J. Cooper, Phys. Rev. A32, 2769~1985!.
@11# K.C. Kulander, Phys. Rev. A35, 445 ~1987!.
@12# Bo Gao and A.F. Starace, Phys. Rev. Lett.61, 404 ~1988!;

Phys. Rev. A39, 4550~1989!.
@13# K.J. LaGattuta, Phys. Rev. A41, 5110~1990!; 47, 1560~1993!.
@14# M.S. Pindzola and M. Do¨rr, Phys. Rev. A43, 439 ~1991!.
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