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Abstract 
 

Vision-based vehicle detector systems are becoming increasingly important in ITS 

applications. Real-time operation, robustness, precision, accurate estimation of traffic 

parameters, and ease of setup are important features to be considered in developing such 

systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. 

These environments include changes in weather as well as challenging traffic conditions, such 

as shadow effects and jams. To meet real-time requirements, the proposed system first applies 

a color background to extract moving objects, which are then tracked by considering their 

relative distances and directions. To achieve robustness and precision, the color background is 

regularly updated by the proposed algorithm to overcome luminance variations. This paper 

also proposes a scheme of feedback compensation to resolve background convergence errors, 

which occur when vehicles temporarily park on the roadside while the background image is 

being converged. Next, vehicle occlusion is resolved using the proposed prior split approach 

and through reasoning for rule-based tracking. This approach can automatically detect straight 

lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to 

facilitate easy setup, we propose a means to automate the setting of the system parameters. 

Experimental results show that the system can operate well under various complex traffic 

conditions in real time. 
 

 

Keywords: Detection, segmentation, tracking, occlusion, rule-based reasoning, lane 

detection, prior occlusion resolution, traffic parameter 
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1. Introduction 

A multiple-vehicle detection and tracking (MVDT) system has the following applications: 

determining traffic parameters, detecting violations of traffic rules, detecting car accidents, 

classifying vehicles, and tracking vehicles. The advantages of MVDT are easy setup, low cost, 

a high degree of precision, and robustness. However, the efficiency of such a system is greatly 

affected by various complex traffic environments. Hence, most systems incorporate their own 

approaches for detection in order to overcome the effects of such complex traffic conditions. 

Unfortunately, an extra detection approach leads to greater computing effort, and hence, 

meeting real-time requirements becomes more challenging. 

Wang [1] proposed a joint random field (JRF) model for the detection of moving vehicles in 

video sequences. This method could take into account moving shadows, lights, and various 

weather conditions. However, the method could not perform vehicle classification or detect 

vehicle velocity. Tsai et al. [2] presented a novel vehicle detection approach for detecting 

vehicles from static images on the basis of color and edges. This approach involved a new 

color transform model to find important “vehicle color” information in order to quickly locate 

possible vehicle candidates. This approach could also be used for detecting vehicles in various 

weather conditions, but it does not address the resolution of vehicle occlusions. Zhang et al. [3] 

developed a multilevel framework to detect and handle vehicle occlusion. The proposed 

framework consisted of an intra-frame, an inter-frame, and tracking levels to resolve vehicle 

occlusion. Neeraj et al. [4] presented a method for segmenting and tracking vehicles on 

highways using a camera that was positioned relatively closer to the ground. Melo [5] 

proposed a low-level object tracking system that generated accurate vehicle motion 

trajectories, which could be further analyzed to detect lane centers and classify lane types. A 

lane-detection method aimed at handling moving vehicles in various traffic scenarios was 

proposed by Cheng et al. [6]. A new background subtraction algorithm based on the 

sigma-delta filter, which was intended to be used in urban traffic situations, was presented in 

[7]. An example-based algorithm for moving vehicle detection was introduced in [8]. 

A double-difference operator (three-frame difference) [9] was used to detect vehicles from 

the magnitude of the gradient. This approach was more complicated than the previous scheme 

generally used, and also gathered more vehicle information. However, with this approach, it 

was difficult to overcome luminance changes caused by daylight, weather conditions, and the 

operation of automatic electric shutters (AES). Consequently, optical-flow-based techniques 

that estimated the intensity of motion between two subsequent frames were developed 

[10][11]. These approaches required substantial computing time to obtain optimal solutions, 

even when some algorithms to enhance computing speed were applied. Segmentation methods 

[12][13][14] that extracted a reference background to detect moving objects were better 

options for real-time applications. However, these methods were highly dependent on an 

initial background that had no disturbances from moving objects. 

 In this paper, a real-time MVDT system is developed to reduce the processing time, extract 

moving objects, and track vehicles in various complex traffic conditions. First, the background 

image is extracted by applying a segmentation algorithm [15] from a color image sequence. 

The current background image is regularly updated by referring to previous background 

images in order to ensure a more robust background extraction in circumstances where the 

degree of luminance is constantly changing. Moreover, this paper proposes a feedback 

procedure to resolve partial background updating errors, which occur in cases where vehicles 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                              2357 

are temporarily parked on the roadside while the background image converges. In the tracking 

process, the relative distances and directions of moving objects are utilized to determine 

whether to create, extend, or delete tracking trajectories. There are two approaches for solving 

issues of vehicle occlusions. If the occlusion is detected in the early stages, rule-based tracking 

through reasoning is applied. If early detection fails, a lane mask that is obtained through the 

lane detection technique [16] based on the extracted background is used to distinguish 

occluded vehicles. Finally, traffic parameters are calculated from the tracking trajectories by 

referring to the lane mask. Moreover, to enable an easy setup, the automatic evaluation of 

traffic parameters is proposed. The work is organized as follows. Chapter 2 presents an 

overview of the system. Chapter 3 introduces the methods used in the process of dynamic 

segmentation, including extraction of the background, segmentation of moving objects, 

adaptation to illumination change, and compensation of the background. Chapter 4 explains 

automatic lane detection and the procedure of prior split by lane mask.  Vehicle tracking and a 

strategy to update traffic parameters are proposed in Chapter 5. Chapter 6 addresses the 

experimental results obtained by the proposed system, and Chapter 7 presents the conclusions 

drawn from these results. 

2. System Overview 

There are two important processes in the proposed MVDT system. One is dynamic 

segmentation, and the other is rule-based tracking through reasoning. In the first procedure, 

moving objects are segmented from video frames by referring to a regularly updated 

background as well as to previous tracking trajectories. There are several steps involved in the 

process of dynamic segmentation. First, the reference color background image is extracted. 

Second, moving objects are segmented by referring to the extracted background. Next, the 

background is modified to compensate for the changes in illumination. Finally, compensation 

for the background is applied and the automatic detection of straight lanes is performed. In the 

second procedure, the spatiotemporal characteristics of the moving objects are utilized to 

update their trajectories. The main goal here is to track the vehicles and calculate useful traffic 

parameters. The steps in this part include prior split by lane mask, filtration of falsely detected 

noises, updating of tracking trajectories, resolution of vehicle occlusions, and updating vehicle 

parameters. Fig. 1 shows the block diagram of the proposed MVDT system. 

 

 

Vehicle detection processing Vehicle tracking processing 

Dynamic 

segmentation 

Rule-based 

tracking 
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Delay 
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Previous moving objects 

Moving objects Trajectories 

 

Fig. 1. The block diagram of the proposed MVDT system. 
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Fig. 2 presents a detailed flowchart of the MVDT system. The dashed-line regions 1 and 2 

represent the sub-flowcharts for the procedures of dynamic segmentation and rule-based 

tracking through reasoning, respectively. 
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Fig. 2. The detailed flowchart of the proposed MVDT system: dashed-line regions 1 and 2 are the 

sub-flowcharts of dynamic segmentation and rule-based tracking through reasoning, respectively. 

3. Background Extraction and Moving Object Segmentation 

The primary goal of dynamic segmentation is to extract the background and to carry out 

segmentation of all moving objects. There are several steps in this section. First, the initial 

color background is extracted, after which moving objects are segmented. Next, an adapting 

rule to overcome the changes in illumination is applied. Finally, a compensation rule is 

employed to refine the background. 

3.1 Extraction of Color Background 

Color background extraction exploits the appearance probability (AP) of each pixel’s color. In 

other words, after gathering sufficient statistics, the color associated with the maximum AP is 

the most probable background color. To manage the AP of each pixel more efficiently, a 

pixel’s color class for AP calculation is designed with the following steps. 

Step 1. Creation and Initialization of the Color Class. 
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A color class located at coordinate (x, y) is uniquely identified by an ordered number. A color 

is created to calculate the AP values. In this class, CC(x, y, c) is employed as the counter, and 

CM(x, y, c) is used as the mean of the c
th
 class at (x,y). This class is also used to classify the 

pixel’s color in the RGB (R: red, G: green, and B: blue) color space. For convenience, CM(x, 

y, c) is defined as a vector with three RGB color components: [CMR(x, y, c), CMG(x, y, c), 

CMB(x, y, c)]
T
. The total number of classes at a particular coordinate is NC(x, y). Initially, only 

one class (the 0
th
 class) is created for each pixel. The total number of classes, color counter, 

and color mean of the 0
th
 class are given by 

,1),( yxNC                                                                 (1) 

,1)0,,( yxCC                                                                (2) 

, and 

),,,()0,,( 0tyxyx fCM                                                      (3) 

where f(x, y, t0) is a frame pixel located at coordinate (x, y) and is sampled at the initial time t0. 

Again, f(x, y, t0) is a vector with three RGB color components: [fR(x, y, t0), fG(x, y, t0), fB(x, y, 

t0)]
T
. A color background BG(x, y), which is a vector with three RGB color components 

[BGR(x, y), BGG(x, y), BGB(x, y)]
T
, is required to store the mean values of the converged color. 

The components of BG(x, y), denoted as BGR(x, y), BGR(x, y) and BGR(x, y) in Eq.(4), are 

initialized to a non-converging state for all pixels of the background. 
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Step 2. Updating the Color Class. 

The sum of the absolute differences in (5) between a frame pixel sampled at current time t and 

the corresponding c
th
 color mean is calculated as follows. This value is used to determine if the 

pixel already exists in the c
th
 class or if a new class must be created for it. 

,),,(),,(),,(
,,





BGRi

ii cyxCMtyxfcyxSAD                                    (5) 

First, the decision function in (5) classifies the pixel into a class j according to Eq.(6). In Eq.(6), 

the argument j is obtained by checking the argument c of the minimum value of SAD(x,y,c), 

where c runs from 0 to NC(x,y).   

))),,,((minarg(
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                                                  (6) 

Next, CM(x, y, j) and CC(x, y, j) will be updated with Eqs. (7) and (8).  
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If a class j in (6) does not exist, a new class will be created based on (9), (10), and (11). 

),,,()),(,,( tyxyxNCyx fCM                                                     (9) 

,1)),(,,( yxNCyxCC                                                        (10) 

.1),(),(  yxNCyxNC                                                     (11) 
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Step 3. Update Converged Color Class to Background. 

 

As more statistics are collected for the background converging, the color counter belonging to 

the background increases rapidly. Accordingly, the c
th
 color counter updated at time t is 

utilized to derive the AP of the class with Eq.(12). 
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The AP of the k
th
 class, which is the most probable color of the background, is given in Eq.(13).  

In Eq.(13), the argument k is obtained by checking the argument c of the maximum value of 

AP(x,y,c), where c is counted from 0 to NC(x,y). 

))).,,((maxarg(
),(0

cyxAPk
yxNCc

                                                (13) 

Hence, the background can converge according to (14). 

),,,(),( kyxyx CMBG                                                          (14) 

An example of background converging result is shown in Fig. 3. In Fig. 3-(a), it shows the 

background result by converging 30 frames. From the experimental result, it is obvious 

that the color information of the background is not sufficient and so the background is 

simple. The background result obtained by converging 45 frames is shown in Fig. 3-(b). 

After 45 frames, the color information of the background is incrementally built. Finally, 

the background result by converging 64 frames is presented in Fig. 3-(c).  

 
  

(a) Background result with 30 

frames 

(b) Background result with 45 

frames 

(c) Background result with 64 

frames 

Fig. 3. Examples of background convergence. 

 

3.2 Segmentation of Moving Objects 

Once the background has been properly extracted, the moving objects are detected by 

checking the sum of differences between the background and the input frame with Eq.(15).  
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where fi(x,y,t) is the input frame in (x,y) at time t, and i = R, G, and B. Next, two parameters, α 

and β, are used to determine the binary mask MM(x,y) of the moving objects in Eq.(16). 
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When the background is updated at each frame, the dynamic segmentation with the fixed 

parameters can overcome the slow changes in illumination caused by variations in daylight or 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                              2361 

the weather. However, when the illumination changes rapidly due to AES or other strong 

interfering noise in the visible spectrum, these fixed parameters will induce false detections. 

To deal with this, an adaptive thresholding procedure is developed to resolve the rapid changes 

in illumination.  The first step in this procedure is to find the trough VL=[VLR, VLG, VLB,]
T
 and 

the peak VH=[VHR, VHG, VHB,]
T

 of the filtered difference distribution FD(n)=[FDR(n), 

FDG(n), FDB(n)]
T
 between the background and the input frame. Second, the filtered difference 

distribution that depends on a difference distribution in Eq.(17) is obtained by applying 

Eq.(18). 
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In Eq.(18), 2p+1 is the filter order of the specified moving average filter. The reason for not 

directly using D(n) to find the valleys is that D(n) may be corrupted by noise. With the filtered 

difference distribution, the Laplacian operator in Eq.(19) is utilized to find the correct troughs 

with Eqs.(20) and (21). 

),1()(2)1()(2  nnnn FDFDFDFD                              (19) 

  ,0)(argmin 2  nFDVL                          (20) 

  ,0)(argmax 2  nFDVH                         (21) 

where min(), max(), and arg() are tuple-wise operations.  

Finally, the parameters α and β can be obtained using Eq.(22). With these dynamic threshold 

settings, the dynamic segmentation can overcome the rapid changes in illumination caused by 

various environment changes. 
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Examples of applying the adaptive thresholding procedure to overcome the rapid 

illumination changes caused by AES are presented in Fig. 4.  Fig. 4-(a) shows the original 

frame that is affected by AES. If the fixed parameters (α = -25 and β = 25) are applied, there 

will be some false moving objects segmented as shown in Fig. 4-(b).  Moving objects are 

segmented correctly in Fig. 4-(c) when applying the adaptive thresholding procedure. When 

compared with the experimental results of Fig. 4-(b) and Fig. 4-(c), we find that when AES 

occurs, some false moving objects are detected due to the effects of light on the application 

of fixed parameters. However, with the application of the adaptive thresholding procedure, 

these effects will not impact the segmentation of moving objects. From this example, we can 

conclude that the adaptive thresholding procedure is a useful method to overcome the 

changes in illumination.  
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(a) (b) (c) 

Fig. 4. Examples of applying the adaptive thresholding procedure to overcome the rapid changes in 

illumination caused by AES. (a) The original frame affected by AES. (b) False Moving objects obtained 

by applying the fixed parameters. (c) Moving objects obtained by applying the adaptive thresholding 

procedure. 

3.3 Adaptation of the Background to Illumination Changes 

Although the adaptive thresholding procedure can be used to overcome the rapid changes in 

illumination, the extracted background should be smoothly updated to overcome the 

environmental changes with Eq.(23). This updating makes the extracted background more 

flexible, helping to overcome the effects of variations in illumination as day turns to night and 

the changes in light intensity caused by changing weather. 
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3.4 Compensation for Background 

Although the background extraction process can yield the initial background rapidly and 

robustly, such initial background may be influenced by some vehicles parked on the roadside 

during the extraction of background. Once these parked vehicles begin to move away, the 

moving object segmentation procedure will falsely detect these regions as moving objects. 

Furthermore, the falsely detected regions of the background will never be updated because the 

moving-object regions of the background are impossible to update. Accordingly, a 

background compensation method is proposed to correct these false detections. 

The background compensation method adopts a trajectory feedback from the 

vehicle-tracking process to decide whether the moving objects are falsely detected; if the 

following three conditions are satisfied, then we determine that particular moving object 

detection to be false. 

I. The centers of the moving objects do not change significantly over a period of time. 

II. The starting nodes of the trajectories are not close to the boundary of a frame. 

III. No edge is present near the contour of a moving object. 

If these three conditions are met in the trajectories of any moving object, the regions of the 

moving objects will be recognized as the background. 

4. Lane Detections and Prior Split by Lane Mask 

In this section, methods of lane detection and prior split by lane mask are presented. They are 

used to detect lanes and resolve vehicle occlusions automatically in a given detection zone.  

4.1 Automatic Detection of Straight Lanes 
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There are several steps that have to be taken to detect lane markings automatically. First of all, 

line segments should be extracted. Second, line segments are grouped as lane separators. Next, 

noise is filtered. Finally, the lane markings are constructed. 

At the beginning of the procedure, the line segments must be extracted. The background 

BG(x, y) obtained by the process of color background extraction is used to derive a binary 

image LMC(x, y) with either white or yellow lane markings. The line segment candidate of 

lane markings shown in Fig. 5 is obtained by using Eq.(24). 
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In Eq.(24), PY(n) is the gray level value at n in the histogram of the Y component. PB(n) is 

the gray level value at n in the histogram of the B component. 2M+1 is the ordered position of 

the filter. 

Next, each pixel in LMC(x, y) is scanned from left to right, bottom to top to yield the 

bottom-left coordinate, LSS(s) = (LSSX(s), LSSY(s)), and the top-left coordinate, LSE(s) = 

(LSEX(s), LSEY(s)), of the s
th
 straight line segment. LSS(s) is defined as the coordinate of a start 

point. Three types of vertical connection displayed in Fig. 6 are applied to search LSE(s) with 

the following steps. 

I. Assign LSE(s) as LSS(s). 

II. Find out if one of the following coordinates is a start point: (LSEX(s) - 1, LSEY(s) – 

1), (LSEX(s), LSEY(s) – 1), and (LSEX(s) + 1, LSEY(s) – 1). 

III. If the start point exists, assign LSE(s) to the coordinate of the start point and go to 

step II. 

IV. Otherwise, set s to s + 1. 

During the scanning, each scanned pixel is marked with a processed flag so that it won’t be 

reprocessed. After all line segments are determined, a line segment merging procedure will be 

applied to group line segments into separators lane by lane as shown in Fig. 5. Assume the 

start and the end coordinates of the pth separator shown in vector form are defined as SPS(p) = 

[SPSX(p),SPSY(p)]
T
 and SPE(p) = [SPEX(p), SPEY(p)]

T
, respectively. All line segments 

belonging to the separator should have similar slopes. The first step in grouping the separators 

is to calculate the slopes of all the line segments. The next step is to extend a separator for each 

line segment from the top to the bottom of the image. Line segments near the extending 

separator with similar slopes should be grouped into the separator. Finally, all separator 

candidates will be determined, when all line segments are checked. 

Finally, horizontal and vertical noise should be removed by utilizing the characteristics of 

position and height. If any two boundaries caused by double lines or just noise are too close 

geometrically, the one nearest to the boundary of the detection zone will be removed. 



2364     Wu et al.: Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex 

Examples of filtering horizontal and vertical noise are shown in Fig. 7. 

 
Fig. 5. Annotations used in lane detections.  

 
Fig. 6. Vertical connection types: (a) Left hand (b) Front (c) Right hand. 

    

(a) (b) (c) (d) 

Fig. 7.  Examples of removing horizontal and vertical noise. (a) Original background image. (b) A 

binary image before removing noise. (c) A binary image after removing horizontal noise. (d) A binary 

image after removing vertical noise. 

4.2 Prior Split by Lane Mask 

If vehicles are occluded as they are just entering the frame, it will be difficult for the tracking 

process to create correct tracking trajectories. When the process of moving object 

segmentation cannot split such occlusions, a splitting approach will be necessary to resolve the 

occlusion before applying the tracking process. In this paper, a lane mask as described in the 

previous section is used as a reference for separating occluded vehicles. This approach is 

based on the assumptions that most vehicles are occluded horizontally when they are moving 

vertically in adjacent lanes. The proposed prior occlusion detection and resolution method is 

described as follows. 

Before detecting vehicle occlusions, the label ID l and the label ID image g(x, y) of a moving 

object are obtained by applying connected-component labeling [17] together with the use of 

the lane mask LM(x, y). The values of LM(x, y) are defined as: -1 (ignored), 0 (separators or 

boundaries), 1 (first lane), 2 (second lane), and so on.  

In the scheme to perform occlusion detection, each pixel of the l
th
 moving object is checked 

to determine whether the pixel should be accumulated into a histogram with Eq.(25). 

,1)),(,()),(,(  yxLMlSyxLMlS  
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Where  
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Furthermore, another histogram ST(l, h) based on a lane ID h with the top-most coordinate T(l) 

and the bottom-most coordinate B(l) of the l
th
 moving object is given by Eq.(26). 
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Certainly, each element in the histograms should be set to the initial state. Based on the 

histograms, the occurrence of occlusion is detected when Eq.(27) is satisfied.  
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For occlusion resolution, the l
th
 moving object is updated through the use of  Eq.(28). 
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This prior occlusion detection and resolution technique is performed before commencing the 

tracking of vehicles.  

5. Multiple-Vehicle Tracking and the Update of Traffic Parameters 

In this section, multiple-vehicle tracking and a strategy to update traffic parameters within the 

process of rule-based tracking through reasoning are presented. There are several steps 

involved in tracking multiple vehicles. First, the false moving objects should be filtered; 

second, the trajectories of the tracked targets should be updated. Also, vibrating moving 

objects, which appear as noise, need to be eliminated. Finally, algorithms need to be 

implemented to resolve vehicle occlusions, some proposals for which are presented in this 

work. 

5.1 Filtering of Falsely Detected Objects 

Falsely detected objects can normally be eliminated based on the spatial properties obtained 

by applying connected component labeling. These spatial properties include the top-most 

coordinate T(l), the left-most coordinate L(l), the bottom-most coordinate B(l), the right-most 

coordinate R(l), the area A(l), the width W(l), the height H(l), the aspect ratio AR(l), the size 

S(l), and the density D(l). In the spatial properties listed above, the first five can be directly 

evaluated while applying connected component labeling, and the others are derived using Eq. 

(29) to Eq. (33). 

,1)()()(  lLlRlW                                  (29) 

,1)()()(  lTlBlH                                     (30) 
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These spatial properties are employed to filter out the falsely detected objects. In other words, 

moving objects with spatial properties that fall into an unreasonable range of values will be 

filtered and eliminated as noise. 

5.2 Updating Trajectories and Eliminating Vibrating Moving Objects 

The centers of the trajectories are adopted as the reference point to correlate current moving 

objects with their trajectories and to reduce the computational burden. Euclidean distances 

between the center of the moving object and the last trajectory node are used to determine if a 

moving object can be correlated with an existing trajectory. If the number of nodes (tracking 

count) in the current trajectory exceeds one, the angle of the l
th
 moving object is checked with 

Eq.(36) to filter noises. 

),1,()(),,(  tkltkl C2C1P                                                   (34) 

),2,()1,(),(  tktktk C2C1Q                                              (35) 

),cos(),(),,(),(),,(),,( tktkltktkltklAC QPQP                           (36) 

where C1(l) is the center of the l
th
 moving object, and C2(k,t) is the center of a node in the k

th
 

trajectory at time t.           

In Eq.(36), if AC(l, k, t) > 0, the l
th
 moving object must satisfy the angular constraint θ with 

the k
th
 trajectory at time t. If a moving object satisfies the distance constraint but does not 

satisfy the angular constraint, a variations counter associated with the trajectory will be 

accumulated. If the variations counter of the trajectory exceeds a certain value, the trajectory 

will be classified as that belonging to a vibrating moving object, and the trajectory will be 

ignored as noise. 

5.3 Resolving Multiple-Vehicle Occlusions 

Any detected moving objects that cannot be correlated to an existed trajectory should be 

checked to see if it is occluded. A method is proposed to split vehicles occluded in the middle 

of a frame. The steps used to perform the splitting are as follows: 

Step 1: Check the intersection region of the bounding box of the current moving object and the 

estimated bounding box of the last trajectory node. If the intersection is not empty, then go to 

step 2. As the estimated bounding box is derived by the last and the penultimate trajectory 

nodes, the k
th
 trajectory, which spans less than 2 nodes at the current time, will not split.  

Step 2: Calculate the area of intersection TG(l) of the l
th
 moving object area and the estimated 

area of the k
th
 trajectory’s last node within the bounding box obtained in step 1. Then, if the 

intersected area TG(l) divided by the total area of the last node is sufficiently small, the 

moving object will be regarded as not occluded. Otherwise, go to step 3 to split the moving 

object. 
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Step 3: As the number of occluded vehicles that form a moving object is unknown, if the value 

of (A(l)-TG(l))/A(l) is less than a reasonable value, the moving object may consist of a single 

vehicle. Otherwise, the moving object may be merged with multiple vehicles, and it may be 

missed. The merged objects should be split into two newly generated moving objects. One of 

these two replaces the original moving object and the other is added to the end of moving 

object list. The second moving object will be checked again by repeating steps 1 to 3. 

Fig. 8 shows examples of tracking multiple vehicles. The original frame is shown in Fig. 

8-(a). Fig. 8-(b) shows the moving object mask obtained by applying dynamic segmentation. 

Fig. 8-(c) depicts the moving object candidates by applying connected-component labeling 

and filtering falsely detected objects. Fig. 8-(d) shows the bounding boxes of vehicles (in red) 

and the 6 most recent trajectory nodes (in magenta) in the original frame.  

    

(a) (b) (c) (d) 

Fig. 8.  Examples of tracking multiple vehicles. (a) Original image. (b) Moving object mask. (c) 

Colorful representation of connected components after applying Connected Component Labeling. (d) 

Tracking trajectories obtained. 

5.4 Calculation of Traffic Parameters 

Most traffic parameters can be derived from the tracking trajectories. Table 1 presents the 

equations used to calculate the traffic parameters. These parameters are updated when the 

tracked object moves out of the frame and its trajectory is deleted from the tracking list. 

Table 1. Equations used to calculate traffic parameters 

Traffic Parameters Equations 

Speed: VS(h
*
) )(

005.0
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where FPH is the number of frames per hour; N(k, t) is the number of 

nodes in the k
th

 trajectory at time t; C(l) is the center of the l
th

 moving 

object; )(kW  is the average width of nodes in the k
th

 trajectory. 
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6. Experimental Results 

The experimental results are obtained by testing several scenarios as shown in Fig. 9. The size 

of each image is 320 × 240 and the sampling rate of the sequence is 30 fps. In Fig. 9-(a) and 

Fig. 9-(b), there are two different weather scenarios - one being sunny and on the highway, the 

other being cloudy in an urban setting. Fig. 9-(c) shows vehicles moving at high speeds with 

heavy shadowing effects on the highway. The test case in rainy conditions is shown in Fig. 

9-(d). Fig. 9-(e), shows one of the tougher test cases, where vehicles moving at night have to 

be detected. Finally, test cases in traffic jams are shown in Fig. 9-(g). The testing conditions 

for each testing scenario are listed in Table 2. In Table 2, HC is the height setting of the camera, 

and the viewing angle is θC. CTF is the traffic flow per hour, and VM is the average velocity of 

each car during testing. TAP is the average processing time per frame. The proposed system is 

developed on a Windows XP platform with a Pentium-4 2.8 GHz CPU and 512M RAM. In 

Table 2, the average processing time per frame with a resolution of 320 × 240 in various 

environments is less than 13ms, which achieves 76 frames per second. With a real time 

constraint, the computing efforts of the system do not exceed 50% of CPU time, leading to the 

conclusion that the proposed system can work in real time. 

There are four parts to the experimental results. Accuracy ratios for detecting vehicles are 

addressed in section 6.1. The accuracy ratios for velocity and vehicle classification are 

presented in section 6.2 and section 6.3. Finally comparisons with other methods are listed in 

section 6.4. 

 

    
(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Fig. 9.  Test scenarios in various conditions. 

Table 2.The testing conditions for each scenario 

Scenario HC 

(m) 

θC 

(°) 
C TF  

(1/hr) 

VM 

(km/hr) 

TAP 

(ms) 

(a) Sunny 12 6 770 90 11.9 

(b) Cloudy 6 10 356 34 11.7 

(c) Shadow Effects 12 6 725 89 13.4 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                              2369 

(d) Rainy 6 10 287 33 12.3 

(e) Night Condition 6 10 309 76 11.7 

(f)Heavy Traffic 12 10 1135 45 12.7 

(g)Traffic Jams 6 6 523 12 12.6 

6.1 Accuracy ratio of vehicle detection 

Table 3 shows the experimental results for detecting vehicles. The accuracy ratios of the first 

two scenarios, (a) and (b), are similarly high. From the results, we may infer that the proposed 

methods have good detection ratios under the normal weathers. In scenario (c), we can see that 

the background has heavy shadow effects. However, the test result still has high accuracy 

ratios. In scenario (d), we can see that average detection ratios of around 95.7% may be 

achieved even in rainy conditions. In addition, the accuracy ratio at night is around 84.2%. 

Finally, the results of two traffic jams scenarios tested are presented, and they show that the 

proposed system can do well in traffic jams, especially on the highway. Besides, in Table 3, 

the false alarm counts (FAC, false-positive errors) are quite small in most cases, which is an 

indicator that the proposed system is robust in the various testing environments. 

Table 3. Accuracy ratios for detecting vehicles 

Scenario DC/TTC(*) FAC(**) Accuracy Ratio (%) 

(a)  Sunny 732/743 14/743 98.5% 

(b) Cloudy 583/603 21/603 96.7% 

(c) Shadow Effects 583/603 21/603 96.7% 

(d) Rainy 464/485 17/485 95.7% 

(e) Night Condition 406/482 8/482 84.2% 

(f) Heavy Traffic 511/556 14/556 97.9% 

(g) Traffic Jams 729/789 12/789 92.4% 

(*) DC is the Detection Count and TTC is the Total Target Count 

(**) FAC is the False Alarm Count 

6.2 Accuracy ratio of velocity detection 

Experimental results for the detection of velocity are shown in Table 4. The initial velocity of 

the tracking target is calculated from the changes in gravity. After that, the average velocity, 

denoted as VS, is updated with the speed equation shown in Table 1. The reference velocity is 

detected by the radar used for velocity detection where the tolerance is set to ±5 kilometers per 

hour. If the difference between the velocity detected by the proposed system and that detected 

by the radar is lower than the tolerance, the velocity is taken to be correct. In Table 4, there are 

two types of accuracy ratios calculated. One is based on total target count (TTC), which is 

affected by the detection ratios shown in Table 3. Another type is based on the detected count 

(DC), where the detection ratios become higher than the first type of accuracy ratio.  From the 

results listed in the table, the detection ratios of velocity are high in most cases. In the 

nighttime scenario (e), the detection ratios are lower than in other cases. That is because the 

effects of light heavily affect the detection of size and the positions that are calculated based on 

gravity. In the traffic jam scenario (g), vehicles move slowly and stop suddenly for traffic 

lights. So the velocities in this case fluctuate heavily and the accuracy ratios are lower than 

other cases. 
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Table 4. Accuracy ratio for detecting velocity 

Scenario DCV/TTC (*) Accuracy Ratio 

(%) 

DCV/DC Accuracy Ratio 

(%) 

(a)  Sunny 721/743 97.0% 721/732 98.5% 

(b) Cloudy 576/603 95.5% 576/583 98.8% 

(c) Shadow Effects 686/711 96.5% 686/696 98.6% 

(d) Rainy 454/485 93.6% 454/464 97.8% 

(e) Night Condition 356/482 73.9% 356/406 87.7% 

(f) Heavy Traffic 491/556 88.3% 491/511 96.1% 

(g) Traffic Jams 650/789 82.4% 650/729 89.2% 

(*) DCV is the correct detection count for velocity 

6.3 Accuracy Ratio of vehicle classification 

Table 5 shows the accuracy ratios for vehicle classification. There are two types of vehicles to 

classify. One type consists of large vehicles including bus and trucks; the other type comprises 

the small vehicles including sedans and vans. There are major differences between small and 

large vehicles mainly in the width and the height. From the experimental result in Table 5, the 

classification results are good except for the cases in rain and at night. 

Table 5. Accuracy ratio for vehicle classification 

Scenario CR/TTC (*) Accuracy Ratio 

(%) 

CR/DC Accuracy Ratio 

(%) 

(a) Sunny 682/743 91.8% 682/732 93.1% 

(b) Cloudy 551/603 91.4% 551/583 94.5% 

(c) Shadow Effects 640/711 90.0% 640/696 92.0% 

(d) Rainy 392/485 80.8% 392/464 84.5% 

(e) Night Condition 337/482 69.9% 337/406 83.0% 

(f) Heavy Traffic 480/556 86.3% 480/511 93.9% 

(g) Traffic Jams 688/789 87.2% 688/729 94.3% 

(*) CR is the Accuracy Ratio for vehicle classification 

6.4 Comparisons with other approaches 

Comparisons with other approaches are listed in Table 6. As shown, the detection and tracking 

ratio in [9] is similar to that obtained with the proposed approach though it does not detect the 

vehicle velocity and vehicle classifications. Next, not only are the detection ratios and the 

classification ratio of [14] lower than those with the proposed approach, it evaluates fewer 

traffic parameters, too. Finally, the detection and tracking ratios in [18] are also lower than 

those seen with the proposed system, and it calculates less traffic parameters, though it does 

not classify vehicles. 

Table 6. Comparison to other approaches 

Scenario Type Cucchiara et al. 

[9] 

Gupte et al. [14] Michalopoulos 

et al. [18] 

Proposed 

Approach 

(a)  

Sunny 

DC  97.9% 92% 96.8% 98.5% 

DCV N/A N/A 98.2% 98.5% 

CR N/A 89.2% N/A 93.1% 

(b)  DC  96.2% 92.2% 94.8% 96.7% 
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Cloudy DCV N/A N/A 96.3% 98.8% 

CR N/A 90.5% N/A 94.5% 

(c) 

Shadow 

Effects 

DC  96.5% 91.2% 93.5% 97.9% 

DCV N/A N/A 96.5% 98.6% 

CR N/A 91.3% N/A 92.0% 

(d)  

Rainy 

DC  95.4% 94.1% 93.5% 95.7% 

DCV N/A N/A 96.2% 97.8% 

CR N/A 82.5% N/A 84.5% 

(e) 

Night 

Condition 

DC  78.6% 83.2% 81.5% 84.2% 

DCV N/A N/A 80.2% 87.7% 

CR N/A 82.1% N/A 83.0% 

(f) 

Heavy Traffic 

DC  97.1% 93.5% 92.9% 97.9% 

DCV N/A N/A 95.8% 96.1% 

CR N/A 92.1% N/A 93.9% 

(g) 

Traffic Jams 

DC  93.5% 91.8% 90.3% 92.4% 

DCV N/A N/A 88.5% 89.2% 

CR N/A 91.6% N/A 94.3% 

  The experimental results above show that the proposed approach works well in various 

complex traffic conditions. 

6. Conclusion 

This study presents an MVDT system with automated parametric evaluation, vehicle detection, 

prior splitting based on lane information, vehicle tracking, post splitting, and comprehensive 

traffic parameter calculation. Initially, color background extraction based on spatiotemporal 

statistics with luminance adaptation, along with compensation of incorrect convergence is 

utilized to segment moving objects robustly. Next, prior splitting based on the previously 

gathered lane information is exploited using an automatic straight lane detection technique to 

resolve occluded vehicles that are just entering the detection zone. However, some vehicles 

may be occluded because they happen to be changing lanes in the middle of the detection zone, 

in which case, a post-splitting approach is applied. Finally, traffic parameters based on tracked 

trajectories are calculated to build traffic information. 

Experimental results indicate that the proposed system operates well in real time. The 

results also show that the proposed system can work well in various weather and traffic 

conditions. The precision and reliability of the proposed system is quite good because a lane 

mask is utilized to help to resolve vehicle occlusion under real-time conditions. Additionally, 

the developed system can be set up without the need for any information about the 

environment in advance. Finally, the traffic information that is collected by the proposed 

system can be used to control traffic, and in combination with a PDA or a mobile phone 

system it may be used to guide the driver of the vehicle under various traffic conditions. Future 

works need to improve the accuracy ratio when it is used in a wide range of environments. In 

addition, detection for motorcycles also needs to be developed to make the system practical for 

commercial usage.  
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