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In this study we propose a resistive random-access memory (RRAM) using stacked GeOx and PbZr0:5Ti0:5O3 (PZT). Under unipolar-mode

operation, the bilayers Ni/GeOx/PZT/TaN RRAM shows a large resistance window of >102, for 85 �C retention, and a good DC cycling of 2000

cycles, which are significantly better than those shown by the single-layer Ni/PZT/TaN RRAM without the covalent-bond-dielectric GeOx .

# 2011 The Japan Society of Applied Physics

1. Introduction

Although the charge-trapping flash nonvolatile memory
(NVM)1–3) has the lowest switching energy among various
NVM types, the degraded endurance from 105 to 104 cycles
with large-scale devices is the basic physical limit, as
reported in the international technology roadmap for
semiconductors (ITRS).1) Therefore, several NVM types,
such as ferroelectric random-access memory (FeRAM),4)

magnetic random-access memory (MRAM), and resistive
random-access memory (RRAM)5–26) are being investigated.
RRAM has attracted much attention for next-generation
non-volatile memory applications owing to its simple struc-
ture, small cell size, and high speed. Numerous candidate
materials for RRAM application exist including perovskite
materials, such as Pr0:7Ca0:3MnO3,

5) SrTiO3,
6,7) and GeOx/

HfON,8) and metal oxides, such as TiO2,
9) NiO,10) TaOx,

11)

SiOx,
12) and HfO2,

13) which have been widely investigated.
Unfortunately, the use of a large forming voltage accom-
panied with an abrupt current to form a filament conductive
channel14,15) may damage dielectric robustness and reduce
cycling endurance.9–12) To resolve the endurance issue,
in this study we proposes the ultralow-energy (ULE)
RRAM.6–8) A ULE memory with stacked covalent-bound
GeOx

27,28) and metal oxide feature both high- and low-
resistance-state (HRS and LRS respectively) currents and
a long endurance of 106 cycles. In this paper we discuss
the purely unipolar mode of operation of Ni/GeOx/
PbZr0:5Ti0:5O3(PZT)/TaN RRAM. In comparison with
the control Ni/GeOx/PZT/TaN RRAM without GeOx, Ni/
GeOx/PbZr0:5Ti0:5O3(PZT)/TaN has significantly improved
switching and 85 �C retention characteristics were; compar-
able characteristics could not be found in a similar covalent-
bound SiOx RRAM.12)

2. Experimental Procedure

RRAM devices were fabricated on standard Si wafers. For
very-large-scale integration (VLSI) backend integration, the
process began with the deposition of a 200-nm-thick SiO2

layer on a Si substrate. Then, a 100-nm-thick TaN layer
was deposited by physical vapor deposition (PVD). After
patterning the bottom TaN electrode, a 30-nm-thick PZT
film with an Ar/O ratio of 3/1 (PZT31) was deposited on the
TaN/SiO2/Si layer by PVD. An 8-nm-thick GeOx layer was
then deposited to form the stacked structure. Finally, the 50-

nm-thick Ni was deposited and patterned to form the top
electrode with an area of 11300 �m2. For comparison, a
Ni/PZT/TaN RRAM device was also constructed without
GeOx. Ni provides a low-cost solution for fabricating high-
work-function electrodes (5.1 eV), which are used in high-�
DRAM capacitors.29)

3. Results and Discussion

Figure 1 shows the swept current vs voltage (I–V ) curves of
Ni/PZT/TaN and Ni/GeOx/PZT/TaN RRAM devices. The
single-layer PZT and GeOx/PZT RRAM devices have HRS/
LRS resistance windows of 325 and 120, respectively. The
smaller resistance window of Ni/GeOx/PZT/TaN RRAM is
due to the lower set current, although this is crucial for lower
power operation. The higher set and reset voltages of the
Ni/GeOx/PZT/TaN RRAM than of the control Ni/PZT/
TaN device are related to the extra GeOx layer. The higher
LRS current of the control Ni/PZT/TaN RRAM is ascribed
to the conductive filaments. The lower set compliance
current of 0.1mA at 1.55V for the control RRAM is due to
the lower forming energy of filament paths in the vacancy-
rich PZT than of filament paths in c the stacked Ni/GeOx/
PZT/TaN one. However, a high LRS current and extra
filament paths may lead to the serious endurance issue
discussed below.

Figures 2(a) and 2(b) show the voltage and current
distributions, respectively. The set voltage distributions of
the Ni/GeOx/PZT/TaN and control devices are similar,
ranging from 1.7 to 1.1V. However, the narrow reset voltage
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Fig. 1. (Color online) Swept I–V curves of Ni/PZT/TaN and Ni/GeOx/

PZT/TaN RRAM devices.
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distribution of Ni/GeOx/PZT/TaN RRAM is slightly better
than that of the control Ni/PZT/TaN devices. A similarly
tighter distribution of reset current is also found in the
stacked Ni/GeOx/PZT/TaN RRAM. Therefore, the stacked
GeOx/PZT RRAM may assist in disrupting the filament
paths during the reset operation.

Figure 3 shows the set and reset I–V curves of the Ni/
GeOx/PZT/TaN RRAM. In the low electric field, both the
LRS and HRS exhibit trap-controlled space-charge-limited
current (SCLC) because the slopes is proportional to V .30)

Therefore, the filaments may be formed by the migration of
oxygen vacancies during resistive switching.

Temperature-dependent I–V switching is crucial for eval-
uating high-temperature retention performance. As shown in
Fig. 4, the Ni/GeOx/PZT/TaN RRAM shows significantly
better temperature stability from 25 to 100 �C than does
the control Ni/PZT/TaN RRAM. The fast increase in the
reset current of the control PZT RRAM with increasing
temperature up to 80 and 100 �C is attributed to the high
thermal leakage in the small-energy-bandgap PZT.
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Fig. 2. (Color online) (a) Voltage and (b) current distributions of Ni/

GeOx/PZT/TaN and Ni/PZT/TaN.
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Fig. 3. (Color online) Set and reset I–V curves of Ni/GeOx/PZT/TaN

RRAM fitted using space-charge-limited current conduction mechanism.
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Fig. 5. (Color online) Retention characteristics of (a) Ni/PZT/TaN

RRAM and (b) Ni/GeOx/PZT/TaN RRAM devices.
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The retention characteristics of the control Ni/PZT/TaN
and the Ni/GeOx/PZT/TaN RRAM devices from 25 to 85 �C
are shown in Fig. 5(a) and 5(b), respectively. The control
Ni/PZT/TaN RRAM is only retained up to 50 �C because the
HRS current increases rapidly at 85 �C, as shown in Fig. 4. In
contrast, the Ni/GeOx/PZT/TaN RRAM shows a signifi-
cantly improved retention at 85 �C, which is related to the
large bandgap6) and high activation energy of GeOx.

Endurance characteristics are significant factors of a
unipolar RRAM device because of both the high set current
and the poor control of filament size after the forming
process.9–12) Figures 6(a) and 6(b) show the DC endurance
characteristics of the control Ni/PZT/TaN and Ni/GeOx/
PZT/TaN RRAM devices at a read voltage of 0.2V,
respectively. The control Ni/PZT/TaN RRAM device only
lasts for 35 DC cycles. Such poor endurance originates
from the passage of a large current in the weak conductive
filaments of the device. In contrast, the Ni/GeOx/PZT/TaN
RRAM is considerably robust for cycling with a significantly
high endurance of 2000 cycles. This improved endurance
and data retention demonstrate the benefits of adding a large-
energy-bandgap GeOx to the unipolar-mode RRAM. Table I
shows a summary of the pertinent data of various unipolar
RRAM devices. The Ni/GeOx/PZT/TaN RRAM device
proposed in this study features the ideal low set/reset
voltages, a resistance window of >102, suitable 85 �C
retention, and good endurance characteristics among uni-
polar RRAM devices.6,9–12)

4. Conclusions

In this study we demonstrate stable resistive switching
behaviors in a Ni/GeOx/PZT/TaN device. Compared with
the control Ni/PZT/TaN RRAM, Ni/GeOx/PZT/TaN
device showed markedly improved retention and endurance.
The Ni/GeOx/PZT/TaN device could be a potential
candidate for unipolar mode operations.
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Table I. Comparison of pertinent data of various RRAM devices under

unipolar mode of operation.

GeOx/STO
6) TiO2

9) NiO10) TaOx
11) SiOx

12) GeOx/PZT

(This study)

ISET 1mA 1mA 0.4mA 1mA 1mA 1mA

at VSET at 0.8 V at 1.2 V at 3.9V at 2.3 V at 5.5 V at 1.9V

IRESET 0.8mA 70mA 6mA 0.1mA 5mA 1.7mA

at VRESET at 0.2 V at 1V at 1.5V at 0.7 V at 1.5 V at 1V

On/off
700� �103 50� 80� �105 125�

ratio

Retention — — —
2:4� 104 104 3000

at 85 �C at 25 �C at 85 �C

Cycling — 75 95 100 55 2000
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