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The US dollar is used as the primary currency of international crude oil trading; as such, the recent substantial
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model with the Student-t copula exhibits greater economic benefits than static and other dynamic strategies.
In addition, the positive feedback trading activities are statistically significant within the oil market, but this
information does not enhance the economic benefits from the perspective of an asset-allocation decision.
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1. Introduction

Energy commodities differ from other trading products both in
their uniqueness and their non-renewable nature. Due to the low
number of oil-producing countries, most countries must rely on
energy imports. As a result, the prices of energy commodities have
been profoundly influenced by numerous factors, such as government
policy, geopolitics, seasonal aspects, military conflicts, demand and
supply. In particular, since the US dollar is commonly used as the
invoicing currency in the international energy commodity market,
changes in the value of the US dollar have knock-on effects on
fluctuations of commodity prices and in turn affect the economic
actions of energy commodity importing and exporting countries.1 In
addition, over the last few years, energy commodity prices have
experienced an unprecedented high level of fluctuations. For example,
the crude oil price rose steadily from $20 per barrel in January 2002 to
a high of $147 per barrel in July 2008. It then fell sharply to $32 per
barrel in January 2009. In the meantime, since 2002 the US dollar
index (USDX2) has behaved in a markedly different manner to the
way it behaved prior to 2002 in that it has tended to move in the
opposite direction to the price of crude oil. As such, while the crude oil
price has soared, the US dollar has depreciated to a historically low
price, and vice versa. This negative relationship has resulted in
diversification and hedging benefits between crude oil commodities
and the US dollar. As a result, accuratemodeling and forecasting of the
volatility and dependence structures of oil and exchange-rate returns
are of considerable interest to global energy-related researchers,
financial institutions, and investors.

In recent years, a number of methods have been employed to
explore the relationship between oil prices and the US dollar
exchange rate. For example, using Hansen's GMM model, Yousefi
dex (USDX®) is an average of six major world exchange rates: the
ese Yen (13.6%), UK Pound (11.9%), Canadian Dollar (9.1%),
) and Swiss Franc (3.6%).

http://dx.doi.org/10.1016/j.eneco.2011.07.007
mailto:chihchiang@saturn.yzu.edu.tw
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andWirjanto (2004) investigated the impact of fluctuations in the US
dollar exchange rate on the formation of OPEC3 and verified that the
correlation of oil prices and the US dollar exchange rate is negative.
Akram (2004) presented evidence of a non-linear negative relation-
ship between oil prices and the Norwegian exchange rate, and pointed
out that the nature of the relationship varies with the level and trend
in oil prices. Cifarelli and Paladino (2010) used a multivariate CCC
GARCH-M model to determine that oil price dynamics are associated
with exchange rate behavior, and found strong evidence that oil price
shifts are negatively related to exchange rate changes.

Further, additional studies have focused on discussing the lead–
lag relationship between oil prices and the exchange rate, as well as
their interactive influence. For example, Krichene (2005) used the
vector error correction model (VECM) to demonstrate that the
negative impact of the falling nominal effective exchange rate could
lead to a surge in oil prices, and inversely either long-term or short-
term effects. Sari et al. (2009) employed generalized forecast error
variance decompositions and generalized impulse response func-
tions to find evidence of a weak long-run equilibrium relationship
but with strong feedback in the short run. Lizardo andMollick (2010)
used the cointegration analysis to reveal that oil prices significantly
contribute to the explanation of movements in the value of the US
dollar in the long-run: an increase in the real price of oil leads to a
significant depreciation of the US dollar relative to net oil exporter
countries. While these studies differ from the current study in terms
of the ultimate purpose, they still support the negative relationship
between oil prices and the exchange rate.

The majority of the existing literature points out the negative
relationship between crude oil prices and the US dollar exchange rate.
A number of possible explanations for this negative relationship are
summarized as follows. First, oil-exporting countries want to stabilize
the purchasing power of their export revenues (US dollar) in terms of
their imports (non-US dollar), so in order to avoid losses they may
adopt currencies pegged to the US dollar. Second, the depreciation of
the US dollar makes oil cheaper for consumers in non-US dollar
regions, thereby changing their crude oil demand, which eventually
causes adjustments in the oil price as it is denominated in US dollars.
Third, a falling US dollar reduces the returns on US dollar-
denominated financial assets, increasing the attractiveness of oil and
other commodities to foreign investors. Commodity assets are also
regarded as a hedge against inflation, since US dollar depreciation
increases the risk of inflationary pressures in the United States. Based
on the above reasons, we must consider changes in the exchange rate
and the oil price simultaneously.

The analysis of financial marketmovements and co-movements is
important for effective diversification in portfolio management.
Previous research, such as Bekiros and Diks (2008), and Chang et al.
(forthcoming), has commonly used multivariate GARCH models as a
means of estimating time-varying dependence structures, but this is
often based on severe restrictions in order to guarantee a well-
defined covariance matrix. In addition, the VAR model and multi-
variate GARCH models assume that the asset returns follow a
multivariate normal or Student-t distribution with linear depen-
dence. This assumption is at odds with numerous empirical research
studies, which show that oil and exchange-rate returns are skewed,
leptokurtic and fat-tailed, following very dissimilar marginal distri-
butions as well as different degrees of freedom parameters.4 Further,
the actual relationship between oil prices and the exchange rate is
possibly non-linear or asymmetrical. For example, crude oil returns
appear to bemore negatively associated with US dollar returns when
3 The Organization of the Petroleum Exporting Countries is a cartel of twelve
countries. The principal goals are safeguarding the cartel's interests and securing a
steady income to the producing countries.

4 Examples include Giot and Laurent (2003), Patton (2006), and Fan et al. (2008).
the US dollar depreciates as compared to when the US dollar
appreciates, especially after 2002. Thus, the linear correlation may
fail to capture the potentially asymmetric dependence between oil
and exchange-rate returns.

To address these drawbacks, we use copula-based GARCHmodels to
capture the volatility and dependence structures of crude oil and
exchange-rate returns. The copula-based GARCH models allow for
betterflexibility in joint distributions than bivariate normal or Student-t
distributions. In addition, employing the heterogeneous agent model,
Sentana and Wadhwani (1992) categorized investors into rational (i.e.
expected utility maximizers) and positive feedback (i.e. trend chasing)
investors and proposed a modified CAPM. By examining the role of
positive feedback trading in the US stock market, they discovered that
during lowvolatility periods, stock returns are positively autocorrelated,
but during high volatility periods they tend to be negatively auto-
correlated. Sucha reversal relationship in stock return autocorrelation is
consistent with the notion that some traders pursue positive feedback
strategies, i.e. they buy (sell) when the price rises (falls). Recently,
Cifarelli and Paladino (2010) employed this modified CAPM to
investigate speculative behavior in the oil market, where they
discovered evidence of positive feedback trading activities. Thus, the
current study assumes that the impact of feedback trading activities
will influence the dynamic behavior of oil prices. Moreover, three
types of marginal models are employed to capture a variety of
characteristics of oil and exchange-rate volatility processes, includ-
ing volatility clustering, the leverage effect, and the long-run effect.
Five types of copula functions are also used to provide amore general
dependence structure, as opposed to treating it as simple linear
correlation.

Furthermore, if a model performs better statistically this does not
necessarily imply that the model performs well in practice; as such,
we follow Fleming et al. (2001, 2003) in evaluating the out-of-sample
forecast performance based on the copula-based GARCH models
through the use of a strategic asset-allocation problem. We also take
the transaction cost problem into consideration and compute the
break-even transaction cost, as discussed in Han (2006): based on the
relationship between the break-even cost and the real transaction
cost, an investor decides whether or not to trade.

Our contribution to the literature is twofold. First, we propose the
copula-based GARCH models to elastically describe the volatility and
dependence structure of oil price and US dollar exchange-rate returns.
The copula-based GARCH models can be used to capture the potential
skewness and leptokurtosis of oil and exchange-rate returns, as well as
the possibly asymmetric and tail dependencebetweenoil and exchange-
rate returns. We find that the symmetric copulas seem superior to the
asymmetric copulas in terms of the description of a dependence
structure between crude oil and exchange-rate returns, and the CGARCH
modelwith theGaussian copula exhibits a better explanatory ability.We
also observe that the dependence structure between crude oil and US
dollar exchange-rate returns is not very significant before 2003, but it
becomes negative and descends continuously after 2003. Second, rather
than using statistical criteria, we examine whether the copula-based
GARCH models can benefit an investor by implementing an asset-
allocation strategy. In terms of out-of-sample results, we find that the
dynamic strategies based on the copula-based GARCH models outper-
form the static strategy and other dynamic strategies based on the CCC
GARCH and DCC GARCH models; this demonstrates that skewness and
leptokurtosis of crude oil and USDX futures returns are economically
significant. Furthermore, the CGARCH model with the Student-t copula
yields the highest performance fees and break-even transaction costs to
attract investors to switch their trading strategy. In addition, positive
feedback trading activities are statistically significant in the crude oil
market, but this feedback trading information does not enhance
investors' economic benefits. Finally, more risk-averse investors are
willing to pay higher fees to switch from a static strategy to a dynamic
strategy based on copula-based GARCH models.
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Fig. 1. Contour plot based on a. Gaussian copula, b. Student-t(5) copula, c. Clayton copula, and d. survival Clayton under the dependence parameter, τ=−0.2, with two types of
marginal distributions (Normal (0, 1) and Skewed-t (5,−0.1)).
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The remainder of this paper is organized as follows. In the next
section, we introduce the copula-based GARCH models in detail.
Section 3 presents the empirical estimation results. Section 4 in-
troduces an economic evaluation methodology and provides the
results for the out-of-sample forecasts of the copula-based GARCH
models. Finally, Section 5 offers conclusions.
2. Econometric model

2.1. Time-varying copula

In the past, multivariate normal distributions have been used to
describe multiple asset returns across a broad range of financial and



6 Relative to the equities, this asymmetric reaction of volatilities for commodities
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economic studies; the correlation is usually employed to describe co-
movement between different asset returns. However, the correlation is
only a simple measure of a dependence structure, and as a result it
cannot express the relationship completely. In addition, empirical
evidence has shown that the distributions of financial asset returns are
usually skewed and leptokurtic, and differ from normality. Moreover,
Fig. 1 demonstrates several copula contour plots under standard normal
and skewed-t marginal distributions. Under the skewed-t marginal
distribution, the axis of symmetry becomes a concave curve and the
distribution becomes more centralized. These plots indicate that, even
when using the same copula, the marginal difference causes great
dissimilarity, while false assumptions of marginal distributions induce
incorrect estimates of dependence structures. As such, this study
employs the copula model to provide a flexible method of constructing
multivariate distributions given the marginal distributions and the
dependence structures separately. We briefly review the basic proper-
ties of a bivariate copula (K=2) below.5

According to Sklar's theorem, a joint distribution function can be
separated into marginal distributions and a dependence structure. For
any bivariate cumulative distribution function, F(x1, x2)=P(X1≤x1,
X2≤x2), which has continuous marginal cumulative functions, Fi=
P(Xi≤xi) for 1≤ i≤2, there exists a unique copula function C(u, v)
such as F(x1, x2)=C(F1(x1), F2(x2)). Thus, different copula functions
can be used to depict a flexible dependence structure between two
random variables.

As previous studies indicated that comprehensive economic
factors will induce a dependence structure to change over time,
Patton (2006) extended Sklar's theorem and introduced the condi-
tional copula function tomodel time-varying conditional dependence.
Let ro,t and re,t be random variables that denote oil price and exchange-
rate returns at period t, respectively, with marginal conditional
cumulative distribution functions uo, t=Go,t(ro,t|Ψt− 1) and ue,t=
Ge,t(re,t|Ψt−1), where Ψt−1 denotes past information. Then, the con-
ditional copula function Ct(uo,t, ue,t|Ψt−1) can be written using the
two time-varying cumulative distribution functions. Extending Sklar's
theorem, the bivariate conditional cumulative distribution functions
of random variables ro,t and re,t can be written as

F ro;t ; re;t jΨt−1

� �
= Ct uo;t ;ue;t jΨt−1

� �
ð1Þ

Assume the cumulative distribution function is differentiable, and
the conditional joint density can be expressed as

f ro;t ; re;t jΨt−1

� �
=

∂2F ro;t ; re;t jΨt−1

� �
∂ro;t∂re;t

= ct uo;t ;ue;t jΨt−1

� �
× go;t ro;t jΨt−1

� �
× ge;t re;t jΨt−1

� � ð2Þ

where ct(ut, vt|Ψt−1)=∂ 2Ct(ut, vt|Ψt−1)/∂ut∂vt is the conditional
copula density function and gi(·) is the density function correspond-
ing to Gi(·).

From Eq. (2), the likelihood function can be expressed as:

Lo;e Θð Þ = Lo Θoð Þ + Le Θeð Þ + Lc Θcð Þ; ð3Þ

whereΘo andΘe are the parameter vectors of marginal distributions of
oil and exchange-rate returns, respectively, and Θc is the vector of
parameters in the copula function, ct. When the maximum likelihood
method is implemented over a high dimension case, the optimization
procedure will confront problems in terms of extensive computation
and estimate accuracy. Consequently, we use the two-stage estimation
method, known as inference functions for margins (IFM), to estimate
the parameters of our copula-based GARCH models. Joe (1997, 2005)
5 See Cherubini et al. (2004) and Nelsen (2006) for more comprehensive
introductions to the properties of a bivariate copula.
showed that this estimator is close to and asymptotically efficient to the
maximum likelihood estimator under some regularity conditions.
Hence, the two-stage estimation method can efficiently compute the
estimator without losing any real information.

2.2. Marginal density

As indicated in the Introduction, this paper employs a feedback
tradingmodel to describe the short rundynamicsof oil returns aswell as
exchange-rate returns. In addition,manyfinancial time series have been
shown to have a number of important features, including leptokurtosis,
volatility clustering, long memory, volatility smile, and the leverage
effect, among others. Therefore, we employ three kinds of ARCH-type
models (GARCH, GJR-GARCH, and component GARCH) to capture the
time-varying volatility structures of oil price and exchange-rate returns.
The GJR-GARCH and component GARCH (CGARCH)models can be used
to take the asymmetry effect into consideration, and to distinguish the
difference in duration, respectively.

2.2.1. GARCH model
Following Cifarelli and Paladino (2010), the GARCH(1,1) model

with feedback trading activities can be expressed as:

ri;t = βi;1 + βi;2h
2
i;t + βi;3 + βi;4h

2
i;t

� �
ri;t−1 + εi;t ; εi:t jΨt−1 = hi:tzi:t ;

h2i;t = ci + aiε
2
i;t−1 + bih

2
i;t−1;

zi:teskewed−t zi jηi;λið Þ; i = o; e;

ð4Þ

where βi, 2hi, t
2 is the risk premium, βi,3 captures the impact of

nonsynchronous effects or market inefficiencies, βi,4 captures the
feedback trading activities, where the presence of positive feedback
trading implies that βi,4 is negative. The parameter restrictions in the
variance equation are ciN0, ai, bi≥0, and ai+bi<1. The error term εi, t
is assumed to be a skewed-t distribution, which can be used to
describe the possibly asymmetric and heavy-tailed characteristics of
oil price and exchange-rate returns. Following Hansen (1994), the
density function is

skewed−t z jη;λð Þ =
bc 1 +

1
η−2

bz + a
1−λ

� �2� �− η + 1ð Þ=2
; z < − a

b

bc 1 +
1

η−2
bz + a
1 + λ

� �2� �− η + 1ð Þ=2
; z≥− a

b

8>>>><>>>>:
ð5Þ

The values of a, b, and c are defined as

a≡4λcη−2
η−1

; b2≡1 + 2λ2−a2 and c≡ Γ η + 1= 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π η−2ð ÞΓ η = 2ð Þp

where λ and η are the asymmetry and kurtosis parameters,
respectively. These are restricted to −1<λ<1 and 2<η<∞. When
λ=0, the skewed-t distribution will turn toward the Student-t
distribution. If λ=0 and η diverge to infinity, it will be a normal
distribution.

2.2.2. GJR–GARCH model
Another feature of the financial time series is the leverage effect,6

whereby there is an asymmetric reaction of volatility changes in
response to positive and negative shocks of the same magnitude. To
can be explained by “risk aversion”, which means that the negative shocks will oblige
investors to sell commodities at times of stress. We thank an anonymous referee for
raising this point.



7 The appropriate logistic transformation is used to ensure the dependence parameters
fall within the interval (−1,1), which can be written as ρt⁎=−ln[(1−ρt)/(ρt+1)] and
τt⁎=− ln[(1−τt)/(τt+1)].

8 The futures price data are continuous series, as defined by DATASTREAM.
9 Following Cifarelli and Paladino (2010), this study uses the Tuesday prices of the

WTI crude oil and USDX futures; when a holiday occurs on Tuesday, Monday's
observation is used in its place.
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this effect, we employ the GJR-GARCH model, proposed by Glosten
et al. (1993), to take into account the asymmetric effect in the
volatility structure, which is given by

ri;t = βi;1 + βi;2h
2
i;t + βi;3 + βi;4h

2
i;t

� �
ri;t−1 + εi;t ; εi:t jΨt−1 = hi:tzi:t ;

h2i;t = ci + aiε
2
i;t−1 + bih

2
i;t−1 + diki:t−1ε

2
i:t−1

ð6Þ

where ki. t−1=1 if εi, t−1 is negative, otherwise ki, t−1=0, and the
parameter di is regarded as an asymmetric impact on the conditional
volatility. If there is a leverage effect on the oil price or exchange-rate
markets, the parameter di will be expected to be positive.

2.2.3. Component GARCH model
The component GARCH (CGARCH) model can be used to

decompose conditional volatility into a long-run trend component
and a short-run transitory component. Contrary to the traditional
GARCH model, the component GARCH model allows the conditional
volatility to revert to the time-varying long-run volatility level rather
than the constant long-run volatility level. Engle and Lee (1999)
replaced the constant unconditional variance with a time-varying
permanent component, which represents the long-run volatility, to
ensure that the volatility is not constant in the long-run, and proposed
the following component GARCH model:

ri;t = βi;1 + βi;2h
2
i;t + βi;3 + βi;4h

2
i;t

� �
ri;t−1 + εi;t ; εi:t jΨt−1 = hi:tzi:t ;

h2i;t = qi;t + ai ε2i;t−1−qi;t−1

� �
+ bi h2i;t−1−qi;t−1

� �
qi;t = ϖi + ϕiqi;t−1 + ζi ε2i;t−1−h2i;t−1

� �
ð7Þ

whereϕi<1 and ai+bi<1. The parameterϕimeasures the persistence in
the permanent component and the forecast error (εi, t−1

2 −hi, t−1
2 ) serves

as the driving factor for the time-dependentmovement of the permanent
component. The parameters ζi and ai are regarded as the short-run shock
effects of the permanent component and the transitory component,
respectively.

2.3. Copula function and dynamic dependence structure

Here we use two families of copula function to describe the
dependence structure between oil price and exchange-rate returns, in
order to fit various phenomena. Two elliptical (Gaussian and Student-t
copulas) and three Archimedean's copula functions (Clayton, survival
Clayton, and mixture Clayton copulas) are employed to capture
different dependence structures. The advantage of elliptical copulas is
that one can specify different levels of correlation between the
marginals; however, these copulasmust possess radial symmetry. The
property of the Student-t copula is symmetric and also implies
symmetric dependence in the extreme tails. When the degree of
freedom increases to infinity, the Student-t copula converges to the
Gaussian one with zero dependence on the two side tails.

The families of Archimedean copulas were named by Ling (1965)
and realized by Schweizer and Sklar (1961). In contrast to elliptical
copulas, Archimedean copulas are characterized by their generator
function, which has many useful properties. They can have upper tail
dependence, lower tail dependence, or both; as such, they can better
describe the reality of the behavior of financial markets. Here three
types of Archimedean copula are used to integrate the marginal
distributions into the joint distributions. In general, (survival) Gumbel
and (survival) Clayton are commonly employed in the financial
studies. Unfortunately, the Gumbel copula is limited to the description
of a positive dependence structure. Hence, we tend to use the survival
Clayton (SClayton) copula, which possesses similar properties to the
Gumbel copula, but does not have a positive dependence restriction,
where the density of the survival function can be written as:

ct uo;t ;ue;t

� �
= ct 1−uo;t ;1−ue;t

� �
: ð8Þ

Since the Clayton or survival Clayton copulas can only be used to
capture one side of tail dependence, we also employ a mixture of
Clayton and survival Clayton (MClayton) copulas to describe the
possible lower and upper tail dependence structure between oil price
and exchange-rate returns. The density of the MClayton copula can be
expressed as:

cMClayton
t uo;t ;ue;t

� �
= ωcc

Clayton
t uo;t ;ue;t

� �
+ 1−ωcð ÞcSClaytont uo;t ;ue;t

� �
;

ð9Þ

where ωc∈(0, 1) is the weighting parameter.
In the description of a dependence structure, Pearson's correlation

coefficient (ρ) is commonly used in theGaussian copula and the Student-t
copula. On the other hand, we use Kendall's tau (τ) in Archimedean
copulas. In addition, we follow the concept of Patton (2006) and Bartram
et al. (2007) by assuming that the dependence parameters rely on past
dependence and historical information (uo,t−1−0.5)(ue,t−1−0.5). If both
uo,t−1 and ue,t−1 are either bigger or smaller than 0.5, we infer that the
dependence is higher than previously. Let ρt⁎ and τt⁎ be an appropriate
logistic transformation7 of dependence parameters ρt and τt, respectively,
such that the time-varying parameters ρt⁎ and τt⁎ can be expressed as:

ρ�
t = αc + βcρ

�
t−1 + γc uo;t−1−0:5

� �
ue;t−1−0:5
� �

τ�t = αc + βcτ
�
t−1 + γc uo;t−1−0:5

� �
ue;t−1−0:5
� � ð10Þ

where 0≤βc<1.

3. Data and empirical results

3.1. Data and descriptive statistics

This study uses West Texas Intermediate (WTI) crude oil and US
dollar index (USDX) futures data to represent oil price and exchange-
rate markets. WTI crude oil, also known as light sweet oil, is the
futures contract traded on the New York Mercantile Exchange
(NYMEX). The USDX represents the trade-weighted value of the US
dollar in terms of a basket of six major foreign currencies, which
includes a futures contract and an option contract traded on the New
York Board of Trade (NYBOT). Both WTI crude oil and USDX futures
price data8 with the nearest to maturity for the period from January 2,
1990 to December 28, 2009 are obtained from DATASTREAM, and
1045 weekly return observations9 are generated for each asset. In
addition, we use the three-month Treasury bill as the risk-free rate,
obtained from the Federal Reserve Board. The weekly close prices,
returns, and trading volumes of WTI crude oil and USDX futures over
the sample period are graphed in Fig. 2. Fig. 2c shows that the trading
volumes of both crude oil and USDX futures increase over time,
especially after 2007. The reason for this phenomenon may be that
some new investment or speculation opportunities are possibly
derived by traders based on the linkage between the oil and US dollar
exchange-rate markets.



Table 1
Summary statistics for crude oil and USDX futures returns.

Crude oil futures USDX futures

Mean(%) 0.122688 −0.017437
SD(%) 5.377643 1.234347
Skewness −0.235948*** 0.113900
Excess Kurtosis 3.109873*** 1.520627***
Max(%) 31.35646 6.218743
Min(%) −28.07634 −6.189992
JB 430.3888*** 102.8427***

Note: This table reports the descriptive statistics for weekly crude oil and USDX futures
returns for the sample period from January 2, 1990 to December 28, 2009. JB is the
Jarque–Bera statistic, which is used to test for normality. The symbols *, **, and ***
represent statistical significance at the 10%, 5%, and 1% levels, respectively.
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The descriptive statistics for crude oil and exchange-rate returns
are reported in Table 1, which shows that the standard deviation of oil
returns is higher than that of USDX returns, consistent with the
general findings in the literature that commodities have higher
volatilities. The skewness statistic of crude oil is negative and
significant, thereby indicating that the oil returns are significantly
skewed to the left. With respect to the excess kurtosis statistics, the
values of both crude oil and USDX are significantly positive, thereby
implying that the distribution of returns has larger, thicker tails than
the normal distribution. Similarly, the Jarque–Bera statistics are large
and significant, thereby implying that the assumption of skewed-t is
more appropriate in our study.

3.2. Estimation results

Table 2 presents the estimated results for the three classes of
copula-based GARCHmodels with feedback trading activities. Panel A
reports the parameter estimates of marginal distributions with the
GARCH, GJR-GARCH and CGARCHmodels. Overall, it can be concluded
that an asymmetric effect does not add much to the explanatory
ability of the model, and that the CGARCH model is the best
performing model in terms of most information criteria.
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those governing the autocorrelation of returns, i.e., β3 and β4. The
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Table 2
Estimation results of copula-based GARCH models.

GARCH GJR–GARCH Component GARCH

Crude oil USDX Crude oil USDX Crude oil USDX

Panel A: Estimation of marginals
β1 −0.03861 −0.14353 −0.04460 −0.14130 −0.05865 −0.14382

(0.20174) (0.10501) (0.24193) (0.10251) (0.23638) (0.11046)
β2 0.00440 0.08835 0.00480 0.08440 0.00994 0.08854

(0.00826) (0.07328) (0.00976) (0.07201) (0.01022) (0.07679)
β3 −0.04842 0.08662 −0.04804 0.08306 −0.05099 0.08650

(0.05101) (0.07603) (0.05145) (0.07641) (0.04953) (0.07827)
β4 −0.00223⁎⁎ −0.05489 −0.00216⁎⁎ −0.05245 −0.00249⁎⁎ −0.05473

(0.00111) (0.04122) (0.00110) (0.04117) (0.00111) (0.04229)
ci 0.66673⁎⁎ 0.04805⁎⁎ 0.68935⁎⁎⁎ 0.04912⁎⁎

(0.26925) (0.02083) (0.29160) (0.02111)
ai 0.09952⁎⁎⁎ 0.05809⁎⁎⁎ 0.09837⁎⁎⁎ 0.05384⁎⁎⁎ 0.08048⁎⁎⁎ 0.00717

(0.02088) (0.01456) (0.02582) (0.01650) (0.01819) (0.03161)
bi 0.88026⁎⁎⁎ 0.90977⁎⁎⁎ 0.87709⁎⁎⁎ 0.90724⁎⁎⁎ 0.86015⁎⁎⁎ 0.95981⁎⁎⁎

(0.02173) (0.02201) (0.02337) (0.00229) (0.03312) (0.02861)
ηi 8.92101⁎⁎⁎ 12.52421⁎⁎⁎ 9.60491⁎⁎⁎ 12.86263⁎⁎⁎ 9.97846⁎⁎⁎ 12.51314⁎⁎⁎

(0.52824) (0.70421) (0.12871) (0.48664) (0.90967) (0.89374)
λi −0.17281⁎⁎⁎ 0.06025 −0.17204⁎⁎ 0.05791 −0.16366⁎⁎ 0.06022

(0.04496) (0.04485) (0.04512) (0.04506) (0.04459) (0.04501)
di 0.00293 0.01238

(0.03073) (0.02722)
ϖi 0.05011⁎⁎⁎ 0.04797⁎

(0.00822) (0.02492)
ϕi 0.99949⁎⁎⁎ 0.96790⁎⁎⁎

(0.00033) (0.01967)
ζi −0.01437⁎⁎⁎ 0.05094

(0.00073) (0.03153)
Half life 33.932522 21.218035 29.690959 20.829237 11.324932 20.643225

Panel B: Estimation of Gaussian dependence structure
αc −0.00039 −0.00038 −0.00036

(0.00088) (0.00088) (0.00083)
βc 0.98277⁎⁎⁎ 0.98277⁎⁎⁎ 0.98310⁎⁎⁎

(0.00795) (0.00792) (0.00771)
γc 0.21852⁎⁎⁎ 0.21936⁎⁎⁎ 0.21100⁎⁎⁎

(0.07063) (0.07054) (0.06631)
ln(L) −4747.450 −4747.344 −4740.122
AIC 9536.901 9540.688 9530.244
BIC 9640.868 9654.557 9654.014

Panel C: Estimation of Student-t dependence structure
αc −0.00044 −0.00046 −0.00045

(0.00089) (0.00090) (0.00085)
βc 0.98325⁎⁎⁎ 0.98328⁎⁎⁎ 0.98380⁎⁎⁎

(0.00794) (0.00795) (0.00771)
γc 0.22062⁎⁎⁎ 0.22225⁎⁎⁎ 0.21313⁎⁎⁎

(0.07298) (0.07365) (0.06920)
υ 33.29138⁎⁎⁎ 26.55568⁎⁎⁎ 26.15277⁎⁎⁎

(0.21593) (0.19956) (0.26537)
ln(L) −4747.052 −4746.979 −4739.427
AIC 9538.105 9541.959 9530.855
BIC 9647.023 9660.778 9659.576

Panel D: Estimation of Clayton dependence structure
αc −0.00523 −0.01956 −0.00329

(0.00494) (0.01426) (0.00251)
βc 0.94356⁎⁎⁎ 0.79598⁎⁎⁎ 0.95721⁎⁎⁎

(0.04286) (0.14448) (0.02155)
γc 0.17951⁎ 0.49897 0.15261⁎⁎⁎

(0.09660) (0.36001) (0.05380)
ln(L) −4758.212 −4758.209 −4750.265
AIC 9558.423 9562.580 9550.529
BIC 9662.390 9676.448 9674.300

Panel E: Estimation of survival Clayton dependence structure
αc −0.02726⁎⁎ −0.02675⁎ −0.02603⁎

(0.01386) (0.01392) (0.01385)
βc 0.76715⁎⁎⁎ 0.77056⁎⁎⁎ 0.77471⁎⁎⁎

(0.08202) (0.08919) (0.09283)
γc 0.78126⁎⁎⁎ 0.78198⁎⁎⁎ 0.68003⁎⁎⁎

(0.23828) (0.23630) (0.26127)
ln(L) −4756.587 −4756.440 −4749.085
AIC 9555.175 9558.880 9548.170
BIC 9659.142 9672.749 9671.941
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Table 2 (continued)

GARCH GJR–GARCH Component GARCH

Crude oil USDX Crude oil USDX Crude oil USDX

Panel F: Estimation of mixture Clayton dependence structure
αc −0.00132 −0.00131 −0.00169⁎

(0.00095) (0.00097) (0.00102)
βc 0.98458⁎⁎⁎ 0.98453⁎⁎⁎ 0.98114⁎⁎⁎

(0.00431) (0.00413) (0.00656)
γc 0.21183⁎⁎⁎ 0.21415⁎⁎⁎ 0.18818⁎⁎⁎

(0.03742) (0.03614) (0.04733)
ωc 0.50977⁎⁎⁎ 0.50832⁎⁎⁎ 0.54861⁎⁎⁎

(0.10859) (0.10805) (0.13980)
ln(L) −4749.997 −4749.802 −4744.388
AIC 9543.994 9547.603 9540.776
BIC 9652.912 9666.423 9669.497

Note: The table reports the maximum likelihood estimates of three classes of copula-based GARCHmodels, which are based on the weekly crude oil and USDX futures returns for the
sample period from January 2, 1990 to December 28, 2009. Three types of marginal distributions (GARCH, GJR–GARCH and component GARCH models) and five types of copula
functions (Gaussian, Student-t, Clayton, survival Clayton, and mixture Clayton copulas) are utilized to describe the volatility and dependence structures, respectively. The half lives
are calculated by the formula: ln(0.5)/ln(ai+bi+0.5*di). The Akaike information criteria (AIC) and Bayesian information criteria (BIC) are used to evaluate the goodness of fit of the
selected models. The numbers in parentheses are standard deviations.

⁎ Indicates statistical significance at the 5% level.
⁎⁎ Indicates statistical significance at the 1% level.
⁎⁎⁎ Indicates statistical significance at the 10% level.
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the USDX market. The implication is that positive feedback trading
is an important determinant of short-term movements in the crude
oil market in agreement with the findings of Cifarelli and Paladino
(2010).

As can be seen in the variance equations, the asymmetry
parameters, λi, are significant and negative for crude oil returns, but
insignificant for USDX returns, exhibiting that crude oil returns are
skewed to the left. In addition, in the GARCHmodel, the parameters ai
and bi are significant and as such explain that crude oil and exchange-
rate returns have volatility clustering. The fact that the volatility half
lives10 of about 34 and 21 weeks for crude oil and USDX markets,
respectively, indicates that the shock to the volatility for crude oil lasts
for a longer time period than the shock to USDX. Further, the
asymmetric parameters di in the GJR-GARCH model are insignificant
and exhibit no asymmetric effect on the volatility structures of crude
oil and exchange-rate markets, which is consistent with Lanza et al.
(2006) and Wang and Yang (2009). This result may indicate that the
asymmetric reaction to equities markets does not apply to the crude
oil and USDX futures markets. Turning to the CGARCH model in
Table 2, the result demonstrates that the permanent volatility compo-
nent decays very slowly and is highly persistent especially for the crude
oil returns. In addition, the half life of crude oil dramatically changes from
the GARCH model (34 weeks) to CGARCH model (11 weeks), thereby
implying a less shockpersistence in the transitory volatility component of
crude oil, while the half life of USDX is quite similar based on each
marginal model. This finding enables us to completely understand the
influences of volatility shocks on various volatility components.

Panels B–F of Table 2 report the parameter estimates for different
copula functions. In terms of the values of AIC and BIC, the Gaussian
dependence structure exhibits better explanatory ability than other
dependence structures despite the marginal models employed, while
the Clayton and survival Clayton copulas have worse explanatory
ability. These results imply that introducing the tail dependence
between oil and exchange-rate returns does not add much to the
explanatory ability of the models. In addition, the CGARCH model
with the Gaussian copula exhibits superior performance to any other
selected model. Moreover, we can see the autoregressive parameter
βc is close to 1, implying a high degree of persistence pertaining to the
10 The half-life, which is defined as the time taken until half of the initial shock is
absorbed in the variance, is a standard representation of the persistence of a volatility
shock (Bollerslev et al., 1994).
dependence structure between oil and exchange-rate returns. The
latent parameter γc is also significant and displays that latest return
information is a meaningful measure. Specially, γc in the survival
Clayton copula is much larger than others, which means it has a
greater short-run response than other copula functions.

Fig. 3 plots the volatility estimates of crude oil and USDX returns
based on the GARCH, GJR-GARCH and CGARCH models. Crude oil
underwent two periods of high volatility in our sample period. The
first period began in August 1990, commonly known as “the third
energy crisis”, due to the Gulf War. Because the oil demands of most
countries rely on imports, wars involving oil-producing countries
cause supply to diminish, thereby sending the price soaring. The
second period began in July, 2008 due to the American subprime
mortgage crisis: the oil price suffered a major depreciation from $147
a barrel to $32 a barrel. OPEC intervened by cutting oil output by more
than 4 million barrels per day in order to aid the price recovery. By
comparison, the USDX is very stable. The worst period in this regard
followed the US government's intentional manipulation of the dollar
value in order to prevent American economic decline following the
financialmeltdown. In addition, the volatility estimates of crude oil based
on the GARCH and GJR-GARCH models are more persistent than those
based on the CGARCHmodel, which is in line with the shorter half life of
CGARCHmodel; in comparison, the volatility estimates of USDXbased on
three different marginal models are very similar. We also find that the
circumstances in which crude oil and USDX volatilities usually rise at the
same time imply a connection between crude oil prices and the USDX.

The dependence parameter estimates between oil price and
exchange-rate returns over the sample period generated from
different copula models are plotted in Fig. 4. We can observe that
the dependence structure between crude oil and USDX returns
maintains a lower level or zero dependence during the period 1990 to
2003. However, from 2003, the dependence begins to descend and
continues to do so now. This may be due to the fact that US
government policy caused the US dollar to decrease greatly in value
relative to most other countries' currencies in order to support its
exports as well as reduce the international trade deficit. Over the past
few years the depreciation of the US dollar against other currencies
has had the effect of driving up the oil price. Since the US dollar is the
main invoicing currency of crude oil futures, its depreciation has
motivated speculators to buy an abundance of crude oil futures
contracts to secure greater profits, and in doing so resulted in the
unusual rate of oil price increases.
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In Fig. 4, the two paths from the Gaussian and Student-t copulas
are very consistent with the results in Panel C of Table 2, which shows
that the degree of freedomof the Student-t copula is considerable. The
Clayton and survival Clayton copulas exhibit a similar dependence
trend to one another, while displaying a low level of dependence
relative to the symmetric copulas. Moreover, the main differences in
dependence estimates between the Clayton and survival Clayton
copulas are that the survival Clayton copula exhibits larger ripples.
Finally, the dependence estimates based on the mixture Clayton
copula are almost smaller than those based on the Gaussian and
Student-t copulas.

4. An economic evaluation methodology

In the previous section, we note the explanatory ability of each
selected model. However, the fact that estimation results perform
well does not necessarily imply an economically useful application.
Thus, in this section, we follow Fleming et al. (2001, 2003) to evaluate
the economic value of copula-based GARCH models using a dynamic
asset-allocation strategy. First, we use crude oil futures, USDX futures
and three-month Treasury bills to construct our portfolio, where the
optimal portfolio weights of selected assets are constructed under the
mean–variance framework. Second, the quadratic utility function is
employed to assess the performance of dynamic strategies based on
different models and to quantify how personal opinion affects
performance. Finally, this framework establishes a concise approach
to assess the significance and robustness of the results.

4.1. Evaluation methodology

First we consider an investor who wants to minimize portfolio
variance subject to achieving a particular expected return. Let rt be
N×1 vector of returns on the risky assets; the investor solves the
following optimization at each period t,

min
wt

w′
t∑t + 1wt

s:t:w′
tμt + 1 + 1−w′

t1
� �

rf ;t + 1 = μ⁎p
ð11Þ

wherewt is an N×1 vector of portfolio weights on risky assets, μt and
Σt+ 1 are the vector of conditional expected returns and the
conditional covariance matrix of risky assets, respectively, rf is return
on the riskless asset and μp⁎ is the target conditional expected return of
the portfolio. The solution for the optimization problem is

wt =
μ�
p−rf ;t + 1

� �
∑−1

t + 1 μt + 1−rf ;t + 11
� �

μt + 1−rf ;t + 11
� �

′∑−1
t + 1 μt + 1−rf ;t + 11

� � ; ð12Þ



11 The conclusions based on CCC, DCC and the copula models with other marginals
are similar to those based on the copula model with the CGARCH marginal; therefore,
in the interests of space, this study only reports the results based on the CGARCH
marginal.

279C.-C. Wu et al. / Energy Economics 34 (2012) 270–282
which is the optimal weights on risky assets, and the weight on the
riskless asset is 1−wt′1.

In order to measure the value of our models, we compare the
performance of the dynamic strategies based on copula-based GARCH
models to that of the static strategy based on a sample mean and
covariance matrix. Using the Taylor series, we can obtain the
quadratic utility as a second-order approximation to the investor's
true utility function. Under this specification, the investor's realized
utility in period t+1 can be written as

U Wt + 1
� �

= Wtrp;t + 1−
aW2

t

2
r2p;t + 1 ð13Þ

where Wt+1 is the investor's wealth at t+1, a is his or her absolute
risk aversion (ARA), and rp, t+1=rf+wt

'rt+1 is the portfolio return at
period t+1. Under the assumption of constant relative risk aversion,
which means γt=−U″/U′=aWt/1

−aWt=γ, the average realized
utility can be used to estimate the expected utility generated by a
given level of initial wealth W0, which is as follows

U ⋅ð Þ = W0 ∑
T−1

t=0
rp;t + 1−

γ
2 1 + γð Þ r

2
p;t + 1

 !
: ð14Þ

For the purposes of comparison between the static strategy and the
dynamic strategy based on the selected models, we estimate the
switching fees by equating the two average utility equations as follows:

∑
T−1

t=0
rdp;t + 1−Δ
� �

− γ
2 1 + γð Þ rdp;t + 1−Δ

� �2
= ∑

T−1

t=0
rsp;t + 1−

γ
2 1 + γð Þ rsp;t + 1

� �2
ð15Þ

where rp, t+1
s and rp, t+1

d denote the portfolio returns based on the
static and dynamic strategies, respectively, and Δ is explained as the
maximum fee that an investor would be willing to pay to switch from
the static strategy to the dynamic strategy.

In addition, transaction cost is an important consideration for any
dynamic strategy and has a substantial impact on the profitability of
trading strategies. However, making an accurate determination of the
size of transaction costs is difficult because it involves many factors.
According to Han (2006), we assume that transaction costs equal a
fixed proportion tc of the value traded in each asset,

cost = tc
			wt−wt−1

1 + rt
1 + rd;t

			: ð16Þ

Due to the lack of reliable estimates of suitable transaction costs,
we consider the break-even transaction cost. In comparing the
dynamic strategy with the static strategy, an investor will prefer the
dynamic strategy when the break-even transaction cost is high
enough. Furthermore, the fact that the break-even transaction cost is
much higher makes it easier to implement the dynamic strategy.

4.2. Out-of-sample evaluation results

In this section, we explore how a constant relative risk-averse
investor can allocate wealth between the risk-free asset, crude oil
futures and USDX futures based on different models. The out-of-
sample period covers five years ranging from January 4, 2005 to
December 28, 2009 with 262 observations. The rolling window
method is implemented to compute the one-period-ahead expected
return and covariance forecasts and then to determine the series of
optimal portfolio weights. We compare the out-of-sample perfor-
mance of the dynamic strategies based on selected models with the
static strategy based on the constant expected return and covariance
matrix. In this part, our research focuses on the performance fees Δ
that an investor is willing to pay for switching from the static strategy
to the dynamic strategy. The fees display the economic value of each
selected model relative to the static strategy, with a target return of
5%, 10% and 15%. We present the fees with the relative risk-aversion
level of γ=1, 5, and 10.

First, in order to abstract from the issues that would be posed by
expected return predictability, we assume constant expected returns
and concentrate on volatility and dependence timing. Table 3 presents
the out-of-sample performance fees and break-even transaction costs
for the dynamic strategies based on selected models versus the static
strategy for three levels of risk-aversion and three target expected
returns with a minimum variance strategy. With the exception of the
CCC model, the dynamic strategy models have positive performance
fees, which demonstrate that the dynamic strategy is superior to the
static strategy. For instance, when using the copula-based GARCH
models, the investor is willing to pay from 13 to 417 annualized basis
points (bps) to use the dynamic strategy rather than the static
strategy. Next we compare the different dynamic models to verify
their merits. We find that GARCHGaussian is uniformly better than DCC.
The discrepancy between the two models is produced by their
residual distributions; because crude oil and exchange-rate returns
differ from normality, the skewed-t distribution is better able to
describe the characterization, and therefore leads to higher economic
value.

Furthermore, compared with the three different marginal distri-
butions, we find that based on each copula function, the CGARCH
model performs best. This phenomenon is also concordant with the
previous estimate result. We conclude that the CGARCH model is the
best volatility model to explain the variations in crude oil and the
exchange rate. For example, using the copula-based CGARCH dynamic
strategy instead of the static strategy, the performance fee is between
35 and 497 basis points. Among all the models, CGARCHStudent-t

achieves an excellent standard. In fact, of all the selected copula
functions, the Student-t copula achieves a better rating in terms of
economic value despite the marginal distributions.

The impact of transaction costs is an important consideration
when constructing the profitability of trading strategies. In this study,
we compute the break-even transaction costs tcbe as the minimum
proportional cost. If the transaction costs are sufficiently high, the
period-by-period changes in the dynamic weights of an optimal
strategy will cause the strategy to be too costly to implement relative
to the static model. Comparing the dynamic strategy with the static
strategy, an investor prefers the dynamic strategy when paying
transaction costs that are lower than the break-even transaction costs.
The break-even transaction cost values are expressed in basis points
per trade and are reported only when the performance fee Δ is
positive. Further, we assume that the transaction costs of crude oil and
USDX futures are at the same level.

Under different relative risk-aversion levels, a high level com-
monly accompanies high break-even transaction costs. The results
demonstrate that tcbe values of copula-based models are generally
positive and reasonably high; as such, we conclude that the reported
performance fees for the dynamic strategy represent robust to
reasonably high transaction costs. After examining the forecast
performance of all models in terms of performance fee and break-
even transaction costs, we find that the CGARCHmarginal achieves an
excellent standard in all respects, while the Student-t copula performs
well in most situations.

In order to evaluate whether an investor will obtain an
incremental benefit due to the feedback trading information,
Table 411 assumes that the expected returns can be predicted by the



Table 3
Out-of-sample economic value for dynamic strategy based on selected models without the feedback trading information versus static strategy with a minimum variance strategy.

Panel A: Performance fee

μp⁎ CCC DCC

△1 △5 △10 △1 △5 △10

5% −27 −30 −34 6 16 30
10% −56 −68 −84 16 60 115
15% −87 −114 −149 33 131 257

μp⁎ GARCHGaussian GARCHStudent-t GARCHClayton GARCHSClayton GARCHMixClayton

△1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10

5% 30 39 50 35 45 57 13 23 36 16 27 40 23 39 59
10% 64 100 147 75 113 162 31 71 121 38 79 132 53 117 197
15% 102 184 290 120 206 316 53 143 259 64 158 278 92 234 417

μp⁎ GJR-GARCHGaussian GJR-GARCHStudent-t GJR-GARCHClayton GJR-GARCHSClayton GJR-GARCHMixClayton

△1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10

5% 26 35 46 32 41 53 12 22 35 15 25 38 18 34 54
10% 56 92 138 68 106 154 29 69 120 35 76 129 45 107 186
15% 91 172 276 109 194 303 51 141 256 60 154 274 78 219 399

μp⁎ CGARCHGaussian CGARCHStudent-t CGARCHClayton CGARCHSClayton CGARCHMixClayton

△1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10

5% 45 58 73 50 63 79 37 50 67 37 50 67 35 53 75
10% 97 146 209 107 158 222 80 133 200 81 134 202 79 150 241
15% 154 266 409 170 284 431 130 249 401 131 252 406 132 292 497

Panel B: Break-even transaction costs

μp⁎ CCC DCC

tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be

5% – – – 2 6 12
10% – – – 3 12 23
15% – – – 4 17 34

μp⁎ GARCHGaussian GARCHStudent-t GARCHClayton GARCHSClayton GARCHMixClayton

tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be

5% 11 14 19 13 17 21 6 10 15 7 11 17 8 13 20
10% 12 18 27 14 21 30 7 15 27 8 17 29 9 20 33
15% 13 23 36 15 26 40 8 21 38 9 23 40 10 26 47

μp⁎ GJR-GARCHGaussian GJR-GARCHStudent-t GJR-GARCHClayton GJR-GARCHSClayton GJR-GARCHMixClayton

tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be

5% 9 13 17 12 15 20 5 9 15 6 11 16 6 11 18
10% 10 17 25 13 20 29 6 15 26 7 16 28 7 18 31
15% 11 21 34 13 24 38 7 20 37 8 22 39 9 24 45

μp⁎ CGARCHGaussian CGARCHStudent-t CGARCHClayton CGARCHSClayton CGARCHMixClayton

tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be

5% 18 23 29 20 25 32 17 23 31 17 23 31 13 19 27
10% 19 29 42 21 32 45 19 31 48 18 31 47 14 27 44
15% 20 35 55 23 38 59 20 39 65 20 39 64 16 35 61

Note: The table presents the out-of-sample performance fees (Panel A) and break-even transaction costs (Panel B) for a dynamic strategy based on selected models with constant
expected returns versus the static strategy for three target returns (5%, 10% and 15%)with aminimum variance strategy. Eachminimum variance strategy builds an efficient portfolio
by investing in the weekly returns of crude oil futures, USDX futures, and a risk-free asset. The fees are denoted as the amount which an investor is willing to pay for switching from
the static strategy to a dynamic strategy with the relative risk aversion level γ=1, 5 and 10. The performance fee (△) is expressed in annualized basis points. The break-even
transaction cost (tcbe) is defined as the minimum proportional cost per trade for which the dynamic strategies would have the same utility as the static strategy. In addition, (tcbe)
values are reported only when △ is positive. The out-of-sample period runs from January 2, 2005 to December 28, 2009.
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feedback trading information and computes the performance fees and
break-even transaction costs under the CGARCH marginal. With
respect to the performance fee, the values for a less risk-averse
investor are smaller than those associated with the CGARCH models
that lack feedback trading information. In contrast, the values for a
more risk-averse investor are larger and can be as high as 2353 basis
points per year. However, after considering the impact of transaction
costs, we find that the break-even transaction costs with the feedback
trading information are apparently smaller than those without the
feedback trading information, suggesting that incorporating the
feedback trading information into the investment strategies does
not enhance the economic value.

5. Conclusions

In recent years, both oil commodity prices and the US dollar currency
have experienced unprecedented high fluctuations while exhibiting
significantly opposite trends. This negative relationship has enabled the



Table 4
Out-of-sample economic value for dynamic strategy based on the component GARCH model with the feedback trading information versus static strategy with a minimum variance
strategy.

Panel A: Performance fee

μp⁎ CGARCHGaussian CGARCHStudent-t CGARCHClayton CGARCHSClayton CGARCHMixClayton

△1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10 △1 △5 △10

5% −161 −32 130 −153 −24 139 −158 −29 135 −170 −41 123 −163 −33 132
10% −257 260 908 −241 277 927 −252 268 922 −276 245 898 −262 264 923
15% −289 876 2316 −265 902 2347 −281 892 2342 −317 857 2308 −294 890 2353

Panel B: Break-even transaction costs

μp⁎ CGARCHGaussian CGARCHStudent-t CGARCHClayton CGARCHSClayton CGARCHMixClayton

tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be tc1

be tc5
be tc10

be tc1
be tc5

be tc10
be

5% – – 4 – – 4 – – 4 – – 4 – – 4
10% – 4 14 – 4 14 – 4 14 – 4 14 – 4 14
15% – 9 23 – 9 24 – 9 24 – 9 23 – 9 24

Note: The table presents the out-of-sample performance fees (Panel A) and break-even transaction costs (Panel B) for a dynamic strategy based on the component GARCH model
with feedback trading information versus the static strategy for three target returns (5%, 10% and 15%) with aminimum variance strategy. Eachminimum variance strategy builds an
efficient portfolio by investing in theweekly returns of crude oil futures, USDX futures, and a risk-free asset. The fees are denoted as the amount which an investor is willing to pay for
switching from the static strategy to a dynamic strategy with the relative risk aversion level γ=1, 5 and 10. The performance fee (△) is expressed in annualized basis points. The
break-even transaction cost (tcbe) is defined as the minimum proportional cost per trade for which the dynamic strategies would have the same utility as the static strategy. In
addition, (tcbe) values are reported only when △ is positive. The out-of-sample period runs from January 2, 2005 to December 28, 2009.
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oil commodity and the US dollar currency to serve as useful tools for
strategic asset allocation and risk management. For these reasons,
forecasts of the volatility and co-movement structures of oil price and
exchange-rate returns have attracted much attention among academics
and institutional investors.

However, it has been demonstrated that oil price and exchange-
rate returns are skewed and leptokurtic, and may follow extremely
dissimilar marginal distributions as well as different degrees of
freedom parameters. The relationship structure between oil price and
exchange-rate returns may also exhibit an asymmetric or tail
dependence structure. Therefore, in order to address the drawbacks
of the conventional multivariate GARCH model, this paper proposes
three classes of copula-based GARCH models to elastically describe
the volatility and dependence structure of oil price and US dollar
exchange-rate returns. In addition, a modified CAPM is employed to
explore the speculative trading behaviors in the oil and exchange-rate
markets; the results reveal that feedback trading activities are
significant in the crude oil market but insignificant in the USDX
market under all marginal models. The CGARCH model with the
Gaussian copula possesses better explanatory ability for crude oil and
USDX futures returns, suggesting that the tail dependence structure
between crude oil price and USDX futures returns is not apparent. In
addition, the leverage effects are demonstrated to be insignificant for
both crude oil and USDX futures. Based on the marginal distribution
with the component GARCH model, we find that the persistence of
short-run volatility is apparently smaller than that of long-run
volatility for crude oil futures, while it is not significant for USDX
futures. We also observe that the dependence structure between
crude oil and US dollar exchange-rate returns becomes negative and
decreases continuously after 2003, unlike the pattern of the preceding
period.

In addition, in order to examine whether copula-based GARCH
models can benefit an investor, we evaluate the economic value of our
models by implementing a strategic asset-allocation problem. In terms
of out-of-sample results, we find that the dynamic strategies based on
the copula-based GARCH models outperform the static strategy and
other dynamic strategies based on the CCC GARCH and DCC GARCH
models, which demonstrates that the skewness and leptokurtosis of
crude oil and USDX futures returns are economically significant.
Furthermore, the CGARCH model with the Student-t copula yields the
highest performance fees and break-even transaction costs to attract
investors to switch their trading strategy; it also performs the best
among all selected models. In addition, although the feedback trading
information is statistically significant in the crude oil market, it does not
help investors to enhance their economic benefits pertaining to an
asset-allocation decision. Finally, more risk-averse investors are willing
to pay higher fees to switch their strategy from a static strategy to a
dynamic strategy based on copula-based GARCH models.
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