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Frequency modulation (FM) is an important building block of communication signals for
animals and human. Attempts to predict the response of central neurons to FM sounds
have not been very successful, though achieving successful results could bring insights
regarding the underlying neural mechanisms. Here we proposed a new method to predict
responses of FM-sensitive neurons in the auditory midbrain. First we recorded single unit
responses in anesthetized rats using a random FM tone to construct their spectro-
temporal receptive fields (STRFs). Training of neurons in the artificial neural network to
respond to a second random FM tone was based on the temporal information derived
from the STRF. Specifically, the time window covered by the presumed trigger feature and
its delay time to spike occurrence were used to train a finite impulse response neural net-
work (FIRNN) to respond to this random FM. Finally we tested the model performance in
predicting the response to another similar FM stimuli (third random FM tone). We found
good performance in predicting the time of responses if not also the response magnitudes.
Furthermore, the weighting function of the FIRNN showed temporal ‘bumps’ suggesting
temporal integration of synaptic inputs from different frequency laminae.
This article is part of a Special Issue entitled: Neural Coding.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

signals like FM tones (Atencio et al., 2007; Brown and Harrison,
2009; Eggermont, 1994; Heil et al., 1992; Poon et al., 1991; Qin et

Frequency modulation (FM) is an important building block of
communication signals of animals and human (review see
Kanwal and Rauschecker, 2007). Electrophysiological studies
at the auditory midbrain and cortex of animals showed
that many neurons are selectively sensitive to time-varying
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al., 2008; Rees and Mgller, 1983; Whitfields and Evans, 1965; re-
view see Suta et al., 2008). The exact neural mechanisms un-
derlying FM coding remain somewhat elusive as their study
often requires challenging techniques like in vivo whole cell
patch clamp and the sample size is limited (Gittelman et al,
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2009; Ye et al, 2010; Zhang et al, 2003). One approach to
understand the neural mechanisms of FM coding is computa-
tional modeling of neural spike responses. This approach in-
volves firstly constructing an input-output function for the cell
to probe sounds, and then assessing its performance using test
sounds. In modeling responses to complex sounds, results are
only more satisfactory at the lower but not at the higher centers
(Kim and Young, 1994; Lesica and Grothe, 2008; Reiss et al., 2007;
Theunissen et al., 2000). This discrepancy in results is explained
by a difference in their non-linear behaviors (Ahrens et al., 2008;
Bar-Yosef et al., 2002; Christianson et al., 2008; Escabi and
Schreiner, 2002; Young and Calhoun, 2005). It remains to be ex-
plored if the prediction of neural responses at centers higher
than the cochlear nucleus (e.g., midbrain) can be improved
through refinement of linear computational schemes, without
incorporating substantial non-linearity in the model.

Along the ascending auditory pathways, the midbrain (or
inferior colliculus) is an important center where the selective
sensitivity to FM first emerges (Felsheim and Ostwald, 1996;
Poon et al., 1991, 1992; Rees and Mgller, 1983; review see
Rees and Malmierca, 2006). Characteristically, these FM-
sensitive neurons respond to tones of rapidly varying fre-
quency, but they do not respond to pure tones. Computational
attempts have been made to predict FM responses at the
midbrain and cortex. Again, results are not satisfactory espe-
cially in predicting responses to naturally-occurring sounds.
This poor prediction is not unexpected given the nonlinear
behavior of central circuits (Aertsen and Johannesma, 1981b;
Machens et al., 2004; Theunissen et al., 2000; Valentine and
Eggermont, 2004; review see Escabi and Read, 2005).

One common modeling strategy makes use of the spectro-
temporal receptive field (STRF; Aertsen and Johannesma,
1981a; Depireux et al., 2001; Eggermont et al., 1983; Hermes
et al., 1981; Klein et al., 2000; Miller et al., 2002; review see
Young, 2010). STRF is used to represent the input-output rela-
tionship of central neurons to sounds on the time-frequency
plane. Typically, a probe tone of randomly varied frequency
is used to evoke spike responses from an FM-sensitive cell
(deCharms et al., 1998; Escabi and Schreiner, 2002; Poon and
Yu, 2000; Theunissen et al., 2000). To construct the STRF, the
analysis involves averaging the random sound energy preced-
ing each spike. Band-like concentrations of energy appear in
the STRF of FM-sensitive cells, at pre-spike intervals consis-
tent with the neural transmission time measured from the
auditory periphery to where the cell is recorded. These band-
like structures form the putative ‘trigger features’ that deter-
mine the spike responses (analogous to the concept of recep-
tive field in sensory physiology). In the STRF, trigger features
of a variety of patterns have been reported (e.g., rising, falling
orientations representing FM sensitivity, or a flat orientation
representing the sensitivity to pure tones; examples see
Atencio et al., 2007; Chiu and Poon, 2007). Often the exact
pattern of trigger features depends on the property of stimuli
used to generate the STRF (Valentine and Eggermont, 2004).
The host of stimuli used to generate STRFs ranges from random
tonal stimuli to naturally-occurring complex sounds (e.g.,
Escabi and Schreiner, 2002; Poon and Yu, 2000; Theunissen et
al., 2000). No attempt has yet been made to incorporate tempo-
ral information from STRF into an artificial neural network in
predicting FM responses.

In this study, we attempted to predict the cell’s response to
FM sounds using artificial neural network modeling based on
two kinds of information derived from its STRF: (a) the ‘time
window’ containing the trigger feature, and (b) the ‘delay
time’ measured from the time of spike occurrence to the
time of the trigger feature.

2. Results

Fig. 1 shows typical responses of an FM-sensitive cell to differ-
ent sounds: a slow FM (tone-1, Fig. 1A, non-identical across
trials), or a fast FM (tone-2 and tone-3, Fig. 1B, identical across
trials). Note that the responses appear rather stationary
across trials, and that the averaged time-locked response pro-
files (PSTHs) are minimally altered by the Gaussian filtering.

Most of the 10 FM-sensitive cells displayed strong response
directionality, i.e., preferring one (instead of both) direction of
modulation (Fig. 2). Within the pre-spike time window of
about 5 to 29 ms, concentration of the modulating waveforms
formed apparent ‘hot bands’ in the STRFs, typically situated
above or below the carrier frequency, or also the best frequen-
cy (BF) of the cell. The orientation of the hot band represents a
preference of individual neurons to the direction of frequency
modulation (8 cells to up-sweeps, and 2 cells to down-
sweeps). The average time interval between the proximal
end of the hot band and the time of spike occurrence is 8.04
(+3.93 SD) ms, which represents the central transmission
delay from the cochlea to the spike generating mechanism
of the cell from which the spikes were recorded. These FM-
sensitive cells (or sometimes called ‘FM-specialized’ cells)
represented about 1/3 of the click-responsive neurons in the
rat auditory midbrain (Chiu and Poon, 2007; Poon and Chiu,
2000; Poon et al., 1991, 1992). These 10 neurons were selected
(from a population of 15 FM-sensitive cells) based on their
STRFs which displayed a simple trigger feature. For simplicity,
we did not include neurons with complex STRFs (e.g., contain-
ing both up and down FM sweeps, and/or with multiple FM
sweeps, an example is shown in Supplementary Fig. 1). Be-
cause of the temporal differences between the slow FM
(tone-1) and fast FM (tone-2, tone-3), for a given cell, the
exact trigger features in the respective STRFs appeared non-
identical, though they tended to fall within similar if not over-
lapping time windows (Fig. 2 left column versus right). Slow
FMs, in comparison with fast FMs, usually produced more
clearly outlined trigger features with slightly longer durations.
This is likely more related to the difference in modulating
waveforms than in spike counts (as spike counts are not sta-
tistically different between the FM datasets, Wilcoxon signed
rank test, P=0.14).

For these 10 cells, our model showed highly satisfactory
performance in learning spike responses to the training
dataset. The match between the trained and actual PSTHs is
typically high when expressed in terms of average overlap be-
tween the two PSTHs (96.68+1.64%, mean+SD, n=10). After
training, the prediction of the response to tone-3 was almost
as high (96.31+1.75%, mean+SD, Fig. 3). Swapping the training
and testing datasets made little difference in the prediction
performance. Results indicated that the current method of
using 1second long training data and the training iteration
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Fig. 1 - Responses of an FM-sensitive cell: (A) the slow FM stimulus (tone-1) shown by two superimposed instantaneous
frequency time-profiles (top panel), and the corresponding spike responses in dot-raster (bottom, each dot represents an action
potential); (B): similar plots for FM tone-2 (top panel, left) and tone-3 (top panel, right) with the original PSTH and the Gaussian

filtered version (bottom 2 panels). The time-locked responses

reflect activation by the presumed trigger features in the

stimulus. Note that half of the dataset was used for training of the model, and the remaining half for testing.

of 500 predicts satisfactory results with minimal effect of
over-fitting.

While the model was tested on datasets with spike jitters,
trigger features in the STRF were determined after a procedure
of de-jittering. Therefore, the temporal information derived
from the trigger feature could be slightly off-optimal. To deter-
mine how critical the time window and delay time are in the
model performance, a systematic scanning of both the time
window length and delay was carried out. This procedure

scans results systematically across ‘delay time’ and ‘time win-
dow’ (delay time range: 1 to 16 ms; time window range: 1 to
20 ms). The performance of the FIRNN model at each combi-
nation of ‘delay time’ and ‘time window’ is then represented
by a color-coded pixel on a 2D plot (with y axis representing
‘delay time’, and x-axis ‘time window’). Here, because the per-
formance assessed by index-1 was typically high, a stricter
index (index-2) was used for comparison. Index-2 takes into
account only the part of PSTH showing spike responses
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Fig. 2 - STRFs of 10 FM-sensitive cells in response to slow FM (tone-1; left columns: A1 to J1) and fast FM (tone-2 and tone-3;
right columns: A2 to J2). In this and other similar plots, the overlap of frequency time-profiles at each pixel is color coded, with
‘hot’ areas representing high overlaps or the trigger features. In each panel, ‘n’ is the number of stimulus time profiles, and the

spike occurrence marked by the vertical dashed line.

(actual and predicted) without considering the part showing
no response (see Experimental procedures). We noted only
a weak correlation between the two performance indices
(P=0.30, Pearson correlation, n=10), likely because of the ap-
pearance of different silent periods in the PSTH across cells.
Fig. 4 shows the results from all 10 cells (white arrows mark
the time window and time delay estimated from STRF trigger
features). In most cases (8 out of 10 cells), arrows are found in-
side the region of high performance (>90% of peak: red areas
enclosed by white contours). In each panel, the prediction
level drops off at long delays (top, blue areas), suggesting the
existance of a critical delay time. At long time windows, per-
formance reached a plateau-like level, implying also the exi-
stance of a critical time window. Results showed that when

modeling at a fixed delay time, better performance was al-
ways associated with longer time windows, and such results
were not expected if cells responded only to a steady tone.
At excessively short time windows and short delay times,
the model performance became invariably poor. Within each
red area enclosed by the contour, the model performance
was typically high and often showed striking similarity with
the PSTH plots (Supplementary Fig. 2).

For simple artificial neural networks (with single neuron in
the hidden layer) like the present one, it is possible to examine
in greater details the weighting functions obtained at different
combinations of time window and delay time. Fig. 5 (and Sup-
plementary Fig. 3) shows the various weighting functions
within the region of high performance (Fig. 4). Some
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Fig. 3 - Model prediction of PSTH responses in 6 FM-sensitive cells showing the actual (black) and predicted results (red). To
visualize details, responses to the 1 s long stimulation are displayed in 2 time segments. Note the large overlaps. Cell labels

correspond to those in Fig. 2.

consistent features are apparent. Firstly, heavily weighted el-
ements (or ‘bump-like’ structures) are consistently observed
in the weighting function, particularly for cells with a prefer-
ence to the FM up-sweeps. In their STRFs, the ‘bumps’
appeared like ‘valleys’ in cases of preference to a down-

sweep. These features are more clearly seen at long time win-
dows and short delay times. In general, the duration of the
‘bumps’ (or ‘valleys) tended to overlap with the time window
of trigger feature, suggesting the importance of trigger fea-
tures in the modeling. Secondly, at certain combination of

Fig. 4 - Model performance (percentage of overlap in PSTH responsive area) for the 10 cells plotted as the results of systemically
scanning the length of time window and the delay time. Arrows indicate the time window and delay determined based on
trigger features in the STRF. Note the areas of peak performance determined by systematic scan (dashed regions) are close to if

not inclusive of the arrows.
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closest to the spike occurrence. Arrows indicate the time window and delay time based on STRF trigger features.

(C) Relationship of the weighting function (indicated by the arrow in B) to the STRF. Yellow curves: weighting functions; thin
gray line: zero; thick gray line: delay time. Note weighting function overlaps with the trigger feature, and its multiple-peak
appearance. Examples of weighting functions from other cells are shown in Supplementary Fig. 3.

time window and time delay near that of the trigger feature,
multiple peak-like structures were often observed riding on
the ‘bumps’ (or ‘valleys’), suggesting synaptic activations.

3. Discussion

Results showed that the stimulus energy within a critical pre-
spike time window is important for successful prediction of
the output of FM-sensitive neurons displaying simple trigger

features in their STRFs. One implication is that for these FM-
sensitive cells, the observed response is mainly generated by
excitation, provided that the stimulus energy has passed
though the spectro-temporal domain of the trigger feature.
The finding of primarily excitation rather than inhibition in
our study could be related to the selection of cells with simple
STRFs for modeling, and the use of a narrow-band FM stimulus
presented at a relatively low sound intensity (~30dB supra-
threshold). Neurons which show only excitations in STRF in
response to narrow band sounds of low intensities could show


image of Fig.�5

BRAIN RESEARCH 1434 (2012)90-101 97

>

unit 40-2-1

Frequency (kHz)

n=1,962

-40 -30 -20 -10 0 10
Peri-spike time (ms)

w

Frequency (kHz)

-40 -30 -20 -10 0 10
Peri-spike time (ms)

@]

Frequency (kHz)

n=1,714

-40 -30 -20 -10 0 10
Peri-spike time (ms)

o

Frequency (kHz)

-17.6 7.6 0
Peri-spike time (ms)
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information is derived from the STRF. (A) STRF constructed
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Supplementary Fig. 4); (C) STRF after spike de-jittering; (D) the
outline of extracted trigger feature at the critical threshold
showing the start and end times (-17.6 and - 7.6 ms). The central
transmission delay time is 7.6 ms in this case.

additional inhibitions when stimulated with wide-band sounds
at higher levels (review see Eggermont, 2011). The finding that a
pre-spike time window contains trigger features is well consis-
tent with the literature on FM cells (Chiu and Poon, 2007; Qiu
et al., 2003). The artificial neural modeling approach, due to its
self-adjusted weighting function (especially in the case of
systematic scanning), avoids the constraint of a fixed trigger
feature which is present in the case of modeling with STRF
convolution (Christianson et al., 2008; Kao et al., 1997). Evident-
ly, aslong as the trigger features are not too complex, our model
predicts the response rather satisfactorily even with training
datasets as brief as 1 second long, without involving substantial
non-linear elements in the network.

The temporal information in the STRF likely reflects two un-
derlying mechanisms: () a more or less fixed central transmission
delay time (i.e., for neural transmission to travel from the inner
ear to where spike activity is recorded), and (b) a more or less
fixed synaptic processing time window (i.e., for the different syn-
aptic events to take place over its dendrites following the arrival
of neural inputs). Biologically relevant information may be derived
from the weighting function of the FIRNN model in some cases.
Temporal segments of the pre-spike signal are heavily weighted
(appearing as ‘bumps’ or ‘valleys’ in the weighting function).
The multiple-peak appearance at the segment of heavy weight-
ings could resemble synaptic excitations occurring in a temporal
sequence, likely corresponded to synaptic inputs from nearby
‘iso-frequency laminae’. This temporal integration of synaptic in-
puts across frequency laminae could be a mechanism for the de-
tection of modulation direction. Our current result is different
from the finding on FM directional sensitivity at the midbrain of
the echolocating bat, where amplitude asymmetry of postsynap-
tic potentials appears more important than temporal integration
(Gittelman and Pollak, 2011; Gittelman et al., 2009). The difference
could be related to limitations of the in vivo patch clamp technique
which tends to reveal synaptic events closer to the soma than
those at the dendrites. Also, one cannot exclude the possibility
of different mechanisms of FM directional sensitivity that exist
across species especially for auditory-specialized animals like
the bat. Future experiments using intracellular recordings from
rat FM-sensitive neurons will help solving the controversy.

While the positive weight values are likely more consistent
with excitation, the negative values should be viewed with
more caution, as they cannot be considered simply as inhibition.
Since during training, the FIRNN estimated the PSTH profile
which contained periods of both spike responses and no re-
sponses. The weighting function of the trained FIRNN was then
convolved with the modulating time waveform of the test dataset
(expressed as positive and negative values with respect to the car-
rier frequency) to predict the response. What the model had to
consider was apparently: (a) the temporal features of the frequen-
cy sweep (up- or down-F), its rate of change, and the extent of
modulation), and (b) which side with respect to the BF of the cell
the FM stimulus had occurred (i.e., frequency range above or
below the BF). In other words, one may consider that the FIRNN
was basically modeling the integration of synaptic inputs that
landed on dendritic field of the cell traversing ‘iso-frequency lam-
inae’ likely on either side of the cell body (Poon et al., 1992).

Inhibition is known to be involved in FM detection (Fuzessery
and Hall, 1996; Gittelman et al., 2009) and the auditory midbrain is
known to be rich in inhibitory mechanisms (including post-
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inhibitory rebound; Sivaramakrishnan and Oliver, 2001; review FIRNN weightings. But the involvement of inhibition especially

see Casseday et al., 2002). It is conceivable that some inhibitory at higher stimulus levels remains to be explored. As the spike oc-
influences might have been taken care of by the self-adjusted currence determines when to capture the pre-spike modulating
A
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Fig. 7 - (A) Schematic diagram showing the structure of ‘finite impulse response neural network’ (FIRNN) of a hidden neuron. (B) The
instantaneous frequency time profile of the stimulus (or modulating time waveform,; black tracing) is fed to the input neuron, each
time with a segment of input waveform (red rectangled area). The length of time segment is based on the STRF trigger feature

(in response to tone-1). (C) After training (with the response to tone-2), the weighting function (red symbols) of the hidden neuron is
convolved with the test stimulus (tone-3, black symbols), and the output is generated after a fixed delay (Delay (q), a quantity also
determined by the STRF trigger feature to tone-1). (D) The temporal outputs of the model (gray or black symbols) are shown together
with the actual responses (pink symbols). (E) A similar plot as in D but showing extended results over time. (F) Overall architecture of
the FIRNN that includes three neurons: the input, hidden and output. For details see supplementary text.
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waveform, periods of ‘inhibition’, which appears indistinguish-
able from periods of no response, cannot be studied with this
spike-averaging approach.

Major differences exist between a previous FIRNN model
(Chang et al., 2003) and the present one. First, the current
method has a simple architecture (3 layers, with 1+1+1, or a
total of 3 neurons from the input to output layers). In contrast,
the previous model has a more complicated architecture (4
layers, with an architecture of 1+10+10+1, or a total of 22
neurons from input to output with somewhat arbitrary delays
times), and it also needs to divide the PSTH peaks into strong
and weak responses (again at somewhat arbitrary peak levels)
for separate modeling. More importantly, the previous
approach is a phenomenological model. Secondly, the present
model is based on biologically relevant information in the
STRF (assuming spectral integration of inputs over a specific
time window and the output is generated after a transmission
delay). In contrast, the previous model yields a total of 20
weighting functions for neurons in the 2 hidden layers, and
the functions are harder to relate to the underlying biology.
Thirdly, the present model finishes computation typically
within 30 min, compared to about 2 days with the previous
model. Perhaps due to its simplicity, the performance of the
current model was less satisfactory when applied to predict
responses of FM-sensitive cells with complex STRF (e.g.,
Supplementary Fig. 1). For some cells, when more neurons
were added to the first layer of the FIRNN, prediction markedly
improved in performance, including responses that resembled
post-inhibitory rebounds (see Supplementary Fig. 4). This
advantage with additional neurons in the hidden layer of the
FIRNN opens up the possibility in differentiating mechanisms
that generate different categories of response in the PSTH.

While the present model has performed satisfactorily for ‘in-
group’ stimuli (i.e., tone-2 and tone-3), it remains to be deter-
mined how well it predicts the responses to other complex
sounds (Eggermont et al., 1983; Gourevitch et al., 2009; Machens
etal., 2004; Rodriguez et al., 2010; Yeshurun et al., 1989). It is now
known that fine or complex trigger features are present in the
STRF (Atencio et al., 2009; Chang et al., 2010a, 2010b; Chiu and
Poon, 2007) as revealed after spike de-jittering (Chang et al,,
2005; Gollisch, 2006; Linden et al., 2003; Versnel et al., 2009).
Modeling responses to individual features of FM in the complex
sound with separate FIRNNs, and adding neurons to the hidden
layer in a systematic way would be useful in predicting the
responses of more auditory neurons.

4. Experimental procedures

Extracellular single unit responses of auditory midbrain neu-
rons to sound stimuli were first recorded in urethane-
anesthetized rats (Sprague Dawley strain, 250-350g b.w.)
using 3 KCl-filled glass micropipette electrodes (30-80 M)
according to conventional electrophysiological procedures as
we had reported earlier (Chang et al., 2010a; Chiu and Poon,
2007). Units were mostly recorded from the central and exter-
nal nuclei of the inferior colliculus, as judged by the recording
depth, response latency and the tonotopic progression during
electrode passage down the midbrain. Sounds were delivered
from a free-field speaker placed 30° off-midline, 70 cm away,

contralateral to the side of recording. Two sound stimuli
of different statistical properties were presented (at ~30 dB
suprathreshold: (a) random FM (designated tone-1) that is dif-
ferent across 60 repeated trials (2 s/trial, 0.2 s inter-trial inter-
val) (Fig. 1A), and (b) random FM (tone-2 and tone-3) that is
identical across trials (Fig. 1B). The bandwidth of the FM tone
was typically <2.5 octave with respect to the BF of the neuron
(this covered the spectral range of >90% of FM cells in the au-
ditory midbrain; see Poon et al., 1991). The tone frequency was
varied around the BF in a basically random fashion. The stim-
uli were obtained first by low-pass-filtering a white noise signal
and the result was used to modulate the instantaneous fre-
quency of a time-varying tone (through the voltage-control-
frequency function of a sine wave generator) to produce the
random FM signal. The two FM stimuli differ in the low-pass
cut-off-frequency (25Hz for tone-1, 125Hz for tone-2 and
tone-3). For better model performance, the slow FM was used
to generate STRFs with trigger features spanning a longer time
period. For each recorded cell, FM tone-1 was used to generate
the STRF, FM tone-2 for model training, and FM tone-3 (identical
in statistical property with tone-2, but differs in exact modulat-
ing time waveform,; they are also known as ‘in-group’stimuli)
for model testing. PSTHs were generated by counting spikes/60
trials at 0.4 ms time bins, followed by low-pass filtering (multi-
scale Gaussian filter: mean=0, variance=5; details see supple-
mentary text) to represent the response strength.

STRFs were generated by adding, on the spectro-temporal
plane, the instantaneous frequency time profiles within
40 ms before and 10 ms after the spike (Fig. 6A), followed by
a procedure of de-jittering (Chang et al., 2005) to enhance the
trigger features (Fig. 6B). The STRF was analyzed with a proce-
dure of ‘progressive thresholding’ (Chang et al., 2010b; details
see Supplementary Fig. 5) to extract the ‘main’ trigger feature
(Fig. 6C). The main trigger feature of FM-sensitive cells typical-
ly appeared as a single band-like structure in the STRF. The
time window covering the main trigger feature was then de-
termined (with the ‘time window’ length equals to the differ-
ence between the start and end times of the trigger feature,
and the end time with respect to the spike occurrence gives
the ‘delay time’; Fig. 6D). The time interval between the
spike occurrence and the proximal end of the trigger feature
is known to be close to the ‘central transmission delay’
(Chang et al., 2010a; Poon and Yu, 2000). Using the temporal
information from STRF trigger features, the artificial neural
network was trained to use the instantaneous frequency
time-profile of a training dataset to estimate the empirical re-
sponses in the PSTH (Fig. 7). A multi-scale Gaussian function
(mean=0, variance=5) was again convolved with the model
output to simulate synaptic activation of the cell and to im-
prove predictive power (Englitz et al., 2010). In greater details,
a ‘finite impulse response neural network’ (FIRNN; Back et al.,
1994) which models synaptic interactions as FIR linear filters
was constructed in the form of an autoregressive time series
(Fig. 7AF; see Supplementary text). After training (500 itera-
tion with tone-2 dataset), the FIRNN model acquired an opti-
mized weighting function at a given delay time (Fig. 7C). The
performance of the model to predict PSTH responses of a testing
dataset (tone-3) was finally assessed with a single iteration. As
shown in Fig. 7, the modulating time waveform (Fig. 7B) which
represents the tone frequency of the FM stimulus is fed to the
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neuron in the input layer. The receiving neuron in the hidden
layer convolves its trained weighting function with the inputin-
stantaneous frequency profile (Fig. 7C). The frequency profile
signal is normalized between+and — 1.0, to represent the fre-
quency range above and below the BF of the cell. The
convolution process produces an output, which is further
biased (to cater for silent periods in the PSTH), and transformed
with a sigmoidal function (optimized to simulate the non-linear
response-level function of the cell). Before the final output,
the predicted value is further delayed at the output layer (to
cater for the central transmission time). Hence, for each step
of processing based on the sliding window, a single point on
the output PSTH is generated to represent the instantaneous
strength of spike discharges (Figs. 7D, E).

Two indices were used to assess performance of the model:
(a) index-1 ‘percentage of overlap in PSTH: we first compute
the average percentage-disparity between the actual and pre-
dicted PSTHs (mean absolute difference in y-values of all time
points), and then subtract the result from 100%, or (b) index-2
‘percentage of overlap in the PSTH responsive area’: we com-
pute the area of positive hit (‘intercept’) and divide it by the
total area (‘union’) of actual and predicted responses. Index-1
is what the FIRNN was trained to fit (to respond to some stimu-
lus features and not to others), and index-2 is a stricter criterion
as it considers only the areas of PSTH with spike responses and
ignores those without. Since the FIRNN was trained to estimate
the PSTH based on both positive and negative hits, index-1 al-
ways gives a better performance. The alternative index based
on correlating time points between the predicted and actual
PSTHs would yield performance levels intermediate between
those generated by the present 2 indices.

Experimental procedure was approved by the Animal
Ethics Committee of NCKU Medical College, Taiwan.
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