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a b s t r a c t

According to previous studies, the Poisson model and negative binomial model could not accurately esti-
mate the wafer yield. Numerous mathematical models proposed in past years were very complicated.
Furthermore, other neural networks models can not provide a certain equation for managers to use. Thus,
a novel design of this paper is to construct a new wafer yield model with a handy polynomial by using
group method of data handling (GMDH). In addition to defect cluster index (CIM), 12 critical electrical test
parameters are also considered simultaneously. Because the number of input variables for GMDH is inad-
visable to be too many, principal component analysis (PCA) is used to reduce the dimensions of 12 critical
electrical test parameters to a manageable few without much loss of information. The proposed approach
is validated by a case obtained in a DRAM company in Taiwan.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction can not provide a certain equation for managers to use. Thus, those
For integrated circuits (IC) manufacturers, the wafer yield is a
key index to evaluate their profit. Semiconductor manufacturing
companies strive to achieve defect-free products and increase
profit rate by adopting advanced manufacturing, planning, and
evaluating technologies. In these performance technologies
(Leachman, 1993), wafer yield prediction is one of the most widely
researched approaches in the complicated semiconductor manu-
facturing system. Wafer yield prediction is very important for a
semiconductor manufacturing factory in improving yield, decreas-
ing cost and maintaining a good relationship with customers
(Kumar et al., 2006). For this reason, it is an essential task for
engineers to manage the wafer yield.

As the wafer size increases, the clustering phenomenon of
defects becomes pronounced. Although the Poisson model is the
simplest model to use, the essential assumption is that defects
must occur independently with constant probability of occurring
in small area on a wafer (Albin & Friedman, 1991). The negative
binomial yield model (Stapper, 1973) includes a clustering index
(a), but the value of a can be very scattered and negative that leads
to unhandy analysis (Cunningham, 1990). Numerous mathematical
models have been developed to predict wafer yield in the last
40 years (Cunningham, 1990; Stapper, 1991; Stapper & Rosner,
1995), but these models are very complicated in practice.

Neural networks are also utilized to construct the wafer yield
models, but those models (Tong & Chao, 2008; Tong, Lee, & Su,
1997) must set several parameters (e.g., the number of neurons
in the hidden layers, the momentum, and the learning rate) and
ll rights reserved.
neural networks models are often difficult for managers without
profound profession knowledge to use in performing wafer yield
prediction.

On the basis of practicability, a novel design of this paper is to
construct a new wafer yield model with a handy polynomial by
using group method of data handling (GMDH) (Ivakhnenko, 1968,
1971). This proposed GMDH model does not need any statistical
assumption and can be friendly to use. In addition to defect cluster
index (CIM) (Tong, Wang, & Chen, 2007), 12 critical electrical test
parameters are also considered simultaneously. Because the num-
ber of input variables for GMDH is inadvisable to be too many, prin-
cipal component analysis (PCA) (Pearson, 1901) is used to reduce
the dimensions of 12 critical electrical test parameters to a manage-
able few without much loss of information for convenient analysis.

Finally, a case of a DRAM company in Taiwan is utilized to dem-
onstrate the effectiveness of the proposed approach. Comparisons
are also made among negative binomial yield model, back-propa-
gation neural network (BPNN) yield model, general regression neu-
ral network (GRNN) yield model (Tong & Chao, 2008), and the
proposed GMDH yield model to demonstrate that the proposed ap-
proach is indeed superior.

2. Literature review

2.1. Yield models

The Poisson yield model assumes that the defects on a chip
follow a Poisson probability distribution. Under this assumption,
the probability that a chip has k number of defects is
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PðkÞ ¼ e�k0 kk
0

k!
; k ¼ 0;1;2; . . . ð1Þ

where k0 is the average number of defects per chip, and k is the
number of defects per chip. The Poisson yield model can be ob-
tained as

Y ¼ Pðk ¼ 0Þ ¼ e�k0 ð2Þ

Cunningham (1990) indicated that, when the chip size is less than
0.25 cm2, the Poisson yield model is appropriate. However, as the
chip size increases, the conventional Poisson yield model will fre-
quently underestimate the actual wafer yield.

The negative binomial yield model proposed by Stapper (1973)
is a widely applied yield model, which employs a gamma function
for the distribution of defect density. The negative binomial yield
model can be expressed as

Y ¼ 1
ð1þ D0A=aÞa

ð3Þ

where D0 is the average number of defects per unit area, A is the
chip area, and a is the cluster parameter. The value of a is calculated
by the following equation:

a ¼ �k2=ðr2 � �kÞ ð4Þ

where �k is the mean number of defects per chip, and r2 is the var-
iance. Cunningham (1990) indicated that, the value of a can be
quite scattered and sometimes negative when the negative bino-
mial yield model is used to predict yield.

Other yield models are summarized in Stapper and Rosner
(1995). Tong et al. (1997) proposed a neural network-based ap-
proach to predict the wafer yield. Langford, Liou, and Raghavan
(2001) presented a simple robust windowing method for the Pois-
son yield model to extract the systematic and random components
of yield from wafer probe bin map data. Liou et al. (2002) pre-
sented a statistical modeling of MOS devices for parametric yield
prediction. Meyer and Park (2003) presented a center-satellite
model to predict defect-tolerant yield in the embedded core con-
text. Dupret and Kielbasa (2004) presented the partial least square
(PLS) regression model to predict the yield from measurements ob-
tained during the production. Kim and Baldwin (2005) presented a
theoretical yield model for assembly processes of area array sol-
ders inter connect process. Tong and Chao (2008) proposed a gen-
eral regression neural network (GRNN) to predict the wafer yield
with clustered defects.

2.2. Defect cluster index

The intensity of defects clustered on a wafer can be depicted by
a defect cluster index. The cluster parameter (a) of the negative
binomial model, the variance/mean ratio (V/M) and the non-
parameters assumption cluster index (CI) are commonly used.
The negative binomial yield model is as follows:

Y ¼ 1
ð1þ �k=aÞa

ð5Þ

where a is the cluster parameter and �k is the mean number of de-
fects per chip. Earlier reports show that cluster parameter a in the
negative binomial model may be quite scattered and may even have
a negative value when the model is used to forecast yield (Cunning-
ham, 1990).

Tyagi and Bayoumi (1992, 1994) utilized various grid sizes
superimposed on a wafer map to measure the intensity of defects
distributed on a wafer. The defects contained within each grid can
be used to judge the spatial distribution of defects. The distribution
of defects follows a Poisson distribution if the defects are randomly
distributed. Because both variance (V) and mean (M) are equal in
the Poisson distribution, the value of V/M equals 1 if the wafer de-
fects are randomly scattered. The value of V/M exceeds 1 if the de-
fects distributed on a wafer are clustered. The values of V/M
depend on how the grids are selected and cannot indicate the grad-
ualness of cross-wafer defect density variations.

Jun, Hong, Kim, Park, and Park (1999) proposed a cluster index
based on the projected x and y coordinates of defect locations on a
wafer. Defect clustering tends to show clumps in the x and the y
coordinates, which result in a large variance in defect intervals.
However, showing clumps either on the x-axis or on the y-axis
does not necessarily represent the clustered defects. The clustering
index CI can be calculated as

CI ¼min
S2

v

V2
;

S2
W

�W2

( )
ð6Þ

where Vi and Wi are a sequence of defect intervals on the x-axis and
y-axis defined as

Vi ¼ XðiÞ � Xði�1Þ; i ¼ 1;2; . . . ;n ð7Þ
Wi ¼ Y ðiÞ � Y ði�1Þ; i ¼ 1;2; . . . ;n ð8Þ

where X(i) and Y(i) denote the ith smallest defect coordinates on the
x-axis and y-axis respectively, X(0) = Y(0) = 0, and n is the number of
defects on a wafer. The value of CI is close to 1 if the defects are ran-
domly scattered, and the value of CI is expected to be greater than 1
if clustering of defects appears.

3. Proposed approach

The constructing of the proposed wafer yield model is described
in the following subsections.

3.1. Group method of data handling (GMDH)

The GMDH (Ivakhnenko, 1968, 1971) is a special model, and it
can be expressed as a set of neurons in which different pairs of
them in each layer are connected through a polynomial and, so
produce new neurons in the next layer. For instance, the training
set is divided into two parts: model learning set E1 and model
selecting set E2 in GMDH. Let X = (X1,X2, . . .,Xn) and y be the input
vector and actual output, respectively. Given M observations of
multi-input, single-output data pairs {yi,Xi1,Xi2, . . .,Xin,
i = 1,2, . . .,M} in set E1, I train a GMDH-type neural network to pre-
dict the output values ŷi:

ŷi ¼ f̂ ðXi1;Xi2; . . . ;XiMÞ; i ¼ 1;2; . . . ;M ð9Þ

The problem transforms to construct a GMDH-type neural network
so that

min
XM

i¼1

½f̂ ðXi1;Xi2; . . . ;XiMÞ � yi�
2 ð10Þ

The connection between the inputs and the output variables can be
expressed by a complicated discrete form of the Volterra functional
series in the form of

y ¼ a0 þ
XM

i¼1

aiXi þ
XM

i¼1

XM

j¼1

aijXiXj þ
XM

i¼1

XM

j¼1

XM

k¼1

aijkXiXjXk

þ � � � ð11Þ

which is also called as the Kolmogorov–Gabor (K–G) polynomial
(Madala & Ivakhnenko, 1994; Muller & Lemke, 2000), in particular
by the K–G polynomial of degree 2 consisting of only two variables
(neurons) in the form of

ŷ ¼ GðXi;XjÞ ¼ a0 þ a1Xi þ a2Xj þ a3XiXj þ a4X2
i þ a5X2

j ; i–j ð12Þ
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In this manner, such a partial quadratic description is recursively
used in a network of connected neurons to construct the general
mathematical relation of the inputs and output variables given in
Eq. (11). The coefficients ai in Eq. (12) are calculated with least
squares (LS) (Madala & Ivakhnenko, 1994; Muller & Lemke, 2000).
In this manner, the coefficients of each quadratic function Gi are
given to optimally fit the output yi in the whole set E1, that is

min
PM

i¼1ðyi � GiÞ2

M

" #
ð13Þ

By the GMDH algorithm, all the possibilities of two independent
variables out of the total n input variables are taken in order to con-
struct the polynomial in the form of Eq. (12) that best fits the
dependent observations (yi, i = 1,2, . . .,M) with LS. Therefore,
C2

n ¼ nðn� 1Þ=2 neurons will be constructed in the first hidden layer
of the feed-forward network from the observations {(yi,Xip,Xiq)} for
different p,q 2 {1,2, . . .,n}. Likewise, it is now possible to construct
M data triples {(yi,Xip,Xiq)} from observations with such

p,q 2 {1,2, . . .,n} in the form
X1p X1q y1
X2p X2q y2
XMp XMq yM

0
@

1
A.

By the quadratic sub-expression in the form of Eq. (12) for each
row of M data triples, the following matrix equation can be given as
Aa = Y, where a is the vector of unknown coefficients of the qua-
dratic polynomial in Eq. (12), a = {a0,a1,a2,a3,a4,a5}T and
Y = {y1,y2, . . .,yM}T is the vector of the output’s value from observa-
tion. It can be shown in the following

1 X1p X1q X1pX1q X2
1p X2

1q

1 X2p X2q X2pX2q X2
2p X2

2q

1 XMp XMq XMpXMq X2
Mp X2

Mq

0
BB@

1
CCA

The LS obtains the solution of the equations in the form of

a ¼ ðATAÞ�1ATY ð14Þ

which determines the vector of the best coefficients of Eq. (12) for the
whole set of M data triples. It should be paid attention to that this pro-
cedure is repeated for each neuron of the next hidden layer according
to the connectivity topology of the network. In each layer, it uses LS to
estimate the parameters of candidate models in set E1, and uses the
external criterion to evaluate and select the candidate models in set
E2. The process continues and should be stopped when we find the
optimal model by the termination principle, which is presented by
the theory of optimal complexity (Madala & Ivakhnenko, 1994):
along with the increase of model complexity, the value of external
criterion will decrease first and then increase, and finally the global
extreme value agrees with the optimal complexity.

3.2. Principal component analysis (PCA)

Given a set of centered input vectors xt (t = 1,2, . . ., l andPl
t¼1xt ¼ 0), each of which is of m dimension xt = [xt(1),

xt(2), . . .,xt(m)]T usually m < l, PCA (Pearson, 1901) linearly trans-
forms each vector xt into a new one st by

st ¼ UTxt ð15Þ

where U is the m �m orthogonal matrix whose ith column, ui is the
eigenvector of the sample covariance matrix

C ¼ 1
l

Xl

t¼1

xtxT
t ð16Þ

In other words, PCA firstly solves the eigenvalue problem

kiui ¼ Cui; i ¼ 1;2; . . . ;m ð17Þ
where ki is one of the eigenvalues of C, ui is the corresponding eigen-
vector. Based on the estimated ui, the components of st are then cal-
culated as the orthogonal transformations of xt

stðiÞ ¼ uT
i xt ; i ¼ 1;2; . . . m ð18Þ

The new components are called principal components. By using
only the first several eigenvectors sorted in descending order of the
eigenvalues, the number of principal components in st can be re-
duced. So PCA has the dimensional reduction characteristic. The
principal components of PCA have the following properties: st(i)
are uncorrelated, has sequentially maximum variances and the
mean squared approximation error in the representation of the ori-
ginal inputs by the first several principal components is minimal
(Jolliffe, 1986).

3.3. Defect cluster index (CIM)

In this study, I use the clustering index (CIM) proposed by Tong
et al. (2007) to measure the clustering phenomenon of defects. The
detailed descriptions of obtaining CIM are listed as the following
five steps.

Step 1: Project the defect coordinates (Xi,Yi) into a new axis
obtained by rotating the x-axis counterclockwise using h�. Sup-
pose that a wafer has n defects, and (Xi,Yi) denotes the x and y
coordinates of the ith defect location in a two-dimensional
space, i = 1, . . .,n. These n defects then can be projected onto a
new axis X�i;h obtained by rotating the x-axis counterclockwise
using h�. The new coordinates for the ith defect with respect
to h then can be calculated as follows:
X�i;h ¼ cos h� Xi þ sin h� Yi ð19Þ

where i denotes the ith defect and h represents a rotating angle,
where 0 6 h 6 180.
Step 2: Sort the X�i;h values in ascending order and calculate the
intervals between each adjacent coordinate value X�i;h. The inter-
vals between each adjacent coordinate value X�i;h then can be
calculated as follows:

Vi;h ¼ X�ði;hÞ � X�ði�1;hÞ ð20Þ

where X�ð0;hÞ ¼ 0 and Vi,h represents the ith interval between X�ði;hÞ
and X�ði�1;hÞ.
Step 3: Calculate the squared coefficient of variation (SCV) for
Vi,h. The SCV for Vi,h can be determined as follows:

SCVh ¼
S2

v;h

V2
h

ð21Þ

where SCVh represents the squared coefficient of variation for
Vi;h;Vh ¼ ð

Pn
i¼1Vi;hÞ=n, and S2

V ;h ¼ ð
Pn

i¼1ðVi;h � VhÞ2Þ=ðn� 1Þ.
Step 4: Change the angle of h and calculate the corresponding
h = 1� value. The number of 180 SCVh values with respect to h,
increased by h = 1�, can be obtained through Steps 1–3.
Step 5: According to the SCVh values obtained from Step 4, the
average SCVh value determines the clustering index (CIM), as
follows:

CIM ¼
P180

h¼0SCVh

180
ð22Þ

where CIM represents defect cluster index. A larger CIM value indi-
cates a stronger degree of defect clustering formed on a wafer.

3.4. Prepare the relative data per wafer

In this study, defect counts, the value of CIM, and the value of
principal component scores are utilized as the input variables for



Table 1
The partial 12 critical electrical test parameters of 111 wafer data in this case.

No. Parameter x1 Parameter x2 Parameter x3 � � � Parameter x12

1 1.1727 0.0658 322.9658 � � � 2.1098
2 1.1662 0.0615 315.9007 � � � 2.6533
3 1.1774 0.0682 322.2566 � � � 2.3412
4 1.1695 0.0632 310.9355 � � � 2.2145
5 1.1834 0.0595 313.5132 � � � 2.4589
6 1.1607 0.0659 320.4290 � � � 2.5098

� � � � � � � � � � � � � � � � � �
109 1.1808 0.0614 319.6768 � � � 2.3325
110 1.1762 0.0604 321.3472 � � � 2.5977
111 1.1849 0.0632 317.0603 � � � 2.1104

Fig. 2. The eigenvalues of PCA.
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GMDH. The value of actual wafer yield is the output variable for
GMDH. Follows are brief descriptions for the obtainment of CIM,
principal component scores, and the actual wafer yield.
3.4.1. Calculate the value of CIM

The clustering phenomenon of defects on a wafer influences the
accuracy of a wafer yield model, and the CIM can effectively mea-
sure the clustering phenomenon on a wafer. The CIM can be ob-
tained by the five calculating steps introduced in Section 3.3.
3.4.2. Obtain the value of principal component scores
Use the principal component analysis (PCA) to form new vari-

ables that are linear combinations of the original variables (i.e.,
12 critical electrical test parameters). Then let the standardized
data of original variables into the linear equations of new variables
to obtain the value of principal component scores.
3.4.3. Calculate the value of actual wafer yield
The actual yield value can be obtained by the number of non-

defective chips divided by the total number of chips on a wafer.
3.5. Verify the proposed model

The accuracy of neural networks can be measured by a root-
mean squared error (RMSE). When the value of RMSE is smaller,
Fig. 1. The scree
the accuracy of neural networks is higher. The RMSE can be calcu-
lated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðAi � OiÞ2

n

s
ð23Þ

where n represents the number of data, Ai represents the actual va-
lue of output, and Oi represents the predicted value. The general
indicator for measuring the strength of the relationship between
the actual and predicted outputs is the Pearson’s linear correlation
coefficient r. In this study, RMSE and r are both used to evaluate the
performance of wafer yield model.

4. Implementation

In this section, a case of a DRAM company in Taiwan is utilized
to demonstrate the effectiveness of the proposed approach. Com-
parisons are also made among negative binomial yield model,
back-propagation neural network (BPNN) yield model, general
regression neural network (GRNN) yield model (Tong & Chao,
2008), and the proposed GMDH yield model to demonstrate that
the proposed approach is indeed superior.
plot of PCA.



Fig. 3. The eigenvectors of PCA.

Table 2
The standardized principal component scores of Prin1, Prin2, and Prin3.

No. Scores of Prin1 Scores of Prin2 Scores of Prin3

1 1.2071 0.6119 0.1203
2 0.6368 1.5014 0.0992
3 1.6939 0.1562 1.3042

� � � � � � � � � � � �
109 0.8735 1.3814 0.5404
110 0.6523 0.8559 1.4322
111 0.2593 1.6555 1.4796

J.-S. Lin / Expert Systems with Applications 39 (2012) 6665–6671 6669
4.1. PCA of 12 critical electrical test parameters

There are totally 111 data of 8-in. wafer in a case of a DRAM
company in Taiwan, and 12 critical electrical test parameters per
Fig. 4. The five clus
wafer are considered in this case. The partial 12 critical electrical
test parameters of 111 wafer data are listed in Table 1.

The computer software, STATISTICA 6.0, is used to perform PCA.
Fig. 1 shows the scree plot of PCA. Fig. 2 shows the eigenvalues of
PCA. Fig. 3 shows the eigenvectors of PCA. By Kaiser’s rule, we re-
tain only those components whose eigenvalues are greater than 1.
Therefore, there are 3 principal components which should be re-
tained. According to Fig. 3, the 3 principal components can be cal-
culated as follows:

Prin1 ¼ �0:0267x1 � 0:3285x2 � 0:2843x3 þ � � � � 0:3363x12 ð24Þ
Prin2 ¼ 0:0077x1 þ 0:2830x2 þ 0:3014x3 þ � � � � 0:2779x12 ð25Þ
Prin3 ¼ 0:9385x1 þ 0:0655x2 � 0:1783x3 � � � � þ 0:0534x12 ð26Þ

The standardized principal component scores of Prin1, Prin2, and
Prin3 are partially listed in Table 2.
tering patterns.
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Fig. 6. The scatter plot in negative binomial yield model.
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4.2. Construct a new wafer yield model using GMDH

In this study, the computer software, NeuroShell 2.0, is used to
construct the proposed GMDH yield model. In this case of a DRAM
company in Taiwan, one random pattern and four clustering pat-
terns (i.e., bull eye pattern, edge pattern, bottom pattern, and cres-
cent moon pattern) (Friedman, Hansen, Nair, & James, 1997) are
considered, and these five clustering patterns are shown in Fig. 4.

Eighty-nine wafer data are randomly selected as training sam-
ples, and the rest 22 wafer data are the testing samples. The result
of GMDH learning is shown in Fig. 5. By Fig. 5, the GMDH polyno-
mial of proposed yield model is shown in Eq. (27)

Y ¼ 8:8E� 002 � X5� 0:15 � X2þ X3� 0:11 � X4� 3:8E

� 002� 7:3E� 002 � X1� 1:1 � X3^2� 6:9 � X4^2

� 0:61 � X3^3þ 1:8 � X4^3þ 8:5 � X3 � X4� 1:3 � X3

� X5þ 7 � X4 � X5þ 7:9 � X3 � X4 � X5þ 0:1 � X2^2

þ 1:1 � X2 � X3þ 0:28 � X2 � X5� 1:4 � X2 � X3^2� 6:5

� X2 � X4^2� 0:77 � X2 � X3^3þ 1:7 � X2 � X4^3þ 8:1

� X2 � X3 � X4� 1:3 � X2 � X3 � X5þ 6:6 � X2 � X4 � X5

þ 7:5 � X2 � X3 � X4 � X5� 0:26 � X1^2þ 0:12 � X1^3

þ 0:19 � X5^2þ 0:15 � X2^3þ 0:21 � X5^3 ð27Þ

where Y denotes the predictive wafer yield value, X1 is defect
counts, X2 is the value of CIM, X3 is scores of Prin1, X4 is scores of
Prin2, and X5 is scores of Prin3. The value of RMSE ¼

ffiffiffiffiffiffiffiffiffiffi
MSE
p

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:010540
p

¼ 0:1027, and the value of correlation coefficient is
0.9784.

4.3. Compare with other wafer yield models

Finally, the comparisons made among negative binomial yield
model, back-propagation neural network (BPNN) yield model, gen-
eral regression neural network (GRNN) yield model (Tong & Chao,
Table 3
Comparisons of RMSE and r between predictive and actual yield value.

Yield model RMSE r

Negative binomial yield model 0.1443 0.9159
BPNN yield model 0.1224 0.9308
GRNN yield model 0.1189 0.9496
Proposed GMDH yield model 0.1027 0.9784

Fig. 5. The result of GMDH learning.
2008), and the proposed GMDH yield model are listed in Table 3.
The scatter plots in the negative binomial yield model, BPNN yield
model, GRNN yield model, and the proposed GMDH yield model
are shown from Figs. 6–9.

From Table 3, it can be seen that the proposed GMDH model in
this study has the smallest value of RMSE and the largest value of
correlation coefficient. Therefore, the predictive accuracy of the
proposed model in this study is indeed superior.
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Fig. 9. The scatter plot in GMDH yield model.

Fig. 7. The scatter plot in BPNN yield model.
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Fig. 8. The scatter plot in GRNN yield model.
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5. Conclusions

When the clustering phenomenon of defects is pronounced, the
conventional Poisson yield model can not reasonably estimate the
wafer yield. Other neural networks models have the problem of
setting parameters and can not provide a certain equation for man-
agers to use.

On the basis of practicability, a novel design of this paper is to
construct a new wafer yield model with a handy polynomial by
using GMDH, and it can accurately predict the wafer yield. In addi-
tion to defect cluster index (CIM), 12 critical electrical test param-
eters are also considered simultaneously. In this study, the PCA is
used to reduce the dimensions of 12 critical electrical test param-
eters to a manageable few without much loss of information for
convenient analysis.

The merits of the proposed approach are summarized as
follows:

(1) The proposed GMDH yield model can provide a handy poly-
nomial for managers to use, and this model does not require
setting parameters of neural networks.

(2) This study employs PCA to reduce the dimensions of 12 crit-
ical electrical test parameters to a manageable few without
much loss of information, and it can effectively simplify
the constructions of variables.

(3) The proposed GMDH yield model is fast learning and has
high accuracy of prediction.

(4) The proposed GMDH yield model does not need any statisti-
cal assumption and can be friendly to use.

(5) The proposed GMDH yield model can help the IC manufac-
turers to manage the wafer yield and evaluate their process
capability in relation to profit and loss.
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