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ARTICLE INFO ABSTRACT
Keywords: According to previous studies, the Poisson model and negative binomial model could not accurately esti-
Yield model mate the wafer yield. Numerous mathematical models proposed in past years were very complicated.
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Furthermore, other neural networks models can not provide a certain equation for managers to use. Thus,
a novel design of this paper is to construct a new wafer yield model with a handy polynomial by using
group method of data handling (GMDH). In addition to defect cluster index (Cly), 12 critical electrical test

parameters are also considered simultaneously. Because the number of input variables for GMDH is inad-
visable to be too many, principal component analysis (PCA) is used to reduce the dimensions of 12 critical
electrical test parameters to a manageable few without much loss of information. The proposed approach
is validated by a case obtained in a DRAM company in Taiwan.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For integrated circuits (IC) manufacturers, the wafer yield is a
key index to evaluate their profit. Semiconductor manufacturing
companies strive to achieve defect-free products and increase
profit rate by adopting advanced manufacturing, planning, and
evaluating technologies. In these performance technologies
(Leachman, 1993), wafer yield prediction is one of the most widely
researched approaches in the complicated semiconductor manu-
facturing system. Wafer yield prediction is very important for a
semiconductor manufacturing factory in improving yield, decreas-
ing cost and maintaining a good relationship with customers
(Kumar et al., 2006). For this reason, it is an essential task for
engineers to manage the wafer yield.

As the wafer size increases, the clustering phenomenon of
defects becomes pronounced. Although the Poisson model is the
simplest model to use, the essential assumption is that defects
must occur independently with constant probability of occurring
in small area on a wafer (Albin & Friedman, 1991). The negative
binomial yield model (Stapper, 1973) includes a clustering index
(), but the value of o can be very scattered and negative that leads
to unhandy analysis (Cunningham, 1990). Numerous mathematical
models have been developed to predict wafer yield in the last
40 years (Cunningham, 1990; Stapper, 1991; Stapper & Rosner,
1995), but these models are very complicated in practice.

Neural networks are also utilized to construct the wafer yield
models, but those models (Tong & Chao, 2008; Tong, Lee, & Su,
1997) must set several parameters (e.g., the number of neurons
in the hidden layers, the momentum, and the learning rate) and
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can not provide a certain equation for managers to use. Thus, those
neural networks models are often difficult for managers without
profound profession knowledge to use in performing wafer yield
prediction.

On the basis of practicability, a novel design of this paper is to
construct a new wafer yield model with a handy polynomial by
using group method of data handling (GMDH) (Ivakhnenko, 1968,
1971). This proposed GMDH model does not need any statistical
assumption and can be friendly to use. In addition to defect cluster
index (Cly) (Tong, Wang, & Chen, 2007), 12 critical electrical test
parameters are also considered simultaneously. Because the num-
ber of input variables for GMDH is inadvisable to be too many, prin-
cipal component analysis (PCA) (Pearson, 1901) is used to reduce
the dimensions of 12 critical electrical test parameters to a manage-
able few without much loss of information for convenient analysis.

Finally, a case of a DRAM company in Taiwan is utilized to dem-
onstrate the effectiveness of the proposed approach. Comparisons
are also made among negative binomial yield model, back-propa-
gation neural network (BPNN) yield model, general regression neu-
ral network (GRNN) yield model (Tong & Chao, 2008), and the
proposed GMDH yield model to demonstrate that the proposed ap-
proach is indeed superior.

2. Literature review
2.1. Yield models
The Poisson yield model assumes that the defects on a chip

follow a Poisson probability distribution. Under this assumption,
the probability that a chip has k number of defects is
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where /g is the average number of defects per chip, and k is the

number of defects per chip. The Poisson yield model can be ob-
tained as

Y=Pk=0)=e" (2)

P(k) = k=0,1,2,... (1)

Cunningham (1990) indicated that, when the chip size is less than
0.25 cm?, the Poisson yield model is appropriate. However, as the
chip size increases, the conventional Poisson yield model will fre-
quently underestimate the actual wafer yield.

The negative binomial yield model proposed by Stapper (1973)
is a widely applied yield model, which employs a gamma function
for the distribution of defect density. The negative binomial yield
model can be expressed as

1
Y=—— 3
(14 DoA/o)* 3)
where Dy is the average number of defects per unit area, A is the
chip area, and o is the cluster parameter. The value of o is calculated
by the following equation:

o=72/(c” ) (4)

where 7 is the mean number of defects per chip, and &2 is the var-
iance. Cunningham (1990) indicated that, the value of o can be
quite scattered and sometimes negative when the negative bino-
mial yield model is used to predict yield.

Other yield models are summarized in Stapper and Rosner
(1995). Tong et al. (1997) proposed a neural network-based ap-
proach to predict the wafer yield. Langford, Liou, and Raghavan
(2001) presented a simple robust windowing method for the Pois-
son yield model to extract the systematic and random components
of yield from wafer probe bin map data. Liou et al. (2002) pre-
sented a statistical modeling of MOS devices for parametric yield
prediction. Meyer and Park (2003) presented a center-satellite
model to predict defect-tolerant yield in the embedded core con-
text. Dupret and Kielbasa (2004) presented the partial least square
(PLS) regression model to predict the yield from measurements ob-
tained during the production. Kim and Baldwin (2005) presented a
theoretical yield model for assembly processes of area array sol-
ders inter connect process. Tong and Chao (2008) proposed a gen-
eral regression neural network (GRNN) to predict the wafer yield
with clustered defects.

2.2. Defect cluster index

The intensity of defects clustered on a wafer can be depicted by
a defect cluster index. The cluster parameter («) of the negative
binomial model, the variance/mean ratio (V/M) and the non-
parameters assumption cluster index (CI) are commonly used.
The negative binomial yield model is as follows:

1
Y_(1+Z/a)“ )
where o is the cluster parameter and / is the mean number of de-
fects per chip. Earlier reports show that cluster parameter o in the
negative binomial model may be quite scattered and may even have
a negative value when the model is used to forecast yield (Cunning-
ham, 1990).

Tyagi and Bayoumi (1992, 1994) utilized various grid sizes
superimposed on a wafer map to measure the intensity of defects
distributed on a wafer. The defects contained within each grid can
be used to judge the spatial distribution of defects. The distribution
of defects follows a Poisson distribution if the defects are randomly
distributed. Because both variance (V) and mean (M) are equal in

the Poisson distribution, the value of V/M equals 1 if the wafer de-
fects are randomly scattered. The value of V/M exceeds 1 if the de-
fects distributed on a wafer are clustered. The values of V/M
depend on how the grids are selected and cannot indicate the grad-
ualness of cross-wafer defect density variations.

Jun, Hong, Kim, Park, and Park (1999) proposed a cluster index
based on the projected x and y coordinates of defect locations on a
wafer. Defect clustering tends to show clumps in the x and the y
coordinates, which result in a large variance in defect intervals.
However, showing clumps either on the x-axis or on the y-axis
does not necessarily represent the clustered defects. The clustering
index CI can be calculated as

2 2

Cl = min {i,s—w} (6)
V2 W2

where V; and W; are a sequence of defect intervals on the x-axis and

y-axis defined as

Vi =X — Xio1),

Wi=Yy —Yin

i=1,2,....n (7)
i=1,2,....n (8)

where X(;) and Y(;) denote the ith smallest defect coordinates on the
x-axis and y-axis respectively, X0 = Y(0)=0, and n is the number of
defects on a wafer. The value of Cl is close to 1 if the defects are ran-
domly scattered, and the value of (I is expected to be greater than 1
if clustering of defects appears.

3. Proposed approach

The constructing of the proposed wafer yield model is described
in the following subsections.

3.1. Group method of data handling (GMDH)

The GMDH (Ivakhnenko, 1968, 1971) is a special model, and it
can be expressed as a set of neurons in which different pairs of
them in each layer are connected through a polynomial and, so
produce new neurons in the next layer. For instance, the training
set is divided into two parts: model learning set E; and model
selecting set E; in GMDH. Let X = (X1,X,...,X;;) and y be the input
vector and actual output, respectively. Given M observations of
multi-input,  single-output data  pairs  {yi, X1, Xi2, - - - Xins
i=1,2,...,M}in set E, I train a GMDH-type neural network to pre-
dict the output values y;:
Vi =fXn,Xiz, ..., Xim),
The problem transforms to construct a GMDH-type neural network
so that

i=1,2,....M 9)

M A
miny [f (Xir, X, . Xim) = ¥l (10)
P

The connection between the inputs and the output variables can be
expressed by a complicated discrete form of the Volterra functional
series in the form of

M MM
y=ao+ Zaixi + Z a;XiX; +
i=1 j=1

i=1 j

M
Z a,-ij iX jX k

=1

M=

J
. (11)

M
=1

Il
—_

which is also called as the Kolmogorov-Gabor (K-G) polynomial
(Madala & Ivakhnenko, 1994; Muller & Lemke, 2000), in particular
by the K-G polynomial of degree 2 consisting of only two variables
(neurons) in the form of

¥ =G(Xi.Xj) = a0 + 1 X; + @X; + asXiX; + X +asX}i#j  (12)
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In this manner, such a partial quadratic description is recursively
used in a network of connected neurons to construct the general
mathematical relation of the inputs and output variables given in
Eq. (11). The coefficients a; in Eq. (12) are calculated with least
squares (LS) (Madala & Ivakhnenko, 1994; Muller & Lemke, 2000).
In this manner, the coefficients of each quadratic function G; are
given to optimally fit the output y; in the whole set E;, that is

min FfMlU’Tz—GIq (13)

By the GMDH algorithm, all the possibilities of two independent
variables out of the total n input variables are taken in order to con-
struct the polynomial in the form of Eq. (12) that best fits the
dependent observations (y;, i=1,2,...,,M) with LS. Therefore,
C2 = n(n — 1)/2 neurons will be constructed in the first hidden layer
of the feed-forward network from the observations {(y; Xip,Xiq)} for
different p,q € {1,2,...,n}. Likewise, it is now possible to construct
M data triples {(yiXip,Xiq)} from observations with such

Xip Xig Wi
p.qef{1,2,...,n}in the form | Xop X3q ¥, |-
Xwp Xmg Yum

By the quadratic sub-expression in the form of Eq. (12) for each
row of M data triples, the following matrix equation can be given as
Aa =Y, where a is the vector of unknown coefficients of the qua-
dratic polynomial in Eq. (12), a={aoa;,d0asasas)’ and
Y={y1,Y2....ym)" is the vector of the output’s value from observa-
tion. It can be shown in the following

T Xy Xig XpXig X3, X3,

1T Xop Xag XopXoq X5, X3,

1T Xup Xug XwpXug Xipp Xivg
The LS obtains the solution of the equations in the form of
a=(A"A)'ATY (14)

which determines the vector of the best coefficients of Eq. (12) for the
whole set of M data triples. It should be paid attention to that this pro-
cedure is repeated for each neuron of the next hidden layer according
to the connectivity topology of the network. In each layer, it uses LS to
estimate the parameters of candidate models in set E, and uses the
external criterion to evaluate and select the candidate models in set
E,. The process continues and should be stopped when we find the
optimal model by the termination principle, which is presented by
the theory of optimal complexity (Madala & Ivakhnenko, 1994):
along with the increase of model complexity, the value of external
criterion will decrease first and then increase, and finally the global
extreme value agrees with the optimal complexity.

3.2. Principal component analysis (PCA)

Given a set of centered input vectors x; (t=1,2,...1 and
Zﬁzlx[ =0), each of which is of m dimension x;=[x,(1),
x{2),...,x{m)]" usually m <1, PCA (Pearson, 1901) linearly trans-
forms each vector x, into a new one s; by
se=Ux, (15)

where U is the m x m orthogonal matrix whose ith column, u; is the
eigenvector of the sample covariance matrix

l
C= % > oxex{ (16)
t=1

In other words, PCA firstly solves the eigenvalue problem

),,'U,'ZCU,‘, i:1,2,...,m (17)

where /; is one of the eigenvalues of C, u; is the corresponding eigen-
vector. Based on the estimated u;, the components of s; are then cal-
culated as the orthogonal transformations of x;

sy =ulx, i=1,2,...m (18)

The new components are called principal components. By using
only the first several eigenvectors sorted in descending order of the
eigenvalues, the number of principal components in s, can be re-
duced. So PCA has the dimensional reduction characteristic. The
principal components of PCA have the following properties: s,(i)
are uncorrelated, has sequentially maximum variances and the
mean squared approximation error in the representation of the ori-
ginal inputs by the first several principal components is minimal
(Jolliffe, 1986).

3.3. Defect cluster index (Cly;)

In this study, I use the clustering index (Cly;) proposed by Tong
et al. (2007) to measure the clustering phenomenon of defects. The
detailed descriptions of obtaining CIy, are listed as the following
five steps.

Step 1: Project the defect coordinates (X;,Y;) into a new axis
obtained by rotating the x-axis counterclockwise using 6°. Sup-
pose that a wafer has n defects, and (X;,Y;) denotes the x and y
coordinates of the ith defect location in a two-dimensional
space, i=1,...,n. These n defects then can be projected onto a
new axis X;, obtained by rotating the x-axis counterclockwise
using 0°. The new coordinates for the ith defect with respect
to 0 then can be calculated as follows:

X;, = cos x X; +siné x Y; (19)

where i denotes the ith defect and 6 represents a rotating angle,
where 0 < 6 < 180.

Step 2: Sort the X;, values in ascending order and calculate the
intervals between each adjacent coordinate value Xj,. The inter-
vals between each adjacent coordinate value X;, then can be

calculated as follows:
Vie= XZi,a) - sz,(;) (20

where X, , = 0 and V;, represents the ith interval between X{; ,
and X{;_; ).

Step 3: Calculate the squared coefficient of variation (SCV) for
Vio- The SCV for V;, can be determined as follows:

52
v.0

0
where SCV, represents the squared coefficient of variation for
Vio, Vo = (1L Vie)/n, and S = (S8, (Vie — Vo)) /(n = 1).
Step 4: Change the angle of 0 and calculate the corresponding
0 = 1° value. The number of 180 SCV, values with respect to 0,
increased by 0 = 1°, can be obtained through Steps 1-3.
Step 5: According to the SCV, values obtained from Step 4, the
average SCV, value determines the clustering index (Cly;), as
follows:
0505CVa

Cly = T80 (22)
where CIy, represents defect cluster index. A larger Cly, value indi-
cates a stronger degree of defect clustering formed on a wafer.

3.4. Prepare the relative data per wafer

In this study, defect counts, the value of Cly, and the value of
principal component scores are utilized as the input variables for
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Table 1
The partial 12 critical electrical test parameters of 111 wafer data in this case.

No. Parameter x; Parameter x, Parameter x3 Parameter x;,

1 11727 0.0658 322.9658 2.1098
2 1.1662 0.0615 315.9007 2.6533
3 11774 0.0682 322.2566 2.3412
4  1.1695 0.0632 310.9355 2.2145
5 11834 0.0595 313.5132 2.4589
6 1.1607 0.0659 320.4290 2.5098
109  1.1808 0.0614 319.6768 2.3325
110 1.1762 0.0604 321.3472 2.5977
111 1.1849 0.0632 317.0603 2.1104

GMDH. The value of actual wafer yield is the output variable for
GMDH. Follows are brief descriptions for the obtainment of Cly,
principal component scores, and the actual wafer yield.

3.4.1. Calculate the value of Cly

The clustering phenomenon of defects on a wafer influences the
accuracy of a wafer yield model, and the CIy can effectively mea-
sure the clustering phenomenon on a wafer. The Cly, can be ob-
tained by the five calculating steps introduced in Section 3.3.

3.4.2. Obtain the value of principal component scores

Use the principal component analysis (PCA) to form new vari-
ables that are linear combinations of the original variables (i.e.,
12 critical electrical test parameters). Then let the standardized
data of original variables into the linear equations of new variables
to obtain the value of principal component scores.

3.4.3. Calculate the value of actual wafer yield
The actual yield value can be obtained by the number of non-
defective chips divided by the total number of chips on a wafer.

3.5. Verify the proposed model

The accuracy of neural networks can be measured by a root-
mean squared error (RMSE). When the value of RMSE is smaller,

BElgenvalves of oomelation ratele, and wlated statistics (P

Active variables only

Bigenvalue | % Total |Curavlative | Curnulative
Walue number variance | Elgenvalue %
1 5126247 4294373 512925 427437
2 4 629095 38.57746 9.75854 813212
3 1110839 925741 10,8693 N0.5786|
4 0370103 308419 1123953 936628
5 0266142 221785 11.50568 G5,8806
& 0151061 125884 1165674 71395
i 0116160 096800 11.77290 QR.1075
] 0023370 077808 11.86627 988856
9 0057011 047500 1192328 Q0.3607
10 0051976 043313 1157525 99,7938
11 0017018 014182 11,9227 @9.9356
12 Q0L 006439 12,00000 100,0000

Fig. 2. The eigenvalues of PCA.

the accuracy of neural networks is higher. The RMSE can be calcu-
lated as

Z?:l (Arllf Oi)z (23)

RMSE =

where n represents the number of data, A; represents the actual va-
lue of output, and O; represents the predicted value. The general
indicator for measuring the strength of the relationship between
the actual and predicted outputs is the Pearson’s linear correlation
coefficient r. In this study, RMSE and r are both used to evaluate the
performance of wafer yield model.

4. Implementation

In this section, a case of a DRAM company in Taiwan is utilized
to demonstrate the effectiveness of the proposed approach. Com-
parisons are also made among negative binomial yield model,
back-propagation neural network (BPNN) yield model, general
regression neural network (GRNN) yield model (Tong & Chao,
2008), and the proposed GMDH yield model to demonstrate that
the proposed approach is indeed superior.

Eigenvalues of correlation matrix
Active variables only

42.74%

Eigenvalue

08 0,
P20 026900704 789%, 48%43%q 14%06%

-2 0 2 4

6

8 10 12 14

Eigenvalue number

Fig. 1. The scree plot of PCA.
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Eigenvertors of correlation matriy (PCA)

Active variables only
Vanable [Factor I [Factor? [Factord [Factord [Factor5 [Factor6 [Factor7 [Factor§ [ Factor® | Fact10 | Factil | FactiZ
%y 0026680 0007736 0938526 0127459 -015706 -0123953 -0133264 0018572 -0017007 0013427 -0.139705 0.154656
%z 0328483 0282071 0065546 -0.168876 -0074959 -0425082 0120680 0502514 0206744 013785 0330287 0393623
%3 0284337 0301425 -0.1783%6 -0480061 -0226507 -0262102 -0362571 -0139032 0059967 0053464 -0.17544 0507484
Ry 0359187 0237424 0019702 0130635 0001284 0449703 -0361268 -0448067 -0245931 -0121084 0214231 0377637
A5 0272282 -033%56 0078521 -0231748 0310367 0008429 -0204747 -0313331 Q083133 0586170 -0.198445 0352669
g 0347641 0251945 0043786 -0.107546 0087213 0465810 -0482921 0113897 0502033 0172310 0219985 -0.035977
Xz 0270017 0330309 -0070557 0332557 0328266 0200867 -0407428 0349552 -0328406 -0.001201 -0.354217 -0.153614
Xy 0290553 0309489 0032273 0388395 042237 -0007296 0129798 -03198658 0190088 0177209 0409165 0367875
Ky 0336855 0272771 0000069 -0.0508%1 0361627 -030275% 0233266 0001397 0456505 -0058673 0566241 0011414
Yyg 0319876 0266016 0077990 -0.286445 0563069 -0.182851 -0.168444 0362845 -0242044 0019753 0283913 0.297071
iy 0018506 0408228 0244049 0530754 0205661 0386598 -0.320535 0208367 0279295 0180354 -D075028 0.1M091
12 0336256 -0277897 0053399 0119851 0195159 -0014010 -0249226 -0127720 0380170 -0.716863 0083764 -0.101691

Fig. 3. The eigenvectors of PCA.

Table 2
The standardized principal component scores of Prin1, Prin2, and Prin3.

No. Scores of Prinl Scores of Prin2 Scores of Prin3
1 1.2071 0.6119 0.1203
0.6368 1.5014 0.0992
3 1.6939 0.1562 1.3042
109 0.8735 1.3814 0.5404
110 0.6523 0.8559 1.4322
111 0.2593 1.6555 1.4796

4.1. PCA of 12 critical electrical test parameters

There are totally 111 data of 8-in. wafer in a case of a DRAM
company in Taiwan, and 12 critical electrical test parameters per

wafer are considered in this case. The partial 12 critical electrical
test parameters of 111 wafer data are listed in Table 1.

The computer software, STATISTICA 6.0, is used to perform PCA.
Fig. 1 shows the scree plot of PCA. Fig. 2 shows the eigenvalues of
PCA. Fig. 3 shows the eigenvectors of PCA. By Kaiser’s rule, we re-
tain only those components whose eigenvalues are greater than 1.
Therefore, there are 3 principal components which should be re-
tained. According to Fig. 3, the 3 principal components can be cal-
culated as follows:

Prinl = —0.0267x; — 0.3285x, — 0.2843x3 + --- — 0.3363x1, (24)
Prin2 = 0.0077x; + 0.2830x; + 0.3014x5 +--- — 0.2779%1;  (25)
Prin3 = 0.9385x; + 0.0655x; — 0.1783x3 — --- + 0.0534x;;  (26)

The standardized principal component scores of Prin1, Prin2, and
Prin3 are partially listed in Table 2.
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Fig. 4. The five clustering patterns.
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4.2. Construct a new wafer yield model using GMDH

In this study, the computer software, NeuroShell 2.0, is used to
construct the proposed GMDH yield model. In this case of a DRAM
company in Taiwan, one random pattern and four clustering pat-
terns (i.e., bull eye pattern, edge pattern, bottom pattern, and cres-
cent moon pattern) (Friedman, Hansen, Nair, & James, 1997) are
considered, and these five clustering patterns are shown in Fig. 4.

Eighty-nine wafer data are randomly selected as training sam-
ples, and the rest 22 wafer data are the testing samples. The result
of GMDH learning is shown in Fig. 5. By Fig. 5, the GMDH polyno-
mial of proposed yield model is shown in Eq. (27)

Y =88E-002x%X5-0.15%X2+X3 -0.11 + X4 — 3.8E
—002—-73E-002%X1—-1.1%X3"2-6.9%X4"2
—061%X3"3+1.8+X4"3 +85+xX3+xX4—-13xX3
*X5+7%«X4+X5+79%«X3+«X4+X54+0.1xX2"2
+1.1%X2xX3+028X2+X5-14%X2+X3"2-65
*X2xX4"2 — 077 %« X2+ X3"34+1.7xX2%X4"3 +8.1
*X2xX3%X4—-13xX2xX3%xX5+6.6+X2xX4xX5
+75%X2xX3%xX4%X5-0.26+X1"2+0.12X1"3
+0.19%X5"2 +0.15 % X2"3 + 0.21 + X5"3 (27)

where Y denotes the predictive wafer yield value, X1 is defect
counts, X2 is the value of Cl,;, X3 is scores of Prin1, X4 is scores of
Prin2, and X5 is scores of Prin3. The value of RMSE = vMSE =
v/0.010540 = 0.1027, and the value of correlation coefficient is
0.9784.

4.3. Compare with other wafer yield models
Finally, the comparisons made among negative binomial yield

model, back-propagation neural network (BPNN) yield model, gen-
eral regression neural network (GRNN) yield model (Tong & Chao,

# GMDH Leamning: DAGMDH
File Run Options Help

Training Graphics Training Set Statistics Layer Construction Status

[Laver

Train

Critorion MSE 0.010540 Step completion, %: [100
Value R squared| 0.357130 Current criterion: /0.063265

Corr.coeff.| 0.978364
Norm.MSE | 0.042810

Total time
000:00:00

Layer time
000:00:00

Layer
MNumber

Output Status
Layers constructed: 6 Best criterion value: |0.063265
'Y=8.8E-002"X5-0.15"X2+X3-0.11°X4-3.8E-002-7.3E-002"X1-1.1°X3"2-6.9"X

Best formula:

<l 2|
Most solicsn | <]
e o1 =]
Training slows if graph is tumned on. This program can be minimized as training proceeds.
Fig. 5. The result of GMDH learning.
Table 3
Comparisons of RMSE and r between predictive and actual yield value.
Yield model RMSE r
Negative binomial yield model 0.1443 0.9159
BPNN yield model 0.1224 0.9308
GRNN yield model 0.1189 0.9496
Proposed GMDH yield model 0.1027 0.9784

2008), and the proposed GMDH yield model are listed in Table 3.
The scatter plots in the negative binomial yield model, BPNN yield
model, GRNN yield model, and the proposed GMDH yield model
are shown from Figs. 6-9.

From Table 3, it can be seen that the proposed GMDH model in
this study has the smallest value of RMSE and the largest value of
correlation coefficient. Therefore, the predictive accuracy of the
proposed model in this study is indeed superior.
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Fig. 6. The scatter plot in negative binomial yield model.
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Fig. 9. The scatter plot in GMDH yield model.
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5. Conclusions

When the clustering phenomenon of defects is pronounced, the
conventional Poisson yield model can not reasonably estimate the
wafer yield. Other neural networks models have the problem of
setting parameters and can not provide a certain equation for man-
agers to use.

On the basis of practicability, a novel design of this paper is to
construct a new wafer yield model with a handy polynomial by
using GMDH, and it can accurately predict the wafer yield. In addi-
tion to defect cluster index (Cly;), 12 critical electrical test param-
eters are also considered simultaneously. In this study, the PCA is
used to reduce the dimensions of 12 critical electrical test param-
eters to a manageable few without much loss of information for
convenient analysis.

The merits of the proposed approach are summarized as
follows:

(1) The proposed GMDH yield model can provide a handy poly-
nomial for managers to use, and this model does not require
setting parameters of neural networks.

(2) This study employs PCA to reduce the dimensions of 12 crit-
ical electrical test parameters to a manageable few without
much loss of information, and it can effectively simplify
the constructions of variables.

(3) The proposed GMDH yield model is fast learning and has
high accuracy of prediction.

(4) The proposed GMDH yield model does not need any statisti-
cal assumption and can be friendly to use.

(5) The proposed GMDH yield model can help the IC manufac-
turers to manage the wafer yield and evaluate their process
capability in relation to profit and loss.
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