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Uniform bound for the solutions of non-uniform parabolic equations in highly heteroge-
neous media is concerned. The media considered are periodic and they consist of a con-
nected high permeability sub-region and a disconnected matrix block subset with low
permeability. Parabolic equations with diffusion depending on the permeability of the me-
dia have fast diffusion in the high permeability sub-region and slow diffusion in the low
permeability subset, and they form non-uniform parabolic equations. Each medium is as-
sociated with a positive number €, denoting the size ratio of matrix blocks to the whole
domain of the medium. Let the permeability ratio of the matrix block subset to the con-
nected high permeability sub-region be of the order €%* for € (0, 1]. It is proved that
the Holder norm of the solutions of the above non-uniform parabolic equations in the con-
nected high permeability sub-region are bounded uniformly in €. One example also shows
that the Holder norm of the solutions in the disconnected subset may not be bounded uni-
formly in €.
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1. Introduction

Uniform Holder estimate for the solutions of non-uniform parabolic equations in highly heterogeneous media is
presented. The equations have many applications in multi-phase flows in porous media, the stress in composite materials,
and so on (see [1-4] and references therein). The media £2 C R" (n > 2) contain a connected high permeability sub-region
and a disconnected matrix block subset with low permeability. Let 062 denote the boundary of 2,¢ € (0, 1), 2(2¢) =
{x € £2|dist(x,952) > 2¢},and Y = (0, 1)" denote a cell consisting of a sub-domain Y,, completely surrounded by
another connected sub-domain Y; (= Y \ Y,,). The disconnected matrix block subset of £2 is 25, = {x|x € e(Yn +j) C
£2(2¢) for some j € Z"} with boundary 952;,, and the connected sub-region is £2f = 2 \ 5; The non-uniform parabolic
equations (see [4])in [0, T] x §2 are

Us=0 on (0, T] x 052, (1.1)

{EJ[U6 — V.- (A;VU.) =F in(0,T] x £2,
U = U in {0} x £2,

Ke in .Qfe

ke in 0t (depending on the permeability of §2), and both K¢, k. are positive smooth functions

wheret € (0, 00), AS = {
in £2.
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Since € € (0, 1), equations in (1.1) are non-uniform parabolic equations with discontinuous coefficients. In [5], existence
of solution in sz" ([0, T] x £2) space for uniform parabolic equations with discontinuous coefficients can be found. For non-

uniform parabolic equations with smooth coefficients, existence of solution in C>* ([0, T] x £2) space was studied in [6]. It
is also known that if F, U, ¢ are smooth, a piecewise regular solution of (1.1) exists uniquely for each € and, by the energy
method, the H! norm of the parabolic solution of (1.1) in the connected high permeability sub-region is bounded uniformly
in € [2,7]. Holder continuity of the parabolic solution of (1.1) in [0, T] x $2 is proved for each € [7], but the Hélder norm
of the solution may go to infinity as € N\, 0. In [4], convergence of solution of (1.1) in L*°([0, T]; L?>(£2)) space as € \, 0
was obtained. Many studies of the uniform estimate in € for the solutions of the elliptic equations in heterogeneous media
had been done [2,3,8-11], but not the case for parabolic equations. The existence of piecewise regular solutions for elliptic
diffraction equations in Hilbert space was considered in [2,9]. The uniform Lipschitz estimate in € for a Laplace equation in
perforated domains was given in [11], and a uniform L? estimate in € of the same problem was considered in [10]. A Lipschitz
estimate for uniform elliptic equations was studied in [3]. Uniform Holder and Lipschitz estimates in € for uniform elliptic
equations in periodic domains were obtained in [8].

This work is to present a uniform Holder estimate in € for the solutions of the non-uniform parabolic equations with
discontinuous coefficients. More precisely, the Holder norm of the non-uniform parabolic solutions in the connected
high permeability sub-region is shown to be bounded uniformly in €. However, the Holder norm of the solutions in the
disconnected subset may not be bounded uniformly in €. This is due to the non-zero source in the disconnected subset. In
Section 2, we present one example to show that. Certainly this is different from usual uniform parabolic equation cases, in
which solutions are regular in the whole time-space domains. From the proof, we can see that the results are established for
complex-valued solutions. On the other hand, one also notes that a complex-valued solution of (1.1) with complex-valued
coefficients may be discontinuous or even unbounded [12]. A similar case could be found in elliptic equations with complex-
valued coefficients (see [13]). It seems that the techniques used here could be used to study more general systems of elliptic
type and parabolic type, and this will be pursued later. Some related uniform regularity results in the case of elliptic systems
can be seen in [14,15].

The rest of the work is organized as follows: Notation and main results are stated in Section 2. The main results are proved
in Section 3 based on semigroup theory and on uniform Holder estimate in € for non-uniform elliptic equations. To apply
semigroup theory, an infinitesimal generator of an analytic semigroup from elliptic equations is required. So a W?? estimate
for solutions of elliptic diffraction equations is derived in Section 4. Two convergence results for solutions of non-uniform
elliptic equations are shown in Section 5. By results in Section 5, a uniform Holder estimate in € for non-uniform elliptic
solutions is proved in Section 6.

2. Notation and main result

Let 2 be the closure of the domain £2. Let [P(£2) (resp. H*(§2), W*P(£2)) denote a complex Sobolev space with norm
I iy (resp. I+ Nk, |+ lwkpi@) WoP(2) = {9 € W'P(R)lplie = 0}, H}(2) = Wy?(£2), (°(£2) be the set
containing all infinite differentiable functions with compact support in £2, C(£2) consist of all continuous functions in £
with norm || - ||y, C7 (£2) (resp. C? (£2)) denote a Holder space with norm || - lco @) (resp. |- llcto g)) and [@]co ) (resp.
[¢]cro ) denote the Holder semi-norm of ¢ (resp. Vo) fork > —1,p € [1, 0], and o € (0, 1] [16,17]. If ¢ is a complex
function, g denotes its complex conjugate. If B; and B, are two Banach spaces, £ (B, B,) is the set of all bounded linear maps
from By to B, with norm || - || £(s,,8,)- For any Banach space B, define ||¢1, @3, ..., ¢mlls = ll@1lls + ll@2llg + - - - + ll@mlls,
denote its dual space by B/, and denote the pairing between B and its dual space B’ by (-, -)pp. L°(;B) = {9 : | —
B| sup;¢; llo(t)|ls < oo}. The function spaces C(I; B), C° (I; B) for o € (0, 1] and an interval I C R are defined as those in
pages 1,3 [18]. B, (x) represents a ball centered at x with radius r. For any domain D, D is the closure of D, 9D is the boundary
of D, D/r = {x| rx € D}, |D| is the volume of D, and X, is the characteristic function on . For any ¢ € L!(B,(x) N £2),

1
(), E][ pYdy = ——— py)dy.
o B (N2 |B- (x) N 82| Jp,0ns2

Foranyp € (1,00), 7 € (0,00),and € € (0, 1),

ASp ==V - (A;V9),
By(AS) = {9 € Wy P(2)] ¢ € WP(2F) NWHP(25). KV - 506, = €7k Vo - [0, |

where i€ is a normal vector on 9£2¢,. It is not difficult to see that B, (+4¢) with norm lells,as) = llA@llp(e) is a normed

space. Let B, (A¢) denote the closure of B, (4% ) in LP space (we shall see B, (4¢) = LP(§2) from Lemma 3.4). Forany A, v > 0,
we define

K.,(x) =K, (vx) and k; ,(x) =k, (vx). (2.1)
LetY,, CD C Y = Y; UY,, satisfy
min{dist(Y,,, D), dist(D, 3Y)} > 0. (2.2)
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We assume that there are e, 0, e € (0, 1), T € (0, 00),and 4, «, B > 0 such that

Al. 2 and Y;, are C'¢ domains, R
A2. K., k. € Who(2), K., k. € (a, B), IKe e lw1.00(2¢) is bounded independent of €, and there is a set {a j € («, B)|e €
(0, 1),j € Z"} satisfying

IKe.e — ae,j”wlvw((])\?mﬂ)mg/s) + K ,e — e jllwioo(vmnese) = Cej
where c is small and depends on Y,
A3. Fe € C7([0, T]; L™ (£2)), A¢Ue0 — Fele=o € Buys (A, Ue,o € Buys (A7)

The main results are:
Theorem 2.1. Under A1-A3, the solution of (1.1) satisfies

NUellcro.ri:im+3 2y + 1Uellcqo,m1:Bays(4S) < c(1Ue.0llm,,s0a6) + ”Fe||C“([0,T];L“+5(Q)))a

where c is a constant independent of €, t.

Theorem 2.2. Under A1-A3 and t € (0, 1], the solution of (1.1) satisfies

IUellcrqorirsan + Welleqo.mcnapy + - SuP € MUelleqorcmemtin

€(Ym+H)C e
< c(IlUe,0llgpyscae) + IFellcoqorym+s () (2.3)

where c is a constant independent of €. Here u € (0, 2(%&)) is a constant depending onn, §, o, o, B, Y, §2. Besides, there is a
v € (0, w) such that

||Ue||cv([o,'r]><§;) = C(”UE,OHJBH,S(,A%) + ||Fe ”CH([o,T];LHM(Q)))a (2-4)
where c is a constant independent of e.

In (2.3), we do not prove that the Holder norm of the solution of (1.1) in the disconnected subset is bounded uniformly in
€. We now give one example to show that if the source F, is not zero in the disconnected subset, it is really the case. Suppose
¢ € C§°(R") has support in Y;,. Define, for e € (0, 1),

X
1) (f —j) ifx € €(Yy, +J) C £2(2¢) for somej € Z",
Pe(x) = €
elsewhere,
& (t,x) = e "p.(x) inR".

Then we see that . = 0in [0, T] x .Q; and @, has support in [0, T] x £25,. If we set 7 = K. = k. = 1in AS, then &,
satisfies

0P — V- (A{VP) =f in(0,T]x £2,
®. =0 on (0, T] x 942,
P (t =0) = ¢ in £,
where
¢ X X . . . n
—e (Ago (7 —]) +(p<f —j)) ifxee(Yn+Jj) C 22¢)forjeZ”,
fe) = € €
elsewhere.

Clearly, forany § > Oand €, 0 € (0, 1), [|@c g, 545) + lfellco (o, 71:1n+5 (2)) is bounded uniformly in €. But the Hélder norm
of the functions @, in the disconnected subset £25, is not be bounded uniformly in € if the source function f # 0in £2y,.

Remark 2.1. We recall an extension result from [19].
For 1 < p < oo, there is a constant y (Yy, p) and a linear continuous extension operator I1, : W“’(Q)f) — W'P(£2) such
that

(D Ifee WLP(.Qf),then

Ho =9 in 2 almost everywhere,

Tepllr@) < v Vr. P@llr @),

IVIeplp@) < v (Y, DIVl (2.5)
Hegllcr @) = v (Y, PII@llco @) if ¢ € C°(2)) for o € (0, 1),

Mo =¢ inQif ¢ = §|gfs for some linear function ¢ in £2.
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(2) If £(x) = p(sx) in B1(xo) N .Qf/sfor any xo € §2/s and constant s > €, then IT;s¢ (x) = IT.@(sX) in By/5(xg) N £2/s.
The Hélder estimate (2.5)4 and the statement (2) are not written in [19], but can be seen from its proof.

From [4], we know that the solution U, of (1.1) with T € (0, 1) converges to a function U in L ([0, T]; L?(£2)) as€ \, 0,
and the function U satisfies a heat equation. By Theorem 2.2 and Remark 2.1, || I7. U, |9f llcv jo.11x ) is bounded independent

of €. It is not difficult to see that, for the solution U, of (1.1) with t € (0, 1), IT. U, |ng also converges to U in C¥([0, T] x £2)
norm for some v € (0, 1) as € \ 0.

3. Proofs of Theorems 2.1 and 2.2
Proofs of Theorems 2.1 and 2.2 are based on a sequence of lemmas. First we consider an interpolation result.

Lemma 3.1. If ¢ € L9(2) N C*(R) forany q € (1, 00) and 1 € (0, 1), then
el < clelliae 1012 g

wherev € (0, ), 0 € (0, 1), and c is a constant depending on v, n, q, i, 6, S2.

Proof. By Proposition 1.1.3 [18], ¢ satisfies

1-6 0
lellev < cliolilelig. g (3.1)

where v € (0, ), 61 € (0, 1), and c is a constant depending on v, u, 61. Fixx € £2 and § > 0 to see

][ <p(y)dy‘
Bs ()N

][ o)y
Bs (x)N$§2

18*[@lengm + 28" N@llce). (32)
where constants ¢y, ¢; depend on domain §2 only. Taking the minimum of the right hand side of (3.2) on §, we obtain

lp@)| =

[169) —][ w(v)dy‘ +
Bs ()N

1/q

IA

[<ﬂ]cu(§)][ Ix — y|"dy +
Bs(x)N$2

IA

—0, o
@Ol < ¢, g, 11, D liaih @12 ) (33)

where 0, € (0, 1) and c depend on n, q, u, £2.(3.1) and (3.3) imply the lemma. O

From the proof of Lemma 3.1, we also have
Lemma3.2. If ¢ € Lq(Q}f) N C“(ﬁf)foranyq € (1,00) and u € (0, 1), then
lellis=iop) = elleliaie 916 @)
where 6 € (0, 1) and c is a constant depending on n, q, i, Yy, but independent of €.
Consider the following elliptic problem:

{_v’(AngDE) =f€ in97 (3.4)

. =0 onads2.

We have the following uniform a-priori estimates:

Lemma 3.3. If A1-A2 hold, then

(1) The solution of (3.4) satisfies, for p € (1, 00), T € (0, 00),and € € (0, 1),
lloellwree) + ||§0e||w2.p(.(2ff) + Qe llwzrge) < Cepllfellr) (3.5)

m

where c. , is a constant independent of ¢, fe but dependingon e, p, t.
(2) The solution of (3.4) satisfies, forany § > 0,7 € (0, 1], and € € (0, 1),

lloe ”cu(ﬁf) + Sulr? € llpe et e @iy < Cllfellns @) (3.6)
Jjez

e(Ym+j) 2
where c is a constant independent of €. Here u € (0, 2(%%) is a constant dependingonn, §, o, B, Y, §2 (see A2).

The proof of (3.5) is given in Section 4 and the proof of (3.6) is in Section 6.
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Lemma 3.4. Foranyp € (1,00), 7 € (0,00), and € € (0, 1), the set B,(A?) is dense in [P(§2) and Bp(A$) with norm
||(p||]Ep((A§) = || AL@llr (@) is a Banach space.

Proof. Define 0. = {x € £2]| dist(x, 8.fo) > €2} and let X, be the characteristic function on O.. Then X4, converges
to 1 in measure (see page 91 [20]) on domain £2 as € N\ 0. For any ¢ € [P(£2), we have ¢Xo_ € [P(£2) and ¢Xo, = 0
in a neighborhood of 8.(2;. By the Lebesque dominant theorem and Proposition in page 92 [20], there is a subsequence
of ¢ X e, (same notation for subsequence) converging to ¢ in [(£2) as € ~\ 0. So for any § > O, there is a €, such that
lo — @Xo @2y < §/2ase < €. From pages 147-148 [17], there is a mollifier n; such that the convolution of ns and
X, (ie, (pXe,) * ns) for some € < ¢q satisfies [|9Xo, — (Xo,) * Nsllr2) < §/2 and (¢Xe,) * ns = 0 in some

neighborhood ofa.Qf‘. Clearly, (¢ Xo,) * ns € Bp(AL) and [[¢ — (9Xo,) * Nsllire) < 8. S0 Bp(AS) is dense in LP(§2). By
(3.5) in Lemma 3.3, we see that B, (+) with norm || - [|p,(4¢) is a Banach space. O

Lemma 3.5. Forany p € (1,00),t € (0, 00), and € € (0, 1), the adjoint operator of A% : B,(AS) C L[P(2) — LP(2)is
AS 1 Bg(AS) C LU(2) — L1(82), where § + ¢ = 1.

Proof. Fixap € (1,00),7 € (0,00),and € € (0, 1), denote the adjoint of AS : B,(AS) C LP(£2) — LP(£2) by ,Az/, and
assume % + % = 1. Integration by parts yields
(AL, Mp@)u@ = (&, AL p@)u@) (3.7)

forevery ¢ € B,(A%) and n € By(A$). See Section 2 for (-, -)p(),19(2). Therefore Bq(A%) C dom(eA,g') (that is, the domain
of AZ')and ASy = AT 1 for 1) € By(AS).
Letn € dom(Agl) C Li(2) and ¢ = A:’(n). Then, by the definition of the adjoint operator, we have
(AL, M@y = (&, @)@ forallg € By(AD). (3.8)

Since By (%) is dense in L7($2) by Lemma 3.4, there is a sequence n; € Bq(A?) such that n; — 7 in L9(£2) as s — o0. By
(3.7)and (3.8),

lim (¢, AN P(@).192) = Sl_i)lg)(ﬂif» 15)1P(2),19(82)
= (A, Mp@),u@) = (&, ©)r@).19@)-

Since By (%) is dense in [P(£2) by Lemma 3.4, A7 1, converges to ¢ weakly in L(£2) as s — oo. By (3.5) in Lemma 3.3, we
see 1) € By(AS). S0 ¢ = AS (). Therefore, dom(A7 ) C By (AS) and A = AT . O

Next we want to show — ¢ is an infinitesimal generator of an analytic semigroup. If so, by semigroup group theory, we
can obtain the existence of the solutions of some time-dependent problems. For this purpose, we shall work on complex-
valued functions in the next lemma.

Lemma 3.6. Foranyp € (1,00), 7 € (0,00), and € € (0, 1), the operator —A$ is an infinitesimal generator of an analytic
semigroup of contractions on LP (§2) and

_ 1
IO+ A eap)pey < 5 forany & > 0. (3.9)
Moreover, thereis a6 € (0,  /2) independent of €, T such that
(1) The resolvent set p(—#A%) of —AS (see page 8 [21]) satisfies
p(—=A7) DRO) ={z € C||arg(2)| <7 — 0},

where arg(z) denotes the argument of the complex number z.
(2) 1O+ A ear)p@) < ﬁfor any k. € M(6), where c, is a constant independent of €, .

Proof. We assume p € (1, 00), T € (0, o0), and € € (0, 1). The proof of this lemma includes three steps.
Step 1. Claim A + A¢ : Bp(AS) C IP(2) — LP(£2) is injective for any A > 0.Lletq = x%' If o € By(4S), we define
@« = ||P7%p € L9(R2) (@ is the complex conjugate of ¢). Then (¢, ¢.)1r(2).19(2) = ||<p||fp(9). Integration by parts yields

(ALY, @)@ 190) = —/ V. (Aivw)lwl"‘zadX=/ ASVV (lpP~*p)dx
2 2

= / A§(|<p|p72V<pV¢ + EV(kaolp*Z)dx.
2
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Note V]p|P~2 = E22|pP~4(¢ V¢ + V). Denote |p|P~9/2gVp = { + iw. We find
(ASQ, Q@) 190) = / AL = DIP + o +i(p — 2)¢ - w)dx,
2

where || (resp. |w]) is the length of the vector £ (resp. w). So the real part of (AL @, ¢.) (), 19(2) satisfies, by A2,

Re(ALQ, 9 @).192) = Cpa >0, (3.10)

/ |z|2+|w|2dx+ezf/ 1212 + |w|*dx
2f 28

where ¢, is a constant depending on p, «. The ratio of the imaginary part to the real part of (AS@, ¢.)r) 19(2) then
satisfies, by A2,

_ 2 2 2t 2 2
R e R (fo 16+ P+ € [ 107 + o)

[Re(ALQ, 0)p(@2)19(2) 2054 (fﬂf 12 + |w|2dx + €27 fﬂ,% 12 + |w|2dx>
_ Ip—21B (3.11)
2000 )
From (3.10) it follows that, forany A > 0 and ¢ € B, (A%),
Mol < I+ AD@lr ). (3.12)

By (3.12), A + AS : By(AS) C LP(82) — LP(£2) is injective. So we prove the claim.
Step 2. Claim A + A7 : Bp(AS) C [P(£2) — L[P(£2) is bijective for any A > 0.If n € L1(2) forq = p%] satisfies

(A 4+ A, Mip2) ) = 0forall o € By(AS), then 7 is in the domain of the adjoint operator A + A;’ (here A:’ is
the adjoint operator of A?) of A 4 A%. By Lemma 3.5, (¢, (A + AS)N)1r(2).19(2) = 0 and n € B, (AS). Since By (A7) is dense
on [P(£2) by Lemma 3.4, (A + 4%)n = 0. Then (3.12), with p replaced by q, implies n = 0. So the range of A 4 A¢ is dense
in IP(£2). By (3.5), AS @ By(AS) C [P(£2) — [P(£2) is a closed linear operator. It is not difficult to see that A + A¢ is also a
closed linear operator. Thus, the range of A 4 ¢ is a closed set in L (£2). Since the range of A 4 4¢ is dense and closed in
IP(£2), the range of A + A¢ is [P (§2). So we prove the claim. Moreover, by (3.12),

_ 1
x + A) ey < 5 for any A > 0.

So we prove (3.9).

Step 3. Claim — ¢ is an infinitesimal generator of an analytic semigroup on L?(£2). By Step 2, (3.5) in Lemmas 3.3 and 3.4, the
Hille-Yosida Theorem [21] implies that —A¢ is an infinitesimal generator of a Cy-semigroup of contractions on LP(£2). To
prove that the semigroup generated by — ¢ is analytic, we observe that, by (3.10) and (3.11), the numerical range & (—A%)
of —A¢S (see page 12 [21] and Remark 3.2 in page 25 [22]) is contained in the set

Ny, = {z € Cl|arg(2)| > m — 64},
where 0; = tan‘l(%) € (0, w/2). Choosing #; < 6 < /2 and denoting
NO) ={z € C||arg(z)| < & — 6},

there is a constant ¢y, > 0 independent of €, t such that the distance from z € R(0) to N (—A¢) (i.e, dist(z, N (—AS)))
satisfies

dist(z, N (—A)) > cylz].
Since A > 0 is in the resolvent set p(—¢) of —A$ by Step 2, Theorem 3.9 in page 12 [21] then implies R(0) C p(—A%)

and

1 %y
I+ AD ™ cap@) @) < ol for € R(O).
0

By (3.5) of Lemma 3.3 and the energy method, 0 € p(—+4%). By Theorem 5.2(c) in page 61 [21], —A¢ is an infinitesimal
generator of an analytic semigroup on [P(£2). O

Proof of Theorem 2.1. Tracing the proofs of Proposition 2.1.1, Eq. (4.0.3), and Theorem 4.3.1 [18], and employing
Lemma 3.6, we know
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Let §,7 > 0,0 € (0,1),F. € C°([0, T]; L"™(£2)), Uco € Bpys(AS), and ASUc g — Fe(t = 0) € Bpis(AS). A strict
solution U, of (1.1) exists and there is a constant c independent of €, t such that
NUellcrqo.ri:im+5 2y + 1Uellcqo, 1By s (4S) < C(||Ue,0||]Bn+5(A§) + ||Fe||ca([0,r];Ln+5(g)))- (3.13)

So we prove Theorem 2.1. O
Proof of Theorem 2.2. By (1.1) and for each fixed t € (0, T],

-V (AiVUE(t, ) = Fe(t, ) — 0 Uc(t, ) ing2,
Ue(t,-) =0 ondgn.

(3.6) in Lemma 3.3 and Theorem 2.1 then imply (2.3). By Remark 2.1, we can extend the function U€|Qfe (t,-) to £2. The
extended function I7.U, satisfies, by (2.3), (3.13), and Remark 2.1,

ITcUcll 1 go.rin+5 2y + IHTeUellcqorcn@y < C(I1Ue0llgniscas) + IFellco qo.rpm+s a2y (3.14)

where v € (0, 1) and c is independent of €. (2.4) follows from Proposition 1.1.4 [18], (3.14), and Lemma 3.1. So we prove
Theorem2.2. O

4. Proof of (3.5) of Lemma 3.3

Let I" (x —y) denote the fundamental solution of the Laplace’s equation (see Section 6.2 [23]). Define the single-layer and
the double-layer potentials as, for any smooth function ¢ on the boundary 9D of a bounded C'¢ domain D,

& (p)(x) = /BD I'x —y)e(y)doy
@) = [ 9,19 -, p()da, forx e o
Ton(@)(x) = /BD Vil (x = y) - iy @(y)do,
where e € (0, 1) and ﬁy (resp. i) is the unit vector outward normal to 9D at pointy € 9D (resp. x € dD).

Lemma 4.1. Forany p € (1, 00), the linear operators

{5:3@ W' (9D) — WP (9D) )

Top - WIBP(9D) — W2 5P (9D)

1
are bounded. The operator I — ATy, is continuously invertible in szﬁ’p(a]]])) foranyp € (1,00) and A € [—2, 2], where I is
the identity operator. Furthermore, there is a constant c independent of A € [—2, 2] so that

- 2-1p
< — g
||§0||W2_117.p )= clld )»Jm)(w)ﬂwz_%:p(m) for ¢ € W77 (3D). (4.2)

(D

Proof. Denote by OPS 1’_2) the pseudo-differential operator of order —1 (see page 38 [24]). Tracing the proof of Theorem 2.5
1 1

Chapter XI [24], we see that if § € OPSIé(HID)), then g is a bounded linear operator from w' »?(3D) to Wz_ﬁ’p(BID)).

Since &p, Top € OPSI%(&)]DJ) (see pages 87-93 [23]), we know that &;p, Typ are bounded operators from W1_%’p(8D) to

1
W PP (D).

Since D is a C1¢ domain, both Typ, T,y are compact operators in LP(dD) for p € (1, oo) (see Corollary 2.2.14 [25]). For
any A € R, the dimensions of the kernels of | — ATyp and I — A7} are same by Theorem 4.12 [26]. From Theorem 2.2.21 [25]
and Section 3.4 [27], there is a py € (2, 0o) such that I — A7} is continuously invertible in L? (9D) for any p € (1, po) and
A € [—2, 2]. Since I[P(dD) C L*(dD) forp € [2, 00), ] — AT,y is injective for any p € [2, 00) and A € [—2, 2]. By Theorem
4.12 [26],1 — ATy}, is continuously invertible for any p € [2, 00) and A € [—2, 2]. Again by Theorem 4.12 [26], we see that
I —ATyp is also continuously invertible in [P (dD) forp € (1, oo) and A € [—2, 2]. By (4.1) and inverse mapping theorem [28],

1
I — ATyp is continuously invertible in szﬁ’p(a]]])) forp € (1,00)and A € [—2, 2].
1
(4.2) is proved as follows. From above, we know that 73p is a bounded linear operator in szﬁ‘p(aﬂ)) and I — ATp

is continuously invertible in wz‘%’l’(am) forany A € [—2,2] and p € (1, 0). So for each A € [—2, 2], there is a set
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{cx, d;., Bg, (M)} (depending on 1) satisfying

G, d, >0,

Ia— k%m)(fﬂ)llwz,%,p(m) > CAllwllwz,%twa),

a —CjJaD)(w)IIWZ,%,p(E{D) > |Id - AJaD)(w)Ilwz,%,p(aD) — s =2 ||J3D(¢)||W27%.p(w)
= Ellwllwz,%,p(am) ifs € By, (A) CR.

Now we consider the open covering {Bg, (A)}xe(—2,2) of [—2, 2]. Since [—2, 2] is a compact set, we can find a finite set
Z C [—2, 2] so that {Bg, (A)},ez is also a covering of [—2, 2]. Based on the finite sets {c;, d;, Bg, (1) },.cz, we define

* Cx

= min .
{cr.d1,Bdy, Wrez 2

That is, c* is the minimum value of % for A in the finite set Z. If the c in (4.2) is taken to be c = 1/c*, we obtain (4.2). O
Now we consider the following problem
-V .- (KVY,) =G, inYy,

—€7'V - (kYY) = €78, in Yp,

KV, - iy, = €’kVy, -0, ondY,,
Ve = Y on Y,

where t € (0, 00), € € (0, 1), and ﬁy is the unit vector outward normal to dYy,. By D in (2.2), we define

(4.3)

1
D, = ix € Y| dist(x, 3Yy) > 1 min{dist(Yy,, D), dist(D, aY)}} .
Then oD C D;.

Lemma 4.2. Suppose
(1) K, kin Y satisfy |K — d”Wl,oc(yf) + Ik — dlly1ooy,,) < cod whered > 0 is a constant and ¢y < % is a small number

depending on Yy,
(2) T > 0, = min{2, p} for p € (1, 00), |¥ellio vy + Gellr vy + I8 lliv (v, is bounded independently of e,

then any solution of (4.3) satisfies

(L2 ||w2vp(|)\?m) + e Y. lwzp e,y <€ (44)
where c is a constant independent of €, t.
Proof. Denote by c¢ a constant independent of €, t, d. Consider (4.3); in Y;. Theorem 8.8 and Theorem 9.11 [17] implies

d|¥llw2rp,) <c. (4.5)

Let ’1/76 be a solution of

—V - (2'dVY. + 2 (kK — d)VY,) = €'g. in Y,
~ (4.6)
we|8Ym =0,

and @6 a solution of
—V - (dV¥ + (K- d)V¥) =G, inD\Yp,
Yeloyn, =0, (4.7)
v, — l1’6|3D =0.

Then, by (4.5) and Theorem 9.15 of [17],
d||fe||w2.p(ym) =< C(G_t + Ik — d)vwenwl.p(ym)), (48)
AV llwzr o7 < (14 1K= DVElyirp7,,)-

Define Ye = ¥ — Y in Ypand ¥, = ¥, — &, inD \ Yy (4.3) and (4.6)-(4.7) imply
—¥"AY. =0 inYy,
—AY, =0 inD\ Yy,
Yelovm = Velovm, (4.9)
Yl}le : ny|8Ym - GZIV% : ﬂylaym = F- ny/da
l1’6|3D =0,
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where %, = (d — K)V¥, — 2" (d — K) V. — AV, + 2°dV .. By (4.5), (4.8), and trace theorems in pages 240-241[16],
I Fellwi-1/pp gy, < c(1+ T ll(k — )V, w1, + 1K —d)V, ||wlvp(n\?m))- (4.10)

By Green'’s formula, (4.9), and Theorem 6.5.1 [23], we see that
{ire/z + Tov (F0) = Epr,y (O, V)

T ° o v ondYp,
Ve /2 — Toy (Pe) = —Eiyy (Bn,¥e) + Eap(On, Ye lop) "

where On, lf/E |sp is the normal derivative of st on dD. Therefore, by (4.9)4,

e +1 . v €an(any lI/E|BD) &y, (Fe - ﬁy)
— VY — T} = - —= on 0Yy,. 411
2(1 — eZI) wg Ym (we) 1_e20 (] — EZT)d m ( )
By (4.5), (4.8), and trace theorems in pages 240-241 [16],
d”anylj’e”WFl/pvp(aD) = C(l + (K- d)VY, ”Wl-p(])\?m))- (4.12)
By (4.11) and Lemma 4.1, we have
. - 1o .
[l IIWZ_%,prm) <c(d llfellwl_%,pwm) + 1|80, e llwl_%,pwn)). (4.13)

Eqs. (4.3)4, (4.8), (4.10), (4.12) and (4.13) imply
A lw2r 7, + € AVellwzay, < c(1+ € 1K= Velyiny, + 1K= DV wipm7,)
By assumption on K and k, we obtain (4.4). O

Denote a portion of the boundary of Y by 0,Y = {y € dY|y = (0, y2, ..., ¥n)}, and consider the following problem

—V . (KV¥,) =G, in Y,
—€V - (kVY) = €'g  inYpy,

KV, - fiy = €’ kVy, -y 0ndYpm, (4.14)
Ve = Y on dYp,

lI/s = 'I/bé on 81Y,

where T € (0, co) and 1, is the unit vector outward normal to 3Yp,. Let Yy, C DcyY satisfy
min{dist(Y,,, D), dist(D, 3Y \ &;Y)} >0 and DN d;Y # @.
By an analogous argument as Lemma 4.2, we also have
Lemma4.3. Let T € (0, 00) and ||K — d”WLOO(yf) + Ik — dlly1.00y,,) < cod whered > 0andcy < % is a small number
depending on Yy,. Any solution of (4.14) satisfies
1P llw2p @17 + € Nellwzrg < C(I1¥ellim oy + Gl + lgellpwmy + 1% w2y
where p € (1, 00), w = min{2, p}, and c is a constant independent of €, t.

Now we give the proof of (3.5) of Lemma 3.3. By partition of unity, A2, Theorem 8.8 and Theorem 9.11 [17], Lemmas 4.2
and 4.3, we see that the solution of (3.4) satisfies, for fixed p € (1, 0), 7 € (0, 00),and € € (0, 1),

Ipellwirie) + leclwaries) + Ieellwarag) = c(Ifellri) + el ) (4.15)

where @ = min{2, p} and c is a constant.
Now we consider the case p € [2, 00). The solution of (3.4) satisfies, by the energy method,

@l < clifellize),

where c is a constant. Together with (4.15), we see that (3.5) of Lemma 3.3 holds for p € [2, 00).
For any function ¢ € L"(£2) withr € [2, c0), we obtain 7. by solving

ne=20 onas2.
We have proved that if r € [2, 00), the solution of (4.16) satisfies

e llwirezy + e ”Wz’r(()jf) + Inellwar ey < cliCllr), (4.17)
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where c is a constant. Multiply (3.4) by 1. and use Green’s theorem, (4.17), and the Hélder inequality to obtain

/ Pegdx = —/ PV - (ATVn)dx = / fenedx = clifellp@) 151l @)
2 2 2
forpe (1,2]and 1/p+ 1/r = 1.So

loellp2y < clifellr@y forp e (1,2].

(4.18)

(4.15) and (4.18) imply that the solution of (3.4) satisfies (3.5) for p € (1, 2] case. Therefore (3.5) of Lemma 3.3 holds for

p € (1, c0) case.

5. Two convergence results

Before the proof of (3.6) of Lemma 3.3, we present two convergence results: Lemmas 5.3 and 5.5. The two lemmas allow us
to derive the estimate (3.6) under general permeability fields K. X of +e7k. X 2g,-Llemma 5.3 is used in the interior estimate

in Section 6.1 and Lemma 5.5 is used in the boundary estimate in Section 6.2. Define V. = {¢ € H1(.Q;)|(p|39 = 0} and
denote V. the dual space of V.. By Remark 2.1, [T, : V. — H(}(Q) is a linear continuous extension operator. We denote

I : H () — V! the adjoint of [T, and it is a linear continuous map satisfying
(175/90, {)vg,vE = (o, HE;)Hfl(Q)’Ha(Q) forg € Hﬁ](Q)a ¢ eVe.
For any ¢ in .Q;’ for o € (0, 1), we define a 0-extension function @7 (¢) : R" — R by

o _Jeto ifxe 2y,
QA (P)0) = {0 ifx e R"\ 27

Lemma 5.1. Assume B1(0) C £2, t € (0, 00), and €, v < 1. Consider the following problem

-V. (kvvlpe,v) = Ge,u inB1(0) N .qu,
=€V (k,Ve,) =€'gy  inBi(0)N 2},
K,V¥., -1 = ek Vi, -0° onBy(0) N3,
Ve = Ve onB1(0) N 852,;’1,

where ¥ is a unit vector normal to 382} If

K.k € (@ pB) and a, B >0,

”'I/é,u”LZ(B](O)ﬂQf“)v e Yenllizg, ey < 1,

e}li}fj)lo ||Gs,v||L2(31(0)mf“) + max{e®, v}ige.v 25,002y = 0
then

(1) ||HUWE,U||H1(B3/4<O)) is bounded independent of €, v, T,

(2) A subsequence of @”(lv(vVlI/G,v) converges weakly to & € [L? (B3/4(0))]"ase,v — 0and V - & = 0in B3/4(0),

3) V- @“(f(vvwe,v) converges to 0 in H*I(Bl/z(O)) ase,v — 0.
Proof. By the energy method, Remark 2.1, and (5.2), we see
||V‘1’e.v||L2(B3/4(0)nrzf“) + 6T||V¢e,u||L2(133/4(0)m.qr71) =

where c is a constant independent of €, v, 7. Remark 2.1 and (5.3) imply statement (1).

(5.1)

(5.2)

(5.3)

By (5.3) and the compactness principle, a subsequence of @"(K, V¥, ,) converges weakly to £ in [LZ(B3/4(O))]” as

€, v — 0 (the same notation for subsequence). Multiply (5.1) by a function ¢ € H(} (B3/4(0)) to see

/ (f(vvwe,ux.o}’ + E2T]u(vvwe,ux9,‘1’1)vfdx = / (Ge,vxﬂf" + 6tge,ux9,‘1’1)§dx~
B3/4(0)

B3/4(0)
As e, v — 0, we see, by (5.2)-(5.3),
V. g =0 in B3/4(0)

So we prove statement (2).

(5.4)
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Let n € C5°(B3/4(0)) be a bell-shaped function satisfying n € [0, 1] and n = 1in By,2(0). From (5.1), we have

—V - (1K, V) = 1G.., — K, V¥,V in B3/4(0) N £2f,

_62rv : (nlv(uvwe,v) = nezge,u - ézrlv(vV%,uVﬂ in B3/4(0) N 9:17

K, VY, -1’ = ¥k, Vi, - 1 on B34 (0) N 3£2), (5.5)
77‘1’6,1; = nwg,u on B3/4(0) N 89,‘;,»

MW Xgr +nevXgy =0 on 0B3/4(0).

Claim that V - (n@" (K, V¥,.,)) is in a compact subset of H™ (B3/4(0)). Multiply (5.5) by ¢, € H, (B3/4(0)) to obtain
(=V-(mQ"(K,V¥,,)), Q,v)H—l(33/4(0)),118(33/4(0))

=/ n@v(f(\)vwe,v)vé-e.vdx:/ nlv(vvlpe,vvfe,vdx
B3/4(0) B3/4(0)N82f

= _621:/ nl}vvwe,uvé‘e,vdx"'/ U(Ge.vxﬂf" + Grge,vxﬂ,'ﬁ)ge.vdx
B3/4(O)Q.Q,¥, B3/4(0)

- / Vn(lv(vvlpe,vxﬂjl’ + EZTvawe,va%);e.vdx- (56)
B3/4(0)
We choose ¢, in (5.6) in such a way that it satisfies

{Aze,v = V- (n@"(K,V¥,)) inBs(0), (5.7)

Ce,v =0 on 8B3/4(0)-
(5.7) is solvable uniquely by the Lax-Milgram theorem [17] and ||, ||H1(B3/4(0)) is bounded by a constant independent of
€, v by (5.3). By the compactness principle, ¢, , weakly converges to ¢ in H(} (B3/4(0)) as €, v — 0, and ¢ satisfies, by state-
ment (2),

A; =V -(n§) inBs;(0),
¢ = 0 on 833/4(0)
7, 2
By (5.2)-(5.3), (5.6)-(5.7), and Lemma 6.1 [29], |V - (nQ (l(vVlPﬁ,,))||H,1(B3/4(0)) converges to (—£Vn, §'),_2(33/4(0)),L2(B3/4(0))
ase,v — 0.Since V - & = 0in B34(0) by (5.4),

_ 2
=8V O)i2ps 400 283000 = IV - EM -1, 40

Since V - (@ (K, V¥,.,)) converges weakly to V - (£7) in H~'(B3/4(0)) as €, v — 0, V - (n@" (K, V¥, ,)) converges to
V. (En)inH™! (B3/4(0)) by Remark 1.16 and Proposition 1.17 [30]. So we prove the claim. Moreover, by (5.4), we see that
V - (nQ" (K, V¥,.,)) converges to 0 in H~'(B;,(0)).

The above conclusion is true for any subsequence of ¥ ,, so we prove statement (3). O

Let us define M (¢4, £3; D) as a set containing positive definite matrices, that is,

MUy, Ly; D) ={p : D — RV < ¢ < £,], £4, £ > 0,1 is the identity matrix}.

Lemma 5.2. Forany v < 1, consider the following problem

~V-(K,V®,) =G inf,
K,V®, -1’ =0 on Y, (5.8)
®,=0 onos2,

where K, € (o, B),a, B > 0,and G € H~1(£2). There is an element K, € M(y 2, B; £2) and a subsequence of the solutions
@, of (5.8) (same notation for subsequence) such that

(1) I1,®, converges to ® weakly in H(} (2)asv — 0,

(2) (:z“(l“(vv(pv) converges to K, V® weakly in [L*>(£2)]" as v — 0,
(3) =V (K,V®) =Gin £2,

(4) V- @“(IV(VVQEU) is in a compact subset of H=1(£2).

Note: Constant y here is the y (Y, p) in Remark 2.1.
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Proof. Statements (1)-(3) are from Definition 1.3 and Theorem 1.8 [31]. So we only prove statement (4). By the energy
method and Remark 2.1, we know

”V¢v“L2(QJP) =, (5.9)
where c is independent of v. We claim that every weakly convergent subsequence of V - @" (K V&,)inH™ l((2) is strongly

convergentasv — 0.By (5.9), V- @" (l( V,) is bounded in H~!(£2). Let £ denote the weak limit of @" (K Va,), that is,
& =K, V. Statement (3) implies

G=-V_.E&. (5.10)
If n, € Hy(£2), (5.8) implies

(—V . (QV(RVVQSV), nV)H’l(Q),H(}(.Q) = / IV(VV<DUVr]de
QV

i
= (Gv HU”V'Q}’)H—](Q)’H(}(Qy (511)
In (5.11), we take 1, € H} (£2) satisfying
An, =V -Q"(K,VP,) ins2,
{m =0 onos2. (5.12)

The existence of (5.12) is from the Lax-Milgram theorem [17] and ||, ||H3<9) is bounded independent of v. If 1, weakly
converges to n in H(} (£2), then n satisfies

(5.13)

An=V-£ ingf2,
n=20 on d442.

By (5.10)-(5.13), Lemma 2.1 [31], and Lemma 6.1 [29],
lli% v - @v(KVV@v)”,z,—l(Q) =(=V-§, n>H*1(Q)YHé(_Q) =[V- 5”2—1(9)-
By Remark 1.16 and Proposition 1.17 [30], we prove statement (4). O

Lemma 5.3. Under the same assumptions in Lemma 5.1, there is an element K* € M(y ~%a, B; 22) and a subsequence of the
solutions ¥, , of (5.1) (same notation for subsequence) such that, ase, v — 0,

(1) I, ¥, converges to ¥ weakly in Hl(BUz(O)),
(2) @”(IV(VVlI/E,V) converges to K*VW weakly in [LZ(B1/2(0))]",
(3) =V - (K*V¥) = 0in By, (0).

Note: y here is the y (Yf, p) in Remark 2.1.

Proof. By Lemma 5.1, there is a subsequence of the solutions ¥, , of (5.1) (same notation for subsequence) satisfying, as
€, v—0,

(1) I, ¥, , converges to ¥ weakly in H' (B3/4(0)),

(2) @"(K, V¥, ,) converges to & weakly in [L2 (B34 (0)]1",
(3) V- @"(K, V¥, ,) converges to 0 in H~'(B/5(0)),

(4) =V - & =0in B3/4(0).

Let K, be the one in Lemma 5.2. For any @ € H(} (£2), we define G = —V - (K,V®) € H™'(£2) and use the defined G to
obtain @, by solving (5.8). By Lemma 5.2 and the Lax-Milgram Theorem [17], we see that function IT,®, converges to @
weakly in H(} (£2) asv — 0. Clearly

VI,®, - Q" K, V¥, ,) = VII,¥,, - Q" (K,V®,) inBj;(0).
As e, v — 0,by Lemma 5.2 and the divergence-curl lemma (see Lemma 1.1 [32]),
Vo . & =VY . K, VP almost everywhere in By,(0).

Since @ € H(}(.Q) is arbitrary, we see & = K*V ¥ (here K* is the transpose of K,.). So we prove the lemma. O
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Let ¢ : R™! — R be a function satisfying
#(0) =|Ve(0)| =0 and [Pllcregn-1) < ce forsomee € (0, 1). (5.14)
By A1, £2 is a C!® domain. We assume

0e€0s2,

B(0)N Qv = {31(0) N{(, x;) € R"| vx, > dp(vx)} ifv e (0, 1], (5.15)

B1(0) N {(X, x,) € R"| x, > 0} ifv=o0.

Tracing the proof of Lemma 5.1, we have

Lemma 5.4. Let T € (0,00) and €, A, v € (0, 1). Consider the following problem

-V (kk,vvq/e.k,v) = Ge,k,u in By (0) n Qf)t/l),

—€"V - (K, Ve ) = € 8ein in By(0) N £27:/v,

K, V., -0 =€k, ,Viye ., -0 onBy(0) N2} /v, (5.16)
lI/e,)L,v = llfe,k.v on 31(0) N 89,’}1/1;,

lI/e,A,u =0 on Bl(O) ﬂaQ/U,

where /" is a unit vector normal to 852" /v (see (2.1) for K;. ., k;., ). If

v — v, €[0,1],
Kk,w kk,v € (057 /3) and o, /3 > O’
||"I/e.>»,u ”Lz(B](O)ﬁQ;‘/v)’ €’ ||We,k,v ”LZ(B] (0)NR2% /v) <1, (5‘17)
Hm lGe sl 0nepm T max(e™, A/vHige rvllize, onepm = 0
then there is a subsequence of W, ., (same notation for subsequence) satisfying
(1) 1T o We v 141 85 4002/ ) 1 bounded independent of €, A, v, T,
(2) @ (K., V¥, ,.,) converges weakly to & € [L*(B3/4(0)]" as €, A/v — 0and V - & = 0in B3;4(0) N £2/v,,
3) V. (@”"(IA(A,VVII/“,V)) converges to 0 in H‘l(BUz(O) ND)ase, A/v — 0 for any compact subset D C B3;4(0) N 2 /v,.
Proof. By the energy method, (5.17), A /v < 1, and Remark 2.1, we see

||HA/VW5,A,U ||H1(B3/4(0)ﬁ9/u) +€° ||WG,)~,V||H1(B3/4(0)Q_QA /v) =c, (518)

m

where c is independent of €, A, v, t. That is statement (1).
Note (,‘ZA/"(I(A,VVWQA,V) is bounded independent of €, A, v, T in [L? (B3/4(0))]" and there is a subsequence converging

weakly to & € [LZ(B3/4(O))]” as €, A/v — 0. Let D be any compact subset in B3/4(0) N £2/v,. So if v is close to v, then
D C Bs;4(0) N £2/v. Multiply (5.16) for v close to v, by any function ¢ € (§°(DD) to see

/(l,\(k,uvlpe,)»,vng)‘/v + Gzzﬁx,vvwé,k,vxgé/v)V§dx = /(Ge,k,vx_qf)»/v + Grge,k,vx_qr)ﬁ/v){dx'
D D
Ase, A/v — 0, we see, by (5.17)-(5.18),

V.£=0 inD.

Since D is any compact subset in B3;4(0) N £2 /v,, we prove statement (2).
Let n € C5°(B3/4(0)) be a bell-shaped function satisfying € [0, 1] and n = 1 in By/,(0). From (5.16), we have

—V - (K5, VW) = 0Gey — Koy VW5, V1 inB3(0) N 27 /v,

—€¥V - (K, Ve sn) = N€°8e sy — €K, V1,V in B3(0) N &2;,/v,

MK Vs - WY = € K, Vi - WY on B3 (0) N 982}/, (5.19)
NWein = NVeiv onB;(0) N a2k /v,

ﬁ‘pe,x.ungx/,, +7)w6,)»,vx9r77\1/v =0 Ol'la(B%(O) ﬂ.Q/U)
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Claim that V - (n(fz”“ (IA(,\,,,VW&M)) is in a compact subset of H~!(D), where D is any compact subset in B3/4(0) N £2/v,.
Multiply (5.19) for v close to v, by any ¢, € H& (D) to obtain

2 N
<_V : (77@ /v(l()».vvlpé,)n,v))v ;6.\))}171(33/4(0))’}.’3(33/4(0))

:/ nQA/U(IA()L,UVWG,)\..U)V{E,UdX:/ nkk,vvwe.k,uV§e,vdX
B3/4(0) B4 (N2} /v

= _621 f nf(k,vvwé,)\,vvé‘e,vdx + f U(Ge,)\,vxgk/v + etgé,)».vxgr’ﬁ/‘));e,vdx
B3/4(0)NS2% /v B3/4(0) !

- / Vn(l’\()\,uvlpe,k,v XQ)‘/U + GZIﬁk,vvwe,L.v xQ%/p)é‘f,l)dX' (520)
B3/4(0) 7

We choose ¢, € H(} (D) in (5.20) satisfying
Age,v =V- (n&A/v(kk,vVWe,A,U)) in D, (5 21)
Lenw =0 on dD. ’
(5.21) is solvable uniquely by the Lax-Milgram theorem [17] and || ¢ » || 41p) is bounded by a constant independent of €, A, v
by (5.18). By the compactness principle, ¢, , weakly converges to ¢ in H(} (D) ase, A/v — 0,and ¢ satisfies, by statement (2),

A; =V-(n§) inD,
=0 on oD.

By (5.17), (5.18), (5.20), (5.21), and Lemma 6.1 [29],

v - (W@A/U(I(A,vvwe,x,u))||,2,71(D) = (=EVN, ) 12(85,4(0)).12B3/40))

ase, A/v — 0.Since V - & = 0in B3;4(0) N £2/v, by statement (2),
(=EVN, O 1285401283400 = IV - (fﬁ)ll,zq_l(m

Since V - (ncz””(f(wvwﬂx,v)) converges weakly to V - (£n) in H*1(33/4(0)) as €,A/v — 0, we know that V -

(n@*" (K, , V¥, ; ,)) converges to V - (£n) in H~' (D) by Remark 1.16 and Proposition 1.17 [30]. The above convergence is
true for any compact subset D in B3 4(0) N £2/v,. The claim then follows by a diagonal process.

Also note that, by statement (2), V - (@** (K;,, V¥, ;.,)) converges to 0 in H™ (B12(0)ND) ase, A/v — 0.So we prove
statement (3). O

For any solution ¥, , , in (5.16), we define

_ Wi,y ifx € B3a(0) N 2/v,
S UDpesry) = {o ifx € B3a(0) \ 2/v.

Modifying of the proofs of Lemmas 5.2 and 5.3, we also have
Lemma 5.5. Under the same assumptions of Lemma 5.4, there is an element K* € M(y ~%a, f; B1/2(0) N £2/v,) and a subse-
quence of ¥, , , (same notation for subsequence) such that,ase, A/v — Oand v — v,,

(1) 8,1y /v ¥ 1) converges to ¥ weakly in H1(B1/2 (0) N £2/vy),

(2) @"(K;., V¥, ,.,) converges to K*V& weakly in [L?(B1/2(0) N £2/v,)]",
3 —V.(K*V¥) =0 inB1/3(0) N 2/vy,
( ) v =0 onBy/2(0) N 982 /vx.

Note: y here is the y (Yy, p) in Remark 2.1.

6. Proof of (3.6) of Lemma 3.3
This section includes two Sections 6.1 and 6.2. The Holder estimate in the interior region is derived in Section 6.1, and the

Holder estimate around the boundary is in Section 6.2. The idea of the proof for the Holder estimate is from the three-step
compactness argument in [8]. A1-A2 are assumed in this section.

6.1. Interior estimate

For convenience we assume B (0) C £2.
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Lemma 6.1. For §, T > 0, thereare i, 61, 6, € (0, 1) (dependingonn, 8, o, B, Yy) satisfying 6; < 922 and thereisaey € (0, 1)
(depending on 61, 65, n, 8, T, «, B, Yy) such that if

—V - (€, VW) = G in B1(0) N $2}' /v,

—€" V(o Ve s0) = € 8en in B1(0) N £2;,/v, 6.1)
K, V¥, -1 =€k, ,Viye ., -0™" onBy(0) N 382 /v, :
e = Ve on B;1(0) N 324 /v,

T
”WE,A,V”LZ(B](o)meA/V)v € ”‘ﬁe,k,v”lﬁ(}g](o)mgé/w <1,

_ 6.2
€ l||Ge,A,vaf/\/v + max{ef, )‘-/V}ge,k,vxgé/v||Lﬂ+5(31(0)) <1, (62)
andif €,1/v < €y, v € (0, 1], and 6 € [0, 6], then
f |nk/u'pe,k.v - (nk/uwe,k,v)0,9|2dx =< 92”»
By (0) (6.3)

f Gzrlwe,k,v - (Hk/uwe,k,v)0,0|2dx =< 92“-
By (0)N82} /v

See Section 2 for IA(M, lA(M, I3y 3,0)0,6-

Proof. Assume K* € M(y %, 8; £2) and ¥ is a solution of the uniform elliptic equation —V - (K*V¥) = 0 in B1/2(0).
Then, by Theorem 8.24 [17],

¥ lles @50 =<l iz, 50

)

s If u' satisfies u < u' < 2u, then, by

where s(< 1), ¢ are constants depending on n, «, 8, Y;. Define u = % min{s
Theorem 1.2 in page 70 [33],

][ & — (¥)gql2dx < 921"][ @ [2dx (6.4)
By (0) B1/2(0)
for 6 (depending on u, n, &, B, Yy) sufficiently small. Fix two values 64, 6, < 1/8 such that (1) 6; < 922 and (2) Inequality
(6.4) holds for any 6 € [04, 65].

With u, 61, 6, above, we claim (6.3);. If not, there is a sequence {€;, A, Vi, O, v, » Yernvs Yer v Gernovy s 8epoiy )
satisfying (6.1) and

€, }\./VA — O,
vy € (0, 1], Oc, 1, € [01, 6],
T
maX{H‘Pq,A,w ||L2(3](0)m(zfl/vx)’ € ||1//€A,)»,Ux “LZ(Bl(O)ﬂQfﬁ/UA)} =1

. T N —_—
q,)}}gl_m ”Ge)h,)»,v;L ”L”*‘S(Bl(O)ﬂQf)‘/vp + max{e®, }\/V)L}”gq,k,w ||Ln+5(3] ON2h/v,) = 0, (6.5)
2 2
][ T, Wy vy, = gy Wey 0, )06, 5, 120X > 620
BGEA,A,‘)}\ ©)

By Lemma 5.3, there is a subsequence (same notation for subsequence) such that, as €;, A/v; — 0,

‘96»\,)»»1& — 04 € [01, 02],
{hm Ve, vy, = ¥ in [? (B1/2(0)) strongly,
K50, V000 X2, = K*V¥  in[L*(B1/2(0))]" weakly, (6.6)

€2 Ko, Ve X, — 0 in [L2(B1/2(0)]" strongly,

where K* € M(y ~2a, B; £2) and ¥ is a solution of the uniform elliptic equation —V - (K*V¥) = 0in B1/2(0).By (6.4)-(6.6),

2n . 2n
0" = lim eq.k.,vx
€),A/vy—0
: 2
< lim IIY)L/U)LlIIG)L,)»,\))L - (n)»/\);\ lI/G)\,)»,V)\)O,Ge}“)LVU)L' dX

€,A/v)—0 By ()

2
][ ¥dx
By, (0)

€5 A5 V)

][ |¥|?dx —
By, (0)

=][ ¥ — (W)g,%dx < 93/"][ | |?dx.
B, (0) B1/2(0)
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If 6, is small enough, then the right hand side of the above equation is less than 93“” for some u” € (u, u'). So we get

0% < 0" for u” € (u, w'). But this is impossible. Therefore we prove (6.3),.
Let us define

{'{\Ie,)»,u = 07"y We 50 — ULy We 3,0)0,0)s
Yerw =07 (Wepo — UL e 30)0,0)-

Then (6.1) implies, for any smooth function  with support in Av=1(Y,, +j) C Bg(0) N .Q#l/u for somej € Z",

€ / ({pe,k,v - lj/e,)\,v)v . (kk,vvn)dx = / Gzrkx,uV@e,)\.uvﬁ - 97”6”7 e nv dx.
=1 (Y +i) w1 (Ym+)

If n is the solution of

V. (]}A.vvn) = lze,)»,v - Ae,k,v in )ﬂ}il(ym +])7
n=0 on Av~ (@Y, +j),

then

1% Aoa N
C1X||77||L2(Au-1(ym+j)) = ||VTI||L2(AU—1(Y,,,+,')) = C2;||We,x.v - ‘I’e./\,u||L2(,\v—1(ym+j)),

where cq, ¢, are independent of €, A/v. Inequality (6.3), follows from above estimates if €y is small enough. O

Lemma 6.2. Let §, 7, u(< ﬁ), 601, 63, €9 be same as those in Lemma 6.1. If

-V - (K V¥;) = Ge in By(0) N 27,
_Ezrv : (k)uVI/le,)») = Erge,k in Bl (0) N Qy);«,’ (6 7)
K VY, - 0" = 'k, Vi, -0*  onB(0) N}, '
Ve =Ver on B;(0) N 382,
then, forany €, A < g, 0 € [64, 6,], and k satisfying 1 /0% < e,

][ [T We s — (W 3)g gt Pdx < 6742,

B,k (0) 68)
][ €7 |Wep — (T We 3)g ok 2dx < 92k”]3,p

B, (0)N$27;

-1
Where_]ey)L = ||lp5’)hxﬂ;n + GTI//'G’)LXQ% ”LZ(B] 0)) + 60 ||Gey)tx9f)\ + maX{GT, )\.}gg,)thr}ﬁ ||Lﬂ+5(31(0)).

o)

Proof. For k = 1, we define &, = j"; Ve ]]h: , Ge f‘_j,ﬁe = f":.Then these functions satisfy (6.1) and (6.2) with
v = 1. By Lemma 6.1, ’ . . ’

][ [T, e — (I, W )00 dx < 67,

By (0)

][ e — (I, )06 |2dx < 0%
By (0)NR2),

This implies (6.8) for k = 1.If (6.8) holds for some k satisfying A /0% < &;, we define

e (x) = J 107 (We (00 — (W) 08)
Ge(x) =10 4G (0"

V@) =107 (Y 1 (0%) — (T We 1)o0k) A ok
¥ €, , 470, B1(0) N 27 /6".
2. EL,;@k(Z_mge_x(@kX) in B1(0) m/

Then these functions satisfy

in B1(0) N £2} /6%,

—V - (K, V) = G, in By (0) N 27 /6%,
—¥V - (K kVe) = €7 in B1(0) N £25: /6",

K, oV - 77 = 2k, 1V - 07 onBy(0) N 982} /0%,
B, = . on B;(0) N 852 /6%,
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- k. . 5 ~ . .
where ii*/?" is a unit vector normal to 92}, /6*. See (2.1) for K; g«, K; . By induction,

~ A
max{”lpe”LZ(BI(O)me)»/ek)’ € ||1/f5||1_2(31(0)m9r)1~]/9k)} <1,

60_1 ”Geng}»/gk + max{e”, )\.Qik}g’\'gx_o’%;]/ek||Ln+6(31(0)) <1.

By Lemma 6.1 (take v = 6*), we obtain

A~ N 2
f ’HA/gk‘Ils - (H}L/lepé)o,ﬁ‘ dX f GZM,
By (0)

o R 2 (6.9)
][ ¥ Y — (nx/gkwg)o,g‘ dx < 6%
By (0)NL2}, /6K
Note, by Remark 2.1,
2
R R 2 H)LlI/,)L—(HA‘l/,)L)O,ng
][ ‘Hx/ekq’e - (Hx/ekwe)oﬁ’ dx =][ |7, % 5 Zk; il dx, (6.10)
By(0) Byict1(0) Ji,0
2
5 - 2 Ven — (T We i)g gkt
][ Ve — (nx/(,kwg)o,@‘ dx =][ [ve - 2; o] dx. (6.11)
By (0)NR2}, /6% By 1 (0)N27 Je,xe "

Egs. (6.9)-(6.11) imply (6.8) for k + 1 case. O

Lemma 6.3. For any 8, > 0, there are i, €, € (0, 1) (depending on n, 8, T, &, B, Yy) such that if €, . < €, any solution
of (6.7) satisfies

g T —
[W5~)‘]CIL(B1/2(O)O§}) + jSEL/}ln) € [Werlcnp@ntiy < Uens
M(Ym-+)CBq 2N,

where c is a constant independent of €, A. See Lemma 6.2 for J. ; and u < ﬁ is from Lemma 6.2.

Proof. Let 0y, 6;, €q, u(< ﬁ) be same as those in Lemma 6.2, define €, = €¢6,/2, and let €, . < ¢,. Denote by c a

constant independent of €, A. Because of 6; < 922, forany r € [A/€g, 0], there are 6 € [64, 6,] and k € N satisfyingr = ok,
Lemma 6.2 implies, for any r € [1/¢g, 6,],

2
][ ’H)»lllé,)» - (HA‘I’e,A)o,r| dx < CrZuJGZ’)“
Br(0) (6.12)
2
][ € [Wer — UL We )0 | dx < a2,
Br(0)N2A

Define

We(x) = J AT (We (M) — (T3 We 3)0,22/¢)
Ge(®) = J AP s (MX)

Ve@) = J 327" (Ver (%) — LW 3)0.20/c0)
8 =] AT )

Then those functions satisfy

inB (0) N 27 /A,
€0

inB2 (0) N 2} /A.
€0

—V - K, VE,) =G, inB2 (0) N 2}/,
€0

—€V - (k, V) = €', inB2 (0) N £25/7,
€0

K., V¥, - it = ek, , Vi - 0/*  onB2 (0) N 3R%/x
€0

A~ ~

Ve = Ve on B2 (0) N3} /A,
€0
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where 1i*/* is a unit vector normal to 2% /1. See (2.1) for K; ;,, k; .. Take r = % in (6.12) to get

<c.

”lpexgjf‘/x + Erwengﬁ/M'LZ( > + ”Gexx?]?‘/A +§Ex9')ﬁ/)‘”,_n+s<

B, (0) B;(O))
< é

By A1-A2 and Lemma 4.2,

[We] »
B 1 (0)N2p/2
€0

) + ef[{bf]CM( ) <c. (6.13)

cn <B ! N2} /2
Remark 2.1, (6.13), and Theorem 1.2 in page 70 [33] imply
][ |1'[AlI/€,)\ — (HAIPG,A)O’T‘Z dx < cr®jZ, forr < A/eo.
Br(0)
Then we shift the origin of the coordinate system to any point z € By,,(0) and repeat above argument to see that (6.12);

with 0 replaced by z also holds for r € (0, 6,). Together with Theorem 1.2 in page 70 [33], we obtain the Holder estimate of
[T, W, ; in By 5(0). Holder estimate of /. , in A(Y,, +J) C By/2(0) N $2., is from (6.13). O

6.2. Boundary estimate
Assume (5.14)-(5.15).So 0 € 9£2.

Lemma 6.4. If §, T > O, there are |, 61,0, € (0,1) (depending onn, 8, o, B, Yy, §2) satisfying 6, < 6722 and thereis a &y €
(0, 1) (depending on 01,0,,1n,8,7,a, B, Yz, 82) satisfying €, < min{%, €0} (€ is that in Lemma 6.1) such that if

-V (RA,VVWG,A,V) = Ge.k,v in B1(0) N .Q;L/l),

€V - (K5, Ve 1) = € 8ein in By(0) N 82, /v,

K., V¥, 0 =¥k, , Ve, - 1" onB(0) N K%/ v, (6.14)
Yerw = Yeaw on B;(0) N 32> /v,

lpe,k,v =0 on 31(0)089/]},

and if

~—1
max{”lpe,k,u ||L2(Bl(())ﬁg;\/v)! €’ Ve v ”1_2(31 nek/v)> €0 IGe..v ngl/v + max{ez, )”/V}ge,)»,uxgr}ﬁ/u ||L”+5(Bl (0))} <1,

then, forany €, L/v < &, v € (0, 1], and @ € [6,, 6,],

f |HA/UW5,A,V|2dX < éZM,
Bz (0)N$2/v

f 62[|w5,)x,l)|2dx < ézu-
B;(0)N2} /v

See (2.1) for IA(M, lA(,\,u-

(6.15)

Proof. Let K* € M(y 2, B; B1(0) N £2/v,) for v, € [0, 1] and assume ¥ is a solution of the uniform elliptic equation

-V . (K'V¥) =0 inBy;(0)N2/v,, (6.16)
v =0 OnBl/z(O)ﬂaQ/U*. :
By Theorem 8.25 and Theorem 8.29 [17] and (5.15), we have
||W||C3(B1/4(O)O.Q/v*) = C”lp”l}(Bl/z(o)mg/V*)’ (6.17)

8

where s(< 1), ¢ are constants depending on n, o, 8, Y, §2. Define u = L min{s, B If 6 is small enough (depending on

wu,n, o, B, Yr, £2 but independent of v,.), then, by (6.17),

][ | )2dx < ézﬂ’][ | 2dx (6.18)
Bj (0)N$2 /vy B1/2(0)NS$2 /vs

holds for some i € (i, 244). Fix two values 61,6, < 1/4suchthat(l)§1 < 522 and (2) Inequality (6.18) holds foré € (61, 6,].
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With p, 51, éz above, we claim (6.15);. If not, there is a sequence {e;, A, v;, éq,/\,w Yo, s Ve avs Geyavy s 8eny )
satisfying (6.14) and

€., \/v;, = 0,
v, € (0, 1], éq,}u,vk € [64, 6,1,
max{”lpq,k,m ”LZ(B](O)(\Q;‘/\))L)V 6; 1Ve; 5m, ||L2(B1(0)ﬂ9,¢1/vk)} <1,
lim 0 Ge; 20, ||L”+5(B1(O)f‘m’2;‘/v,\) + max{e”, A/vi}l1ge; 1, lints 5, 0)n2s juy) = O (6.19)

€ h/v—

2 =2
][ |H7~/UA WGAJ»,V)L‘ dx > ee:)\,uk'
Bé 0)N$2/vy,
SRR

By Lemma 5.5, there is a subsequence (same notation for subsequence) such that, as €;, A /v, — 0,

vy — v € [0, 1],

éq,)\,u;h - é* S [élv 52],

/Sv,\ (n)\/v,\ We,\,k,v,\) —> Y in LZ(Bl/Z(O) N Q/V*) strongly, (620)
Q" (Ks, Ve, y) — KV in [12(By2(0) N £2/v,)]" weakly,

K, Ve iy X, — O in [L*(B12(0) N §2/v,)]" strongly,

and ¥ is a solution of (6.16). By (6.18)-(6.20), we conclude

~ ) ~ . 2
62" = lim 6% < lim !Hx/uk‘l’q,x,uk} dx
€),A/v)—0 B~ ©NR2/v;
Bey h,vy, A

][ | |2dx < éfﬂ’][ |¥|2dx. (6.21)
B;, (NS2/v. B12(0)N$2/vs

If 6, is small enough, the right hand side of (6.21) is less than 62" for w' € (u, w'). Which means 82" < 62" for w' e
(w, 1) and this is impossible. Therefore, we prove (6.15);. Clearly, €y can be chosen so that €y < €. The proof of (6.15), is
similar to that of (6.3),, so we skipit. O

Lemma 6.5. Let §, 7, u(< ﬁ), 01, 52, €g be same as those in Lemma 6.4. If

—V - (K V¥, ;) =G, in B1(0) N 27,

—V - (K Ve ) = €8x in B1(0) N £2),

K V¥, - = ek, Vi, - 0" onBi(0)N a2, (6.22)
lI/e,)L = WG,)» on B1(0) N a.Q,:;,

lI/E’)x =0 onBl(O)ﬂa.Q,

then, forany e, A < éo,é e [él, éz], and k satisfying A/é" < &,

X o

][ |Hkl1/s,k| dx < 92,‘“]3,)\,
Bz ()N

o (6.23)

2 2 A2k 72
][ €’ |l[fe,l| dx <0 Mje,)ﬂ
B

5 (0N},
T 1
where ., = ||‘1’e,Ax9fA + € Ye 1 X i 28,0 + g”Ge,Ang‘A + max{e”, A}ge,5» X o2 [ln+5 8, (0))-

Proof. The proof is similar to that of Lemma 6.2 and is done by induction on k. For k = 1, (6.23) is deduced from Lemma 6.4
with v = 1. Suppose (6.23) holds for some k satisfying A /0¥ < &, then we define

e (x) =] 07w, 0% % Ak
X Je.r” A B1(0) N 27 /6
{GE(X)EJJGI‘(Z“)GE,A(H"X) in B1(0) N £27/6%,
{fm ®) =J 107 Y 1.(0%%)
2 _ T-17k2—p) Ak
ge(x)=]J_,0 Zen(07%)

@, (x) =0 inB;(0) N /6%,

in By (0) N £22./6,
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Then these functions satisfy

—V - (K, 5« V) = G in B1(0) N £2} /6%,
—e¥'V - (k, 51 V) = €78 in B;(0) N 27 /6,
K, 5V - 1% = 7k, 5V - 777 onB(0) N a2} /6",
&, = . on B;(0) N 3527 /6%,
. (x) =0 in B;(0) N £2/6*,

where ii/?" is a unit vector normal to 9$2,/6%. See (2.1) for IA(M;k, lA(M;k. By induction,

max{]| ¥ ”LZ(B](omgf)\/ék)a € Vel 25, 0n2z a0} = 1,
1,5 ~_kyA
€ lIGe ngx/ék + max{e”, A0 )&, x(zrﬁ/ék llin+s 8, 0y < 1-

By Lemma 6.4 (take v = 6*), we obtain

. |2 -
f H)L/éklpe dX S 92#:
B (0)Ns2 /6
~ |2 - (6.24)
][ €27 || dx < 6.
B; (0)N&2} /0%
Note, by Remark 2.1,
2
~ |2 I, Y,
][ M, 50| dx = ][ de, (6.25)
B;(0)N2 /6% Bsrne J2, 6%k
2
12
][ Dol dx = ][ Jf"f‘ dx. (6.26)
B; )2} /¢ By N2}y J2 5 02

Eqgs. (6.24)-(6.26) imply (6.23) for k + 1 case. O

Lemma 6.6. Forany §, T > 0, there are ., €, € (0, 1) (dependingonn, 8, T, «, B, Ys, 2) such that if €, A < €,, any solution
of (6.22) satisfies

. - -
[WG*A]CM(BUZ(O)ﬂﬁ}‘) + ]SEL:/IY? € [‘//e,k]cﬂ(x(y,n+j)) < Jens (6.27)
A(Ym+)CBy /2 one),
where c is a constant independent of €, A. See Lemma 6.5 for]e, wand p < ﬁ is from Lemma 6.5.
Proof. Let 6, 65, &, u(< ﬁ) be same as those in Lemma 6.5, define &, = min{&:f,/3, €.} where ¢, is the one in
Lemma 6.3, and let €, A < €,. Denote by c a constant independent of €, A. For any x € 392/3 0N Qf* define n(x) = |x — xo|
where xo € 342 satisfying [x — xo| = minycy |x — y|. Then we have either case (1) n(x) > 32:0 or case (2) n(x) < 322)

Let us consider case (1). Because of §; < 62, for any r € [1/&, 6,], there are € [0;, 6,] and k € N satisfying r = 6%,

Since n(x) € [3230, %1 by Lemma 6.5,

][ |Hx‘1/e,x|2 dy < ]2, 3
By (xp)N&2 forr e [277(?(), éz] .
][ e e[ dy < 2,
By (x0)N$2h; ’
So

, §
][ [T s — UL 3)xs| dy < cs™J2, ) @

By(0N® 2 fors € [’72 ,2] (6.28)
][ €T [Yen — LW )| dy < 52,

Bs(x)N$2}
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Shift the coordinate system so that the origin is at x and define

{{m) =Jean " @O (Per 1Y) — UL ¥e o)
Ce) =T P0G ()

{fve O =T O (Yer M) = (TP xne)
g ) =] P (0ger (n(0Y)

in By (x) N 27 /n(x),
in B;(x) N 21 /n(x).

Then these functions satisfy

A (K0 V) = G in By (x) N 2} /n(x),

—€¥'V . (kmmwa—ege inBy(x) N 2} /n(x), (6.29)
K o0V - 0% = 27k, o Vi - 7@ on B (x) N d2% ’
.m0 €Kiy Ve - on By (x) /(X))

P = V. on By(x) N 3825, /n(x),

where #*/7® is a unit vector normal to 92} /n(x). See (2.1) for lA(l.,,(x), lA(k,n(x). Take s = n(x) in (6.28) to see
. R o qoa
1¥eX 0 ) + € Ve X g oo 28100y + €0 NGellines g, cong m
~71 _‘l A
+ € max{er» AN (X)}HI8e ||Ln+5(31(x)mgr‘¢l/,,(x)) <c

Apply Lemma 6.3 to (6.29) to obtain

-
Welew s, ,00rie} ooy T P el n @) =€ (6:30)

jezn
it Ym-ADCB1 /2 (ON 24 /10

which implies, by Remark 2.1 and Theorem 1.2 in page 70 [33],
b~ .l ay < 2, fors < o2, (631)
Bs(x)N$2

Now we consider case (2). Because of 6 < 522, forany r € [A/&, 6], there are § € [0y, 6,] andk € N satisfying r = ok,
By Lemma 6.5,

][ |, | dy < a2,
By (x0)N$2 '

2 2 2052
][ e’ |1/fe,k| dy <cr M]g,)\‘
By (x0)N2%

This implies, for s € [32 , 3]

forr € [A/&, 65]. (6.32)

5 -
][ [T s — UL )xs|” dy < es™)25,
Bs(x)N$2 (6.33)
2T 2 2172
€, €,AL)X,S — €,A"°
€ |Yen — UL We 2 )xs|” dy < ™2
Bs(N2,

Again we shift the origin to x and define
Ve ) =Jo 2" (Wen () — W )xieo)
Ge ) =J 122" Ge s ()

{1//6 W) =] A7 (Yer ) = UTWe xsz )
8) =] X7 g (Ay)

¥,

inB1 (x) N2/,
€0

1n31 (x)ﬂ.Q /A,

3

= —J AT (I We ))xsgzy INB1 (X) N 82/
€0
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From (6.32) 1, lf/he is a constant independent of €, A. Then these functions satisfy

—V - K., V¥,) =G, B () N 82}/

—€¥'V - (K, V) = €78, in B% (x) N Q%/A,

K, VU, - i = €2k, , Vi - W onB (x) N 922 /A,
€0

b = onB1 (0 NI/,

Ve = 0, onB 1 () N2 /%,

where ii*/* is a unit vector normal to 852 /1. See (2.1) for K; ., k; ,. Take s = % in (6.33) to see

10X 0 ), + € We X i, F G Xy + 8 X o2 1 + (1%, | <c.
€ Qf yos EYVQN/A 2 (Bi(x)> € Qf /x EVV QN A [n+s8 (B;(’O) Wz’”Jra(Bi(X)ﬂ.Q/)u)

é é &

A1-A2 and Lemma 4.3 imply

N

(@] o\ T _\=c (6.34)
CM<B#(X)O.QI~/A> CcH (B 1 (x)m'zm/x)

2%, 2&

2€q

Remark 2.1 and (6.34) imply (6.33); holds for s < 22 .

The Hélder estimate of [T, ¥, , follows from (6.28)4, (6.31), (6.33);, (6.34), and Theorem 1.2 in page 70 [33]. The Hélder
estimate of ¥ , in AYm+j) C By/2(0) N 5; is from (6.30) and (6.34). O

Clearly, ife < 1and t € (0, 1], then € < €7.If we take . = € in (6.7) and (6.22), then we have, by the energy method,
partition of unity, and Lemmas 3.2, 6.3 and 6.6,

Forany t € (0, 1], § > O, there are i, €, € (0, 1) such that, for any € < €,, the solution of (3.4) satisfies (3.6).
By the energy method, partition of unity, and Lemmas 3.2, 4.2 and 4.3, we also see

Forany t € (0, 1], 8 > O, there are i, €, € (0, 1) such that, for any € € [€,, 1], the solution of (3.4) satisfies (3.6).
Combining above two results, we know that (3.6) of Lemma 3.3 holds.
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