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a b s t r a c t

Uniform bound for the solutions of non-uniform parabolic equations in highly heteroge-
neous media is concerned. The media considered are periodic and they consist of a con-
nected high permeability sub-region and a disconnected matrix block subset with low
permeability. Parabolic equations with diffusion depending on the permeability of theme-
dia have fast diffusion in the high permeability sub-region and slow diffusion in the low
permeability subset, and they form non-uniform parabolic equations. Each medium is as-
sociated with a positive number ϵ, denoting the size ratio of matrix blocks to the whole
domain of the medium. Let the permeability ratio of the matrix block subset to the con-
nected high permeability sub-region be of the order ϵ2τ for τ ∈ (0, 1]. It is proved that
the Hölder norm of the solutions of the above non-uniform parabolic equations in the con-
nected high permeability sub-region are bounded uniformly in ϵ. One example also shows
that the Hölder norm of the solutions in the disconnected subset may not be bounded uni-
formly in ϵ.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Uniform Hölder estimate for the solutions of non-uniform parabolic equations in highly heterogeneous media is
presented. The equations have many applications in multi-phase flows in porous media, the stress in composite materials,
and so on (see [1–4] and references therein). The mediaΩ ⊂ Rn (n ≥ 2) contain a connected high permeability sub-region
and a disconnected matrix block subset with low permeability. Let ∂Ω denote the boundary of Ω, ϵ ∈ (0, 1),Ω(2ϵ) ≡

{x ∈ Ω| dist(x, ∂Ω) > 2ϵ}, and Y ≡ (0, 1)n denote a cell consisting of a sub-domain Ym completely surrounded by
another connected sub-domain Yf (≡ Y \ Ym). The disconnected matrix block subset of Ω is Ωϵ

m ≡ {x| x ∈ ϵ(Ym + j) ⊂

Ω(2ϵ) for some j ∈ Zn
} with boundary ∂Ωϵ

m, and the connected sub-region is Ωϵ
f ≡ Ω \ Ω

ϵ

m. The non-uniform parabolic
equations (see [4]) in [0, T ] ×Ω are

∂tUϵ − ∇ · (Λϵτ∇Uϵ) = Fϵ in (0, T ] ×Ω,
Uϵ = 0 on (0, T ] × ∂Ω,
Uϵ = Uϵ,0 in {0} ×Ω,

(1.1)

where τ ∈ (0,∞),Λϵτ ≡


Kϵ inΩϵf
ϵ2τ kϵ inΩϵm

(depending on the permeability ofΩ), and bothKϵ, kϵ are positive smooth functions
inΩ .
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Since ϵ ∈ (0, 1), equations in (1.1) are non-uniform parabolic equations with discontinuous coefficients. In [5], existence
of solution inW 2,1

p ([0, T ]×Ω) space for uniform parabolic equationswith discontinuous coefficients can be found. For non-
uniform parabolic equations with smooth coefficients, existence of solution in C2,α([0, T ] ×Ω) space was studied in [6]. It
is also known that if Fϵ,Uϵ,0 are smooth, a piecewise regular solution of (1.1) exists uniquely for each ϵ and, by the energy
method, the H1 norm of the parabolic solution of (1.1) in the connected high permeability sub-region is bounded uniformly
in ϵ [2,7]. Hölder continuity of the parabolic solution of (1.1) in [0, T ] × Ω is proved for each ϵ [7], but the Hölder norm
of the solution may go to infinity as ϵ ↘ 0. In [4], convergence of solution of (1.1) in L∞([0, T ]; L2(Ω)) space as ϵ ↘ 0
was obtained. Many studies of the uniform estimate in ϵ for the solutions of the elliptic equations in heterogeneous media
had been done [2,3,8–11], but not the case for parabolic equations. The existence of piecewise regular solutions for elliptic
diffraction equations in Hilbert space was considered in [2,9]. The uniform Lipschitz estimate in ϵ for a Laplace equation in
perforated domainswas given in [11], and a uniform Lp estimate in ϵ of the same problemwas considered in [10]. A Lipschitz
estimate for uniform elliptic equations was studied in [3]. Uniform Hölder and Lipschitz estimates in ϵ for uniform elliptic
equations in periodic domains were obtained in [8].

This work is to present a uniform Hölder estimate in ϵ for the solutions of the non-uniform parabolic equations with
discontinuous coefficients. More precisely, the Hölder norm of the non-uniform parabolic solutions in the connected
high permeability sub-region is shown to be bounded uniformly in ϵ. However, the Hölder norm of the solutions in the
disconnected subset may not be bounded uniformly in ϵ. This is due to the non-zero source in the disconnected subset. In
Section 2, we present one example to show that. Certainly this is different from usual uniform parabolic equation cases, in
which solutions are regular in thewhole time–space domains. From the proof, we can see that the results are established for
complex-valued solutions. On the other hand, one also notes that a complex-valued solution of (1.1) with complex-valued
coefficientsmay be discontinuous or even unbounded [12]. A similar case could be found in elliptic equationswith complex-
valued coefficients (see [13]). It seems that the techniques used here could be used to studymore general systems of elliptic
type and parabolic type, and this will be pursued later. Some related uniform regularity results in the case of elliptic systems
can be seen in [14,15].

The rest of thework is organized as follows: Notation andmain results are stated in Section 2. Themain results are proved
in Section 3 based on semigroup theory and on uniform Hölder estimate in ϵ for non-uniform elliptic equations. To apply
semigroup theory, an infinitesimal generator of an analytic semigroup from elliptic equations is required. So aW 2,p estimate
for solutions of elliptic diffraction equations is derived in Section 4. Two convergence results for solutions of non-uniform
elliptic equations are shown in Section 5. By results in Section 5, a uniform Hölder estimate in ϵ for non-uniform elliptic
solutions is proved in Section 6.

2. Notation and main result

Let Ω be the closure of the domain Ω . Let Lp(Ω) (resp. Hk(Ω),W k,p(Ω)) denote a complex Sobolev space with norm
∥ · ∥Lp(Ω) (resp. ∥ · ∥Hk(Ω), ∥ · ∥W k,p(Ω)), W

1,p
0 (Ω) ≡ {ϕ ∈ W 1,p(Ω)|ϕ|∂Ω = 0},H1

0 (Ω) ≡ W 1,2
0 (Ω), C∞

0 (Ω) be the set
containing all infinite differentiable functions with compact support in Ω, C(Ω) consist of all continuous functions in Ω
with norm ∥·∥C(Ω), C

σ (Ω) (resp. C1,σ (Ω)) denote a Hölder space with norm ∥·∥Cσ (Ω) (resp. ∥·∥C1,σ (Ω)), and [ϕ]Cσ (Ω) (resp.
[ϕ]C1,σ (Ω)) denote the Hölder semi-norm of ϕ (resp. ∇ϕ) for k ≥ −1, p ∈ [1,∞], and σ ∈ (0, 1] [16,17]. If ϕ is a complex
function,ϕ denotes its complex conjugate. If B1 and B2 are two Banach spaces,L(B1, B2) is the set of all bounded linearmaps
from B1 to B2 with norm ∥ · ∥L(B1,B2). For any Banach space B, define ∥ϕ1, ϕ2, . . . , ϕm∥B ≡ ∥ϕ1∥B + ∥ϕ2∥B + · · · + ∥ϕm∥B,
denote its dual space by B′, and denote the pairing between B and its dual space B′ by ⟨·, ·⟩B,B′ . L∞(I; B) ≡ {ϕ : I →

B| supt∈I ∥ϕ(t)∥B < ∞}. The function spaces C(I; B), Cσ (I; B) for σ ∈ (0, 1] and an interval I ⊂ R are defined as those in
pages 1, 3 [18]. Br(x) represents a ball centered at xwith radius r . For any domainD,D is the closure ofD, ∂D is the boundary
of D,D/r ≡ {x| rx ∈ D}, |D| is the volume of D, and XD is the characteristic function on D. For any ϕ ∈ L1(Br(x) ∩Ω),

(ϕ)x,r ≡ −


Br (x)∩Ω

ϕ(y)dy ≡
1

|Br(x) ∩Ω|


Br (x)∩Ω

ϕ(y)dy.

For any p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1),
Aϵ
τϕ ≡ −∇ · (Λϵτ∇ϕ),

Bp(A
ϵ
τ ) ≡


ϕ ∈ W 1,p

0 (Ω)| ϕ ∈ W 2,p(Ωϵ
f ) ∩ W 2,p(Ωϵ

m),Kϵ∇ϕ · n⃗ϵ |∂Ωϵm = ϵ2τkϵ∇ϕ · n⃗ϵ |∂Ωϵm

,

where n⃗ϵ is a normal vector on ∂Ωϵ
m. It is not difficult to see that Bp(A

ϵ
τ ) with norm ∥ϕ∥Bp(A

ϵ
τ ) ≡ ∥Aϵ

τϕ∥Lp(Ω) is a normed
space. LetBp(Aϵ

τ ) denote the closure ofBp(A
ϵ
τ ) in Lp space (we shall seeBp(Aϵ

τ ) = Lp(Ω) from Lemma3.4). For anyλ, ν > 0,
we define

K̂λ,ν(x) ≡ Kλ(νx) and k̂λ,ν(x) ≡ kλ(νx). (2.1)

Let Ym ⊂ D ⊂ Y = Yf ∪ Ym satisfy

min{dist(Ym, ∂D), dist(D, ∂Y )} > 0. (2.2)
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We assume that there are ϵ, σ , e ∈ (0, 1), τ ∈ (0,∞), and δ, α, β > 0 such that

A1. Ω and Ym are C1,e domains,
A2. Kϵ, kϵ ∈ W 1,∞(Ω),Kϵ, kϵ ∈ (α, β), ∥K̂ϵ,ϵ∥W1,∞(Ω/ϵ) is bounded independent of ϵ, and there is a set {αϵ,j ∈ (α, β)|ϵ ∈

(0, 1), j ∈ Zn
} satisfying

∥K̂ϵ,ϵ − αϵ,j∥W1,∞((D\Ym+j)∩Ω/ϵ) + ∥k̂ϵ,ϵ − αϵ,j∥W1,∞((Ym+j)∩Ω/ϵ) ≤ cαϵ,j
where c is small and depends on Ym,

A3. Fϵ ∈ Cσ ([0, T ]; Ln+δ(Ω)), Aϵ
τUϵ,0 − Fϵ |t=0 ∈ Bn+δ(Aϵ

τ ), Uϵ,0 ∈ Bn+δ(A
ϵ
τ ).

The main results are:

Theorem 2.1. Under A1–A3, the solution of (1.1) satisfies

∥Uϵ∥C1([0,T ];Ln+δ(Ω)) + ∥Uϵ∥C([0,T ];Bn+δ(A
ϵ
τ )) ≤ c


∥Uϵ,0∥Bn+δ(A

ϵ
τ ) + ∥Fϵ∥Cσ ([0,T ];Ln+δ(Ω))


,

where c is a constant independent of ϵ, τ .

Theorem 2.2. Under A1–A3 and τ ∈ (0, 1], the solution of (1.1) satisfies

∥Uϵ∥C1([0,T ];Ln+δ(Ω)) + ∥Uϵ∥C([0,T ];Cµ(Ωϵf ))
+ sup

j∈Zn
ϵ(Ym+j)⊂Ωϵm

ϵτ∥Uϵ∥C([0,T ];Cµ(ϵ(Ym+j)))

≤ c

∥Uϵ,0∥Bn+δ(A

ϵ
τ ) + ∥Fϵ∥Cσ ([0,T ];Ln+δ(Ω))


, (2.3)

where c is a constant independent of ϵ. Here µ ∈ (0, δ
2(n+δ) ) is a constant depending on n, δ, σ , α, β, Yf ,Ω . Besides, there is a

ν ∈ (0, µ) such that

∥Uϵ∥Cν ([0,T ]×Ω
ϵ
f )

≤ c

∥Uϵ,0∥Bn+δ(A

ϵ
τ ) + ∥Fϵ∥Cσ ([0,T ];Ln+δ(Ω))


, (2.4)

where c is a constant independent of ϵ.

In (2.3), we do not prove that the Hölder norm of the solution of (1.1) in the disconnected subset is bounded uniformly in
ϵ. We now give one example to show that if the source Fϵ is not zero in the disconnected subset, it is really the case. Suppose
ϕ ∈ C∞

0 (R
n) has support in Ym. Define, for ϵ ∈ (0, 1),

ϕϵ(x) ≡


ϕ
 x
ϵ

− j


if x ∈ ϵ(Ym + j) ⊂ Ω(2ϵ) for some j ∈ Zn,

0 elsewhere,

Φϵ(t, x) ≡ e−tϕϵ(x) in Rn.

Then we see that Φϵ = 0 in [0, T ] × Ωϵ
f and Φϵ has support in [0, T ] × Ωϵ

m. If we set τ = Kϵ = kϵ = 1 in Λϵτ , then Φϵ
satisfies

∂tΦϵ − ∇ · (Λϵ1∇Φϵ) = fϵ in (0, T ] ×Ω,
Φϵ = 0 on (0, T ] × ∂Ω,
Φϵ(t = 0) = ϕϵ inΩ,

where

fϵ(x) ≡


−e−t


1ϕ

 x
ϵ

− j


+ ϕ
 x
ϵ

− j


if x ∈ ϵ(Ym + j) ⊂ Ω(2ϵ) for j ∈ Zn,

0 elsewhere.

Clearly, for any δ > 0 and ϵ, σ ∈ (0, 1), ∥ϕϵ∥Bn+δ(A
ϵ
τ ) + ∥fϵ∥Cσ ([0,T ];Ln+δ(Ω)) is bounded uniformly in ϵ. But the Hölder norm

of the functionsΦϵ in the disconnected subsetΩϵ
m is not be bounded uniformly in ϵ if the source function fϵ ≠ 0 inΩϵ

m.

Remark 2.1. We recall an extension result from [19].
For 1 ≤ p < ∞, there is a constant γ (Yf , p) and a linear continuous extension operator Πϵ : W 1,p(Ωϵ

f ) → W 1,p(Ω) such
that
(1) If ϕ ∈ W 1,p(Ωϵ

f ), then
Πϵϕ = ϕ inΩϵ

f almost everywhere,
∥Πϵϕ∥Lp(Ω) ≤ γ (Yf , p)∥ϕ∥Lp(Ωϵf )

,

∥∇Πϵϕ∥Lp(Ω) ≤ γ (Yf , p)∥∇ϕ∥Lp(Ωϵf )
,

∥Πϵϕ∥Cσ (Ω) ≤ γ (Yf , p)∥ϕ∥Cσ (Ωϵf )
if ϕ ∈ Cσ (Ωϵ

f ) for σ ∈ (0, 1),
Πϵϕ = ζ inΩ if ϕ = ζ |Ωϵf for some linear function ζ inΩ.

(2.5)
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(2) If ζ (x) ≡ ϕ(sx) in B1(x0) ∩Ωϵ
f /s for any x0 ∈ Ω/s and constant s > ϵ, thenΠϵ/sζ (x) = Πϵϕ(sx) in B1/2(x0) ∩Ω/s.

The Hölder estimate (2.5)4 and the statement (2) are not written in [19], but can be seen from its proof.

From [4], we know that the solution Uϵ of (1.1) with τ ∈ (0, 1) converges to a function U in L∞([0, T ]; L2(Ω)) as ϵ ↘ 0,
and the function U satisfies a heat equation. By Theorem 2.2 and Remark 2.1, ∥ΠϵUϵ |Ωϵf ∥Cν ([0,T ]×Ω) is bounded independent

of ϵ. It is not difficult to see that, for the solution Uϵ of (1.1) with τ ∈ (0, 1),ΠϵUϵ |Ωϵf also converges to U in Cν([0, T ] ×Ω)

norm for some ν ∈ (0, 1) as ϵ ↘ 0.

3. Proofs of Theorems 2.1 and 2.2

Proofs of Theorems 2.1 and 2.2 are based on a sequence of lemmas. First we consider an interpolation result.

Lemma 3.1. If ϕ ∈ Lq(Ω) ∩ Cµ(Ω) for any q ∈ (1,∞) and µ ∈ (0, 1), then

∥ϕ∥Cν (Ω) ≤ c∥ϕ∥
1−θ
Lq(Ω)∥ϕ∥

θ

Cµ(Ω),

where ν ∈ (0, µ), θ ∈ (0, 1), and c is a constant depending on ν, n, q, µ, θ,Ω .

Proof. By Proposition 1.1.3 [18], ϕ satisfies

∥ϕ∥Cν (Ω) ≤ c∥ϕ∥
1−θ1
C(Ω)

∥ϕ∥
θ1
Cµ(Ω)

, (3.1)

where ν ∈ (0, µ), θ1 ∈ (0, 1), and c is a constant depending on ν, µ, θ1. Fix x ∈ Ω and δ > 0 to see

|ϕ(x)| ≤

ϕ(x)− −


Bδ(x)∩Ω

ϕ(y)dy
+ −

Bδ(x)∩Ω
ϕ(y)dy


≤ [ϕ]Cµ(Ω)−


Bδ(x)∩Ω

|x − y|µdy +

−
Bδ(x)∩Ω

|ϕ(y)|qdy
1/q

≤ c1δµ[ϕ]Cµ(Ω) + c2δ−n/q
∥ϕ∥Lq(Ω), (3.2)

where constants c1, c2 depend on domainΩ only. Taking the minimum of the right hand side of (3.2) on δ, we obtain

|ϕ(x)| ≤ c(n, q, µ,Ω)∥ϕ∥
1−θ2
Lq(Ω)[ϕ]

θ2
Cµ(Ω)

, (3.3)

where θ2 ∈ (0, 1) and c depend on n, q, µ,Ω . (3.1) and (3.3) imply the lemma. �

From the proof of Lemma 3.1, we also have

Lemma 3.2. If ϕ ∈ Lq(Ωϵ
f ) ∩ Cµ(Ωϵ

f ) for any q ∈ (1,∞) and µ ∈ (0, 1), then

∥ϕ∥L∞(Ωϵf )
≤ c∥ϕ∥

1−θ
Lq(Ωϵf )

[ϕ]
θ

Cµ(Ωϵf )
,

where θ ∈ (0, 1) and c is a constant depending on n, q, µ, Ym but independent of ϵ.

Consider the following elliptic problem:
−∇ · (Λϵτ∇ϕϵ) = fϵ inΩ,
ϕϵ = 0 on ∂Ω. (3.4)

We have the following uniform a-priori estimates:

Lemma 3.3. If A1–A2 hold, then

(1) The solution of (3.4) satisfies, for p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1),

∥ϕϵ∥W1,p(Ω) + ∥ϕϵ∥W2,p(Ωϵf )
+ ∥ϕϵ∥W2,p(Ωϵm)

≤ cϵ,p∥fϵ∥Lp(Ω), (3.5)

where cϵ,p is a constant independent of ϕϵ, fϵ but depending on ϵ, p, τ .
(2) The solution of (3.4) satisfies, for any δ > 0, τ ∈ (0, 1], and ϵ ∈ (0, 1),

∥ϕϵ∥Cµ(Ωϵf )
+ sup

j∈Zn
ϵ(Ym+j)⊂Ωϵm

ϵτ∥ϕϵ∥Cµ(ϵ(Ym+j)) ≤ c∥fϵ∥Ln+δ(Ω), (3.6)

where c is a constant independent of ϵ. Here µ ∈ (0, δ
2(n+δ) ) is a constant depending on n, δ, α, β, Yf ,Ω (see A2).

The proof of (3.5) is given in Section 4 and the proof of (3.6) is in Section 6.
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Lemma 3.4. For any p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1), the set Bp(A
ϵ
τ ) is dense in Lp(Ω) and Bp(A

ϵ
τ ) with norm

∥ϕ∥Bp(A
ϵ
τ ) ≡ ∥Aϵ

τϕ∥Lp(Ω) is a Banach space.

Proof. Define Oϵ ≡ {x ∈ Ω| dist(x, ∂Ωϵ
f ) ≥ ϵ2} and let XOϵ be the characteristic function on Oϵ . Then XOϵ converges

to 1 in measure (see page 91 [20]) on domain Ω as ϵ ↘ 0. For any ϕ ∈ Lp(Ω), we have ϕXOϵ ∈ Lp(Ω) and ϕXOϵ = 0
in a neighborhood of ∂Ωϵ

f . By the Lebesque dominant theorem and Proposition in page 92 [20], there is a subsequence
of ϕXOϵ (same notation for subsequence) converging to ϕ in Lp(Ω) as ϵ ↘ 0. So for any δ > 0, there is a ϵ0 such that
∥ϕ − ϕXOϵ∥Lp(Ω) ≤ δ/2 as ϵ < ϵ0. From pages 147–148 [17], there is a mollifier ηδ such that the convolution of ηδ and
ϕXOϵ (i.e., (ϕXOϵ ) ∗ ηδ) for some ϵ < ϵ0 satisfies ∥ϕXOϵ − (ϕXOϵ ) ∗ ηδ∥Lp(Ω) ≤ δ/2 and (ϕXOϵ ) ∗ ηδ = 0 in some
neighborhood of ∂Ωϵ

f . Clearly, (ϕXOϵ ) ∗ ηδ ∈ Bp(A
ϵ
τ ) and ∥ϕ − (ϕXOϵ ) ∗ ηδ∥Lp(Ω) ≤ δ. So Bp(A

ϵ
τ ) is dense in Lp(Ω). By

(3.5) in Lemma 3.3, we see that Bp(A
ϵ
τ )with norm ∥ · ∥Bp(A

ϵ
τ ) is a Banach space. �

Lemma 3.5. For any p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1), the adjoint operator of Aϵ
τ : Bp(A

ϵ
τ ) ⊂ Lp(Ω) → Lp(Ω) is

Aϵ
τ : Bq(A

ϵ
τ ) ⊂ Lq(Ω) → Lq(Ω), where 1

p +
1
q = 1.

Proof. Fix a p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1), denote the adjoint of Aϵ
τ : Bp(A

ϵ
τ ) ⊂ Lp(Ω) → Lp(Ω) by Aτ ′

ϵ , and
assume 1

p +
1
q = 1. Integration by parts yields

⟨Aϵ
τ ζ , η⟩Lp(Ω),Lq(Ω) = ⟨ζ ,Aϵ

τη⟩Lp(Ω),Lq(Ω) (3.7)

for every ζ ∈ Bp(A
ϵ
τ ) and η ∈ Bq(A

ϵ
τ ). See Section 2 for ⟨·, ·⟩Lp(Ω),Lq(Ω). Therefore Bq(A

ϵ
τ ) ⊂ dom(Aτ ′

ϵ ) (that is, the domain
of Aτ ′

ϵ ) and Aϵ
τη = Aτ ′

ϵ η for η ∈ Bq(A
ϵ
τ ).

Let η ∈ dom(Aτ ′

ϵ ) ⊂ Lq(Ω) and ϕ = Aτ ′

ϵ (η). Then, by the definition of the adjoint operator, we have

⟨Aϵ
τ ζ , η⟩Lp(Ω),Lq(Ω) = ⟨ζ , ϕ⟩Lp(Ω),Lq(Ω) for all ζ ∈ Bp(A

ϵ
τ ). (3.8)

Since Bq(A
ϵ
τ ) is dense in Lq(Ω) by Lemma 3.4, there is a sequence ηs ∈ Bq(A

ϵ
τ ) such that ηs → η in Lq(Ω) as s → ∞. By

(3.7) and (3.8),

lim
s→∞

⟨ζ ,Aϵ
τηs⟩Lp(Ω),Lq(Ω) = lim

s→∞
⟨Aϵ

τ ζ , ηs⟩Lp(Ω),Lq(Ω)

= ⟨Aϵ
τ ζ , η⟩Lp(Ω),Lq(Ω) = ⟨ζ , ϕ⟩Lp(Ω),Lq(Ω).

Since Bp(A
ϵ
τ ) is dense in Lp(Ω) by Lemma 3.4, Aϵ

τηs converges to ϕ weakly in Lq(Ω) as s → ∞. By (3.5) in Lemma 3.3, we
see η ∈ Bq(A

ϵ
τ ). So ϕ = Aϵ

τ (η). Therefore, dom(A
τ ′

ϵ ) ⊂ Bq(A
ϵ
τ ) and Aϵ

τ = Aτ ′

ϵ . �

Next we want to show −Aϵ
τ is an infinitesimal generator of an analytic semigroup. If so, by semigroup group theory, we

can obtain the existence of the solutions of some time-dependent problems. For this purpose, we shall work on complex-
valued functions in the next lemma.

Lemma 3.6. For any p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1), the operator −Aϵ
τ is an infinitesimal generator of an analytic

semigroup of contractions on Lp(Ω) and

∥(λ+ Aϵ
τ )

−1
∥L(Lp(Ω),Lp(Ω)) ≤

1
λ

for any λ > 0. (3.9)

Moreover, there is a θ ∈ (0, π/2) independent of ϵ, τ such that

(1) The resolvent set ρ(−Aϵ
τ ) of −Aϵ

τ (see page 8 [21]) satisfies

ρ(−Aϵ
τ ) ⊃ ℜ(θ) ≡ {z ∈ C| | arg(z)| < π − θ},

where arg(z) denotes the argument of the complex number z.
(2) ∥(λ+ Aϵ

τ )
−1

∥L(Lp(Ω),Lp(Ω)) ≤
1

cθ |λ|
for any λ ∈ ℜ(θ), where cθ is a constant independent of ϵ, τ .

Proof. We assume p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1). The proof of this lemma includes three steps.
Step 1. Claim λ + Aϵ

τ : Bp(A
ϵ
τ ) ⊂ Lp(Ω) → Lp(Ω) is injective for any λ > 0. Let q =

p
p−1 . If ϕ ∈ Bp(A

ϵ
τ ), we define

ϕ∗ ≡ |ϕ|
p−2ϕ ∈ Lq(Ω) (ϕ is the complex conjugate of ϕ). Then ⟨ϕ, ϕ∗⟩Lp(Ω),Lq(Ω) = ∥ϕ∥

p
Lp(Ω). Integration by parts yields

⟨Aϵ
τϕ, ϕ∗⟩Lp(Ω),Lq(Ω) = −


Ω

∇ · (Λϵτ∇ϕ)|ϕ|
p−2ϕdx =


Ω

Λϵτ∇ϕ∇(|ϕ|
p−2ϕ)dx

=


Ω

Λϵτ

|ϕ|

p−2
∇ϕ∇ϕ + ϕ∇ϕ∇|ϕ|

p−2dx.
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Note ∇|ϕ|
p−2

=
p−2
2 |ϕ|

p−4(ϕ∇ϕ + ϕ∇ϕ). Denote |ϕ|
(p−4)/2ϕ∇ϕ ≡ ℓ+ iω. We find

⟨Aϵ
τϕ, ϕ∗⟩Lp(Ω),Lq(Ω) =


Ω

Λϵτ

(p − 1)|ℓ|2 + |ω|

2
+ i(p − 2)ℓ · ω


dx,

where |ℓ| (resp. |ω|) is the length of the vector ℓ (resp. ω). So the real part of ⟨Aϵ
τϕ, ϕ∗⟩Lp(Ω),Lq(Ω) satisfies, by A2,

Re⟨Aϵ
τϕ, ϕ∗⟩Lp(Ω),Lq(Ω) ≥ cp,α



Ωϵf

|ℓ|2 + |ω|
2dx + ϵ2τ


Ωϵm

|ℓ|2 + |ω|
2dx

 ≥ 0, (3.10)

where cp,α is a constant depending on p, α. The ratio of the imaginary part to the real part of ⟨Aϵ
τϕ, ϕ∗⟩Lp(Ω),Lq(Ω) then

satisfies, by A2,

|Im⟨Aϵ
τϕ, ϕ∗⟩Lp(Ω),Lq(Ω)|

|Re⟨Aϵ
τϕ, ϕ∗⟩Lp(Ω),Lq(Ω)|

≤

|p − 2|β


Ωϵf
|ℓ|2 + |ω|

2dx + ϵ2τ

Ωϵm

|ℓ|2 + |ω|
2dx


2cp,α


Ωϵf
|ℓ|2 + |ω|2dx + ϵ2τ


Ωϵm

|ℓ|2 + |ω|2dx


=
|p − 2|β
2cp,α

. (3.11)

From (3.10) it follows that, for any λ > 0 and ϕ ∈ Bp(A
ϵ
τ ),

λ∥ϕ∥Lp(Ω) ≤ ∥(λ+ Aϵ
τ )ϕ∥Lp(Ω). (3.12)

By (3.12), λ+ Aϵ
τ : Bp(A

ϵ
τ ) ⊂ Lp(Ω) → Lp(Ω) is injective. So we prove the claim.

Step 2. Claim λ + Aϵ
τ : Bp(A

ϵ
τ ) ⊂ Lp(Ω) → Lp(Ω) is bijective for any λ > 0. If η ∈ Lq(Ω) for q =

p
p−1 satisfies

⟨(λ + Aϵ
τ )ϕ, η⟩Lp(Ω),Lq(Ω) = 0 for all ϕ ∈ Bp(A

ϵ
τ ), then η is in the domain of the adjoint operator λ + Aτ ′

ϵ (here Aτ ′

ϵ is
the adjoint operator of Aϵ

τ ) of λ+ Aϵ
τ . By Lemma 3.5, ⟨ϕ, (λ+ Aϵ

τ )η⟩Lp(Ω),Lq(Ω) = 0 and η ∈ Bq(A
ϵ
τ ). Since Bp(A

ϵ
τ ) is dense

on Lp(Ω) by Lemma 3.4, (λ+ Aϵ
τ )η = 0. Then (3.12), with p replaced by q, implies η = 0. So the range of λ+ Aϵ

τ is dense
in Lp(Ω). By (3.5), Aϵ

τ : Bp(A
ϵ
τ ) ⊂ Lp(Ω) → Lp(Ω) is a closed linear operator. It is not difficult to see that λ+ Aϵ

τ is also a
closed linear operator. Thus, the range of λ + Aϵ

τ is a closed set in Lp(Ω). Since the range of λ + Aϵ
τ is dense and closed in

Lp(Ω), the range of λ+ Aϵ
τ is L

p(Ω). So we prove the claim. Moreover, by (3.12),

∥(λ+ Aϵ
τ )

−1
∥L(Lp(Ω),Lp(Ω)) ≤

1
λ

for any λ > 0.

So we prove (3.9).

Step 3. Claim−Aϵ
τ is an infinitesimal generator of an analytic semigroup on Lp(Ω). By Step 2, (3.5) in Lemmas 3.3 and 3.4, the

Hille–Yosida Theorem [21] implies that −Aϵ
τ is an infinitesimal generator of a C0-semigroup of contractions on Lp(Ω). To

prove that the semigroup generated by−Aϵ
τ is analytic, we observe that, by (3.10) and (3.11), the numerical rangeN (−Aϵ

τ )
of −Aϵ

τ (see page 12 [21] and Remark 3.2 in page 25 [22]) is contained in the set

Nθ1 ≡ {z ∈ C| | arg(z)| > π − θ1},

where θ1 = tan−1(
|p−2|β
2cp,α

) ∈ (0, π/2). Choosing θ1 < θ < π/2 and denoting

ℜ(θ) ≡ {z ∈ C| | arg(z)| < π − θ},

there is a constant cθ > 0 independent of ϵ, τ such that the distance from z ∈ ℜ(θ) to N (−Aϵ
τ ) (i.e., dist(z,N (−Aϵ

τ )))
satisfies

dist(z,N (−Aϵ
τ )) ≥ cθ |z|.

Since λ > 0 is in the resolvent set ρ(−Aϵ
τ ) of −Aϵ

τ by Step 2, Theorem 3.9 in page 12 [21] then implies ℜ(θ) ⊂ ρ(−Aϵ
τ )

and

∥(λ+ Aϵ
τ )

−1
∥L(Lp(Ω),Lp(Ω)) ≤

1
cθ |λ|

for λ ∈ ℜ(θ).

By (3.5) of Lemma 3.3 and the energy method, 0 ∈ ρ(−Aϵ
τ ). By Theorem 5.2(c) in page 61 [21], −Aϵ

τ is an infinitesimal
generator of an analytic semigroup on Lp(Ω). �

Proof of Theorem 2.1. Tracing the proofs of Proposition 2.1.1, Eq. (4.0.3), and Theorem 4.3.1 [18], and employing
Lemma 3.6, we know
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Let δ, τ > 0, σ ∈ (0, 1), Fϵ ∈ Cσ ([0, T ]; Ln+δ(Ω)),Uϵ,0 ∈ Bn+δ(A
ϵ
τ ), and Aϵ

τUϵ,0 − Fϵ(t = 0) ∈ Bn+δ(Aϵ
τ ). A strict

solution Uϵ of (1.1) exists and there is a constant c independent of ϵ, τ such that

∥Uϵ∥C1([0,T ];Ln+δ(Ω)) + ∥Uϵ∥C([0,T ];Bn+δ(A
ϵ
τ )) ≤ c


∥Uϵ,0∥Bn+δ(A

ϵ
τ ) + ∥Fϵ∥Cσ ([0,T ];Ln+δ(Ω))


. (3.13)

So we prove Theorem 2.1. �

Proof of Theorem 2.2. By (1.1) and for each fixed t ∈ (0, T ],
−∇ · (Λϵτ∇Uϵ(t, ·)) = Fϵ(t, ·)− ∂tUϵ(t, ·) inΩ,
Uϵ(t, ·) = 0 on ∂Ω.

(3.6) in Lemma 3.3 and Theorem 2.1 then imply (2.3). By Remark 2.1, we can extend the function Uϵ |Ωϵf (t, ·) to Ω . The
extended functionΠϵUϵ satisfies, by (2.3), (3.13), and Remark 2.1,

∥ΠϵUϵ∥C1([0,T ];Ln+δ(Ω)) + ∥ΠϵUϵ∥C([0,T ];Cµ(Ω)) ≤ c

∥Uϵ,0∥Bn+δ(A

ϵ
τ ) + ∥Fϵ∥Cσ ([0,T ];Ln+δ(Ω))


, (3.14)

where µ ∈ (0, 1) and c is independent of ϵ. (2.4) follows from Proposition 1.1.4 [18], (3.14), and Lemma 3.1. So we prove
Theorem 2.2. �

4. Proof of (3.5) of Lemma 3.3

Let Γ (x−y) denote the fundamental solution of the Laplace’s equation (see Section 6.2 [23]). Define the single-layer and
the double-layer potentials as, for any smooth function ϕ on the boundary ∂D of a bounded C1,e domain D,

E∂D(ϕ)(x) ≡


∂D
Γ (x − y)ϕ(y)dσy

T∂D(ϕ)(x) ≡


∂D

∇yΓ (x − y) · n⃗y ϕ(y)dσy

T ∗

∂D(ϕ)(x) ≡


∂D

∇xΓ (x − y) · n⃗x ϕ(y)dσy

for x ∈ ∂D,

where e ∈ (0, 1) and n⃗y (resp. n⃗x) is the unit vector outward normal to ∂D at point y ∈ ∂D (resp. x ∈ ∂D).

Lemma 4.1. For any p ∈ (1,∞), the linear operators
E∂D : W 1− 1

p ,p(∂D) → W 2− 1
p ,p(∂D)

T∂D : W 1− 1
p ,p(∂D) → W 2− 1

p ,p(∂D)
(4.1)

are bounded. The operator I − λT∂D is continuously invertible in W 2− 1
p ,p(∂D) for any p ∈ (1,∞) and λ ∈ [−2, 2], where I is

the identity operator. Furthermore, there is a constant c independent of λ ∈ [−2, 2] so that

∥ϕ∥
W2− 1

p ,p(∂D)
≤ c∥(I − λT∂D)(ϕ)∥

W2− 1
p ,p(∂D)

for ϕ ∈ W 2− 1
p ,p(∂D). (4.2)

Proof. Denote by OPS−1
1,0 the pseudo-differential operator of order −1 (see page 38 [24]). Tracing the proof of Theorem 2.5

Chapter XI [24], we see that if G ∈ OPS−1
1,0(∂D), then G is a bounded linear operator from W 1− 1

p ,p(∂D) to W 2− 1
p ,p(∂D).

Since E∂D, T∂D ∈ OPS−1
1,0(∂D) (see pages 87–93 [23]), we know that E∂D, T∂D are bounded operators from W 1− 1

p ,p(∂D) to

W 2− 1
p ,p(∂D).

Since D is a C1,e domain, both T∂D, T
∗

∂D are compact operators in Lp(∂D) for p ∈ (1,∞) (see Corollary 2.2.14 [25]). For
any λ ∈ R, the dimensions of the kernels of I −λT∂D and I −λT ∗

∂D are same by Theorem 4.12 [26]. From Theorem 2.2.21 [25]
and Section 3.4 [27], there is a p0 ∈ (2,∞) such that I − λT ∗

∂D is continuously invertible in Lp(∂D) for any p ∈ (1, p0) and
λ ∈ [−2, 2]. Since Lp(∂D) ⊂ L2(∂D) for p ∈ [2,∞), I − λT ∗

∂D is injective for any p ∈ [2,∞) and λ ∈ [−2, 2]. By Theorem
4.12 [26], I − λT ∗

∂D is continuously invertible for any p ∈ [2,∞) and λ ∈ [−2, 2]. Again by Theorem 4.12 [26], we see that
I−λT∂D is also continuously invertible in Lp(∂D) for p ∈ (1,∞) andλ ∈ [−2, 2]. By (4.1) and inversemapping theorem [28],
I − λT∂D is continuously invertible inW 2− 1

p ,p(∂D) for p ∈ (1,∞) and λ ∈ [−2, 2].
(4.2) is proved as follows. From above, we know that T∂D is a bounded linear operator in W 2− 1

p ,p(∂D) and I − λT∂D

is continuously invertible in W 2− 1
p ,p(∂D) for any λ ∈ [−2, 2] and p ∈ (1,∞). So for each λ ∈ [−2, 2], there is a set



3730 L.-M. Yeh / Nonlinear Analysis 75 (2012) 3723–3745

{cλ, dλ, Bdλ(λ)} (depending on λ) satisfying

cλ, dλ > 0,
∥(I − λT∂D)(ϕ)∥

W2− 1
p ,p(∂D)

≥ cλ∥ϕ∥
W2− 1

p ,p(∂D)
,

∥(I − sT∂D)(ϕ)∥
W2− 1

p ,p(∂D)
≥ ∥(I − λT∂D)(ϕ)∥

W2− 1
p ,p(∂D)

− |s − λ| ∥T∂D(ϕ)∥
W2− 1

p ,p(∂D)

≥
cλ
2

∥ϕ∥
W2− 1

p ,p(∂D)
if s ∈ Bdλ(λ) ⊂ R.

Now we consider the open covering {Bdλ(λ)}λ∈[−2,2] of [−2, 2]. Since [−2, 2] is a compact set, we can find a finite set
Z ⊂ [−2, 2] so that {Bdλ(λ)}λ∈Z is also a covering of [−2, 2]. Based on the finite sets {cλ, dλ, Bdλ(λ)}λ∈Z, we define

c∗
= min

{cλ,dλ,Bdλ (λ)}λ∈Z

cλ
2
.

That is, c∗ is the minimum value of cλ
2 for λ in the finite set Z. If the c in (4.2) is taken to be c = 1/c∗, we obtain (4.2). �

Now we consider the following problem
−∇ · (K∇Ψϵ) = Gϵ in Yf ,

−ϵ2τ∇ · (k∇ψϵ) = ϵτ gϵ in Ym,

K∇Ψϵ · n⃗y = ϵ2τk∇ψϵ · n⃗y on ∂Ym,
Ψϵ = ψϵ on ∂Ym,

(4.3)

where τ ∈ (0,∞), ϵ ∈ (0, 1), and n⃗y is the unit vector outward normal to ∂Ym. By D in (2.2), we define

D1 ≡


x ∈ Yf | dist(x, ∂Yf ) >

1
4
min{dist(Ym, ∂D), dist(D, ∂Y )}


.

Then ∂D ⊂ D1.

Lemma 4.2. Suppose
(1) K, k in Y satisfy ∥K − d∥W1,∞(Yf ) + ∥k − d∥W1,∞(Ym) ≤ c0d where d > 0 is a constant and c0 < 1

2 is a small number
depending on Ym,

(2) τ > 0,ϖ ≡ min{2, p} for p ∈ (1,∞), ∥Ψϵ∥Lϖ (Yf ) + ∥Gϵ∥Lp(Yf ) + ∥gϵ∥Lp(Ym) is bounded independently of ϵ,
then any solution of (4.3) satisfies

∥Ψϵ∥W2,p(D\Ym)
+ ϵτ∥ψϵ∥W2,p(Ym) ≤ c, (4.4)

where c is a constant independent of ϵ, τ .

Proof. Denote by c a constant independent of ϵ, τ , d. Consider (4.3)1 in Yf . Theorem 8.8 and Theorem 9.11 [17] implies

d∥Ψϵ∥W2,p(D1)
≤ c. (4.5)

Let ψϵ be a solution of
−∇ · (ϵ2τd∇ψϵ + ϵ2τ (k − d)∇ψϵ) = ϵτ gϵ in Ym,ψϵ |∂Ym = 0,

(4.6)

and Ψϵ a solution of−∇ · (d∇Ψϵ + (K − d)∇Ψϵ) = Gϵ in D \ Ym,Ψϵ |∂Ym = 0,Ψϵ − Ψϵ |∂D = 0.
(4.7)

Then, by (4.5) and Theorem 9.15 of [17],
d∥ψϵ∥W2,p(Ym) ≤ c


ϵ−τ

+ ∥(k − d)∇ψϵ∥W1,p(Ym)

,

d∥Ψϵ∥W2,p(D\Ym)
≤ c


1 + ∥(K − d)∇Ψϵ∥W1,p(D\Ym)


.

(4.8)

Define ψ̆ϵ ≡ ψϵ − ψϵ in Ym and Ψ̆ϵ ≡ Ψϵ − Ψϵ in D \ Ym. (4.3) and (4.6)–(4.7) imply
−ϵ2τ1ψ̆ϵ = 0 in Ym,

−1Ψ̆ϵ = 0 in D \ Ym,

Ψ̆ϵ |∂Ym = ψ̆ϵ |∂Ym ,

∇Ψ̆ϵ · n⃗y|∂Ym − ϵ2τ∇ψ̆ϵ · n⃗y|∂Ym = Fϵ · n⃗y/d,
Ψ̆ϵ |∂D = 0,

(4.9)
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where Fϵ = (d− K)∇Ψϵ − ϵ2τ (d− k)∇ψϵ − d∇Ψϵ + ϵ2τd∇ψϵ . By (4.5), (4.8), and trace theorems in pages 240–241 [16],

∥Fϵ∥W1−1/p,p(∂Ym) ≤ c

1 + ϵ2τ∥(k − d)∇ψϵ∥W1,p(Ym) + ∥(K − d)∇Ψϵ∥W1,p(D\Ym)


. (4.10)

By Green’s formula, (4.9), and Theorem 6.5.1 [23], we see that
ψ̆ϵ/2 + T∂Ym(ψ̆ϵ) = E∂Ym(∂nyψ̆ϵ)

Ψ̆ϵ/2 − T∂Ym(Ψ̆ϵ) = −E∂Ym(∂ny Ψ̆ϵ)+ E∂D(∂ny Ψ̆ϵ |∂D)
on ∂Ym,

where ∂ny Ψ̆ϵ |∂D is the normal derivative of Ψ̆ϵ on ∂D. Therefore, by (4.9)4,

ϵ2τ + 1
2(1 − ϵ2τ )

ψ̆ϵ − T∂Ym(ψ̆ϵ) =
E∂D(∂ny Ψ̆ϵ |∂D)

1 − ϵ2τ
−

E∂Ym(Fϵ · n⃗y)

(1 − ϵ2τ )d
on ∂Ym. (4.11)

By (4.5), (4.8), and trace theorems in pages 240–241 [16],

d∥∂ny Ψ̆ϵ∥W1−1/p,p(∂D) ≤ c

1 + ∥(K − d)∇Ψϵ∥W1,p(D\Ym)


. (4.12)

By (4.11) and Lemma 4.1, we have

∥ψ̆ϵ∥
W2− 1

p ,p(∂Ym)
≤ c


d−1

∥Fϵ∥
W1− 1

p ,p(∂Ym)
+ ∥∂ny Ψ̆ϵ∥

W1− 1
p ,p(∂D)


. (4.13)

Eqs. (4.3)4, (4.8), (4.10), (4.12) and (4.13) imply

d∥Ψϵ∥W2,p(D\Ym)
+ ϵτd∥ψϵ∥W2,p(Ym) ≤ c


1 + ϵτ∥(k − d)∇ψϵ∥W1,p(Ym) + ∥(K − d)∇Ψϵ∥W1,p(D\Ym)


.

By assumption on K and k, we obtain (4.4). �

Denote a portion of the boundary of Y by ∂1Y ≡ {y ∈ ∂Y |y = (0, y2, . . . , yn)}, and consider the following problem
−∇ · (K∇Ψϵ) = Gϵ in Yf ,

−ϵ2τ∇ · (k∇ψϵ) = ϵτ gϵ in Ym,

K∇Ψϵ · n⃗y = ϵ2τk∇ψϵ · n⃗y on ∂Ym,
Ψϵ = ψϵ on ∂Ym,
Ψϵ = Ψbϵ on ∂1Y ,

(4.14)

where τ ∈ (0,∞) and n⃗y is the unit vector outward normal to ∂Ym. Let Ym ⊂D ⊂ Y satisfy

min{dist(Ym, ∂D), dist(D, ∂Y \ ∂1Y )} > 0 and ∂D ∩ ∂1Y ≠ ∅.

By an analogous argument as Lemma 4.2, we also have

Lemma 4.3. Let τ ∈ (0,∞) and ∥K − d∥W1,∞(Yf ) + ∥k − d∥W1,∞(Ym) ≤ c0d where d > 0 and c0 < 1
2 is a small number

depending on Ym. Any solution of (4.14) satisfies

∥Ψϵ∥W2,p(D\Ym)
+ ϵτ∥ψϵ∥W2,p(Ym) ≤ c


∥Ψϵ∥Lϖ (Yf ) + ∥Gϵ∥Lp(Yf ) + ∥gϵ∥Lp(Ym) + ∥Ψbϵ∥W2,p(Yf )


,

where p ∈ (1,∞),ϖ ≡ min{2, p}, and c is a constant independent of ϵ, τ .

Now we give the proof of (3.5) of Lemma 3.3. By partition of unity, A2, Theorem 8.8 and Theorem 9.11 [17], Lemmas 4.2
and 4.3, we see that the solution of (3.4) satisfies, for fixed p ∈ (1,∞), τ ∈ (0,∞), and ϵ ∈ (0, 1),

∥ϕϵ∥W1,p(Ω) + ∥ϕϵ∥W2,p(Ωϵf )
+ ∥ϕϵ∥W2,p(Ωϵm)

≤ c

∥fϵ∥Lp(Ω) + ∥ϕϵ∥Lϖ (Ωϵf )


, (4.15)

whereϖ ≡ min{2, p} and c is a constant.
Now we consider the case p ∈ [2,∞). The solution of (3.4) satisfies, by the energy method,

∥ϕϵ∥H1(Ω) ≤ c∥fϵ∥L2(Ω),

where c is a constant. Together with (4.15), we see that (3.5) of Lemma 3.3 holds for p ∈ [2,∞).
For any function ζ ∈ Lr(Ω)with r ∈ [2,∞), we obtain ηϵ by solving

−∇ · (Λϵτ∇ηϵ) = ζ inΩ,
ηϵ = 0 on ∂Ω. (4.16)

We have proved that if r ∈ [2,∞), the solution of (4.16) satisfies

∥ηϵ∥W1,r (Ω) + ∥ηϵ∥W2,r (Ωϵf )
+ ∥ηϵ∥W2,r (Ωϵm)

≤ c∥ζ∥Lr (Ω), (4.17)
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where c is a constant. Multiply (3.4) by ηϵ and use Green’s theorem, (4.17), and the Hölder inequality to obtain
Ω

ϕϵζdx = −


Ω

ϕϵ∇ · (Λϵτ∇ηϵ)dx =


Ω

fϵηϵdx ≤ c∥fϵ∥Lp(Ω)∥ζ∥Lr (Ω),

for p ∈ (1, 2] and 1/p + 1/r = 1. So

∥ϕϵ∥Lp(Ω) ≤ c∥fϵ∥Lp(Ω) for p ∈ (1, 2]. (4.18)

(4.15) and (4.18) imply that the solution of (3.4) satisfies (3.5) for p ∈ (1, 2] case. Therefore (3.5) of Lemma 3.3 holds for
p ∈ (1,∞) case.

5. Two convergence results

Before the proof of (3.6) of Lemma3.3,wepresent two convergence results: Lemmas 5.3 and 5.5. The two lemmas allowus
to derive the estimate (3.6) under general permeability fieldsKϵXΩϵf

+ϵ2τkϵXΩϵm . Lemma 5.3 is used in the interior estimate
in Section 6.1 and Lemma 5.5 is used in the boundary estimate in Section 6.2. Define Vϵ ≡ {ϕ ∈ H1(Ωϵ

f )|ϕ|∂Ω = 0} and
denote V ′

ϵ the dual space of Vϵ . By Remark 2.1, Πϵ : Vϵ → H1
0 (Ω) is a linear continuous extension operator. We denote

Π ′
ϵ : H−1(Ω) → V ′

ϵ the adjoint ofΠϵ and it is a linear continuous map satisfying

⟨Π ′

ϵϕ, ζ ⟩V′
ϵ ,Vϵ

= ⟨ϕ,Πϵζ ⟩H−1(Ω),H1
0 (Ω)

for ϕ ∈ H−1(Ω), ζ ∈ Vϵ .

For any ϕ inΩσ
f for σ ∈ (0, 1), we define a 0-extension function Qσ (ϕ) : Rn

→ R by

Qσ (ϕ)(x) ≡


ϕ(x) if x ∈ Ωσ

f ,

0 if x ∈ Rn
\Ωσ

f .

Lemma 5.1. Assume B1(0) ⊂ Ω, τ ∈ (0,∞), and ϵ, ν < 1. Consider the following problem
−∇ · (K̆ν∇Ψϵ,ν) = Gϵ,ν in B1(0) ∩Ων

f ,

−ϵ2τ∇ · (k̆ν∇ψϵ,ν) = ϵτ gϵ,ν in B1(0) ∩Ων
m,

K̆ν∇Ψϵ,ν · n⃗ν = ϵ2τ k̆ϵ∇ψϵ,ν · n⃗ν on B1(0) ∩ ∂Ων
m,

Ψϵ,ν = ψϵ,ν on B1(0) ∩ ∂Ων
m,

(5.1)

where n⃗ν is a unit vector normal to ∂Ων
m. If

K̆ν, k̆ν ∈ (α, β) and α, β > 0,
∥Ψϵ,ν∥L2(B1(0)∩Ωνf )

, ∥ϵτψϵ,ν∥L2(B1(0)∩Ωνm) ≤ 1,
lim
ϵ,ν→0

∥Gϵ,ν∥L2(B1(0)∩Ωνf )
+ max{ϵτ , ν}∥gϵ,ν∥L2(B1(0)∩Ωνm) = 0,

(5.2)

then

(1) ∥ΠνΨϵ,ν∥H1(B3/4(0)) is bounded independent of ϵ, ν, τ ,

(2) A subsequence of Qν(K̆ν∇Ψϵ,ν) converges weakly to ξ ∈ [L2(B3/4(0))]n as ϵ, ν → 0 and ∇ · ξ = 0 in B3/4(0),
(3) ∇ · Qν(K̆ν∇Ψϵ,ν) converges to 0 in H−1(B1/2(0)) as ϵ, ν → 0.

Proof. By the energy method, Remark 2.1, and (5.2), we see

∥∇Ψϵ,ν∥L2(B3/4(0)∩Ωνf )
+ ϵτ∥∇ψϵ,ν∥L2(B3/4(0)∩Ωνm) ≤ c, (5.3)

where c is a constant independent of ϵ, ν, τ . Remark 2.1 and (5.3) imply statement (1).
By (5.3) and the compactness principle, a subsequence of Qν(K̆ν∇Ψϵ,ν) converges weakly to ξ in [L2(B3/4(0))]n as

ϵ, ν → 0 (the same notation for subsequence). Multiply (5.1) by a function ζ ∈ H1
0 (B3/4(0)) to see

B3/4(0)
(K̆ν∇Ψϵ,νXΩνf

+ ϵ2τ k̆ν∇ψϵ,νXΩνm)∇ζdx =


B3/4(0)

(Gϵ,νXΩνf
+ ϵτ gϵ,νXΩνm)ζdx.

As ϵ, ν → 0, we see, by (5.2)–(5.3),

∇ · ξ = 0 in B3/4(0). (5.4)

So we prove statement (2).
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Let η ∈ C∞

0 (B3/4(0)) be a bell-shaped function satisfying η ∈ [0, 1] and η = 1 in B1/2(0). From (5.1), we have
−∇ · (ηK̆ν∇Ψϵ,ν) = ηGϵ,ν − K̆ν∇Ψϵ,ν∇η in B3/4(0) ∩Ων

f ,

−ϵ2τ∇ · (ηk̆ν∇ψϵ,ν) = ηϵτ gϵ,ν − ϵ2τ k̆ν∇ψϵ,ν∇η in B3/4(0) ∩Ων
m,

ηK̆ν∇Ψϵ,ν · n⃗ν = ϵ2τηk̆ν∇ψϵ,ν · n⃗ν on B3/4(0) ∩ ∂Ων
m,

ηΨϵ,ν = ηψϵ,ν on B3/4(0) ∩ ∂Ων
m,

ηΨϵ,νXΩνf
+ ηψϵ,νXΩνm = 0 on ∂B3/4(0).

(5.5)

Claim that ∇ · (ηQν(K̆ν∇Ψϵ,ν)) is in a compact subset of H−1(B3/4(0)). Multiply (5.5) by ζϵ,ν ∈ H1
0 (B3/4(0)) to obtain

⟨−∇ · (ηQν(K̆ν∇Ψϵ,ν)), ζϵ,ν⟩H−1(B3/4(0)),H1
0 (B3/4(0))

=


B3/4(0)

ηQν(K̆ν∇Ψϵ,ν)∇ζϵ,νdx =


B3/4(0)∩Ωνf

ηK̆ν∇Ψϵ,ν∇ζϵ,νdx

= −ϵ2τ

B3/4(0)∩Ωνm

ηk̆ν∇ψϵ,ν∇ζϵ,νdx +


B3/4(0)

η(Gϵ,νXΩνf
+ ϵτ gϵ,νXΩνm)ζϵ,νdx

−


B3/4(0)

∇η(K̆ν∇Ψϵ,νXΩνf
+ ϵ2τ k̆ν∇ψϵ,νXΩνm)ζϵ,νdx. (5.6)

We choose ζϵ,ν in (5.6) in such a way that it satisfies
1ζϵ,ν = ∇ · (ηQν(K̆ν∇Ψϵ,ν)) in B3/4(0),
ζϵ,ν = 0 on ∂B3/4(0).

(5.7)

(5.7) is solvable uniquely by the Lax–Milgram theorem [17] and ∥ζϵ,ν∥H1(B3/4(0)) is bounded by a constant independent of
ϵ, ν by (5.3). By the compactness principle, ζϵ,ν weakly converges to ζ in H1

0 (B3/4(0)) as ϵ, ν → 0, and ζ satisfies, by state-
ment (2),

1ζ = ∇ · (ηξ) in B3/4(0),
ζ = 0 on ∂B3/4(0).

By (5.2)–(5.3), (5.6)–(5.7), and Lemma 6.1 [29], ∥∇ · (ηQν(K̆ν∇Ψϵ,ν))∥2
H−1(B3/4(0))

converges to ⟨−ξ∇η, ζ ⟩L2(B3/4(0)),L2(B3/4(0))

as ϵ, ν → 0. Since ∇ · ξ = 0 in B3/4(0) by (5.4),

⟨−ξ∇η, ζ ⟩L2(B3/4(0)),L2(B3/4(0)) = ∥∇ · (ξη)∥2
H−1(B3/4(0))

.

Since ∇ · (ηQν(K̆ν∇Ψϵ,ν)) converges weakly to ∇ · (ξη) in H−1(B3/4(0)) as ϵ, ν → 0,∇ · (ηQν(K̆ν∇Ψϵ,ν)) converges to
∇ · (ξη) in H−1(B3/4(0)) by Remark 1.16 and Proposition 1.17 [30]. So we prove the claim. Moreover, by (5.4), we see that
∇ · (ηQν(K̆ν∇Ψϵ,ν)) converges to 0 in H−1(B1/2(0)).

The above conclusion is true for any subsequence of Ψϵ,ν , so we prove statement (3). �

Let us define M(ℓ1, ℓ2; D) as a set containing positive definite matrices, that is,

M(ℓ1, ℓ2; D) ≡ {ϕ : D → Rn×n
|ℓ1I ≤ ϕ ≤ ℓ2I, ℓ1, ℓ2 > 0, I is the identity matrix}.

Lemma 5.2. For any ν < 1, consider the following problem−∇ · (K̆ν∇Φν) = Π ′

νG inΩν
f ,

K̆ν∇Φν · n⃗ν = 0 on ∂Ων
m,

Φν = 0 on ∂Ω,
(5.8)

where K̆ν ∈ (α, β), α, β > 0, and G ∈ H−1(Ω). There is an element K∗ ∈ M(γ−2α, β;Ω) and a subsequence of the solutions
Φν of (5.8) (same notation for subsequence) such that

(1) ΠνΦν converges toΦ weakly in H1
0 (Ω) as ν → 0,

(2) Qν(K̆ν∇Φν) converges to K∗∇Φ weakly in [L2(Ω)]n as ν → 0,
(3) −∇ · (K∗∇Φ) = G inΩ ,
(4) ∇ · Qν(K̆ν∇Φν) is in a compact subset of H−1(Ω).

Note: Constant γ here is the γ (Yf , p) in Remark 2.1.
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Proof. Statements (1)–(3) are from Definition 1.3 and Theorem 1.8 [31]. So we only prove statement (4). By the energy
method and Remark 2.1, we know

∥∇Φν∥L2(Ωνf )
≤ c, (5.9)

where c is independent of ν. We claim that every weakly convergent subsequence of ∇ · Qν(K̆ν∇Φν) in H−1(Ω) is strongly
convergent as ν → 0. By (5.9), ∇ · Qν(K̆ν∇Φν) is bounded in H−1(Ω). Let ξ denote the weak limit of Qν(K̆ν∇Φν), that is,
ξ = K∗∇Φ . Statement (3) implies

G = −∇ · ξ . (5.10)

If ην ∈ H1
0 (Ω), (5.8) implies

⟨−∇ · Qν(K̆ν∇Φν), ην⟩H−1(Ω),H1
0 (Ω)

=


Ωνf

K̆ν∇Φν∇ηνdx

= ⟨G,Πνην |Ωνf ⟩H−1(Ω),H1
0 (Ω)

. (5.11)

In (5.11), we take ην ∈ H1
0 (Ω) satisfying

1ην = ∇ · Qν(K̆ν∇Φν) inΩ,
ην = 0 on ∂Ω.

(5.12)

The existence of (5.12) is from the Lax–Milgram theorem [17] and ∥ην∥H1
0 (Ω)

is bounded independent of ν. If ην weakly

converges to η in H1
0 (Ω), then η satisfies

1η = ∇ · ξ inΩ,
η = 0 on ∂Ω. (5.13)

By (5.10)–(5.13), Lemma 2.1 [31], and Lemma 6.1 [29],

lim
ν→0

∥∇ · Qν(K̆ν∇Φν)∥2
H−1(Ω)

= ⟨−∇ · ξ, η⟩H−1(Ω),H1
0 (Ω)

= ∥∇ · ξ∥2
H−1(Ω)

.

By Remark 1.16 and Proposition 1.17 [30], we prove statement (4). �

Lemma 5.3. Under the same assumptions in Lemma 5.1, there is an element K∗
∈ M(γ−2α, β;Ω) and a subsequence of the

solutions Ψϵ,ν of (5.1) (same notation for subsequence) such that, as ϵ, ν → 0,

(1) ΠνΨϵ,ν converges to Ψ weakly in H1(B1/2(0)),
(2) Qν(K̆ν∇Ψϵ,ν) converges to K∗

∇Ψ weakly in [L2(B1/2(0))]n,
(3) −∇ · (K∗

∇Ψ ) = 0 in B1/2(0).

Note: γ here is the γ (Yf , p) in Remark 2.1.

Proof. By Lemma 5.1, there is a subsequence of the solutions Ψϵ,ν of (5.1) (same notation for subsequence) satisfying, as
ϵ, ν → 0,

(1) ΠνΨϵ,ν converges to Ψ weakly in H1(B3/4(0)),
(2) Qν(K̆ν∇Ψϵ,ν) converges to ξ weakly in [L2(B3/4(0))]n,
(3) ∇ · Qν(K̆ν∇Ψϵ,ν) converges to 0 in H−1(B1/2(0)),
(4) −∇ · ξ = 0 in B3/4(0).

Let K∗ be the one in Lemma 5.2. For any Φ ∈ H1
0 (Ω), we define G ≡ −∇ · (K∗∇Φ) ∈ H−1(Ω) and use the defined G to

obtain Φν by solving (5.8). By Lemma 5.2 and the Lax–Milgram Theorem [17], we see that function ΠνΦν converges to Φ
weakly in H1

0 (Ω) as ν → 0. Clearly

∇ΠνΦν · Qν(K̆ν∇Ψϵ,ν) = ∇ΠνΨϵ,ν · Qν(K̆ν∇Φν) in B1/2(0).

As ϵ, ν → 0, by Lemma 5.2 and the divergence-curl lemma (see Lemma 1.1 [32]),

∇Φ · ξ = ∇Ψ · K∗∇Φ almost everywhere in B1/2(0).

SinceΦ ∈ H1
0 (Ω) is arbitrary, we see ξ = K∗

∇Ψ (here K∗ is the transpose of K∗). So we prove the lemma. �
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Let φ : Rn−1
→ R be a function satisfying

φ(0) = |∇φ(0)| = 0 and ∥φ∥C1,e(Rn−1) ≤ ce for some e ∈ (0, 1). (5.14)

By A1,Ω is a C1,e domain. We assume
0 ∈ ∂Ω,

B1(0) ∩Ω/ν =


B1(0) ∩ {(x′, xn) ∈ Rn

| νxn > φ(νx′)} if ν ∈ (0, 1],
B1(0) ∩ {(x′, xn) ∈ Rn

| xn > 0} if ν = 0.
(5.15)

Tracing the proof of Lemma 5.1, we have

Lemma 5.4. Let τ ∈ (0,∞) and ϵ, λ, ν ∈ (0, 1). Consider the following problem
−∇ · (K̂λ,ν∇Ψϵ,λ,ν) = Gϵ,λ,ν in B1(0) ∩Ωλ

f /ν,

−ϵ2τ∇ · (k̂λ,ν∇ψϵ,λ,ν) = ϵτ gϵ,λ,ν in B1(0) ∩Ωλ
m/ν,

K̂λ,ν∇Ψϵ,λ,ν · n⃗λ/ν = ϵ2τ k̂λ,ν∇ψϵ,λ,ν · n⃗λ/ν on B1(0) ∩ ∂Ωλ
m/ν,

Ψϵ,λ,ν = ψϵ,λ,ν on B1(0) ∩ ∂Ωλ
m/ν,

Ψϵ,λ,ν = 0 on B1(0) ∩ ∂Ω/ν,

(5.16)

where n⃗λ/ν is a unit vector normal to ∂Ωλ
m/ν (see (2.1) for K̂λ,ν, k̂λ,ν). If

ν → ν∗ ∈ [0, 1],
K̂λ,ν, k̂λ,ν ∈ (α, β) and α, β > 0,
∥Ψϵ,λ,ν∥L2(B1(0)∩Ωλf /ν)

, ϵτ∥ψϵ,λ,ν∥L2(B1(0)∩Ωλm/ν)
≤ 1,

lim
ϵ,λ/ν→0

∥Gϵ,λ,ν∥L2(B1(0)∩Ωλf /ν)
+ max{ϵτ , λ/ν}∥gϵ,λ,ν∥L2(B1(0)∩Ωλm/ν)

= 0,

(5.17)

then there is a subsequence of Ψϵ,λ,ν (same notation for subsequence) satisfying

(1) ∥Πλ/νΨϵ,λ,ν∥H1(B3/4(0)∩Ω/ν) is bounded independent of ϵ, λ, ν, τ ,

(2) Qλ/ν(K̂λ,ν∇Ψϵ,λ,ν) converges weakly to ξ ∈ [L2(B3/4(0))]n as ϵ, λ/ν → 0 and ∇ · ξ = 0 in B3/4(0) ∩Ω/ν∗,

(3) ∇ · (Qλ/ν(K̂λ,ν∇Ψϵ,λ,ν)) converges to 0 in H−1(B1/2(0) ∩ D) as ϵ, λ/ν → 0 for any compact subset D ⊂ B3/4(0) ∩Ω/ν∗.

Proof. By the energy method, (5.17), λ/ν < 1, and Remark 2.1, we see

∥Πλ/νΨϵ,λ,ν∥H1(B3/4(0)∩Ω/ν) + ϵτ∥ψϵ,λ,ν∥H1(B3/4(0)∩Ωλm/ν)
≤ c, (5.18)

where c is independent of ϵ, λ, ν, τ . That is statement (1).
Note Qλ/ν(K̂λ,ν∇Ψϵ,λ,ν) is bounded independent of ϵ, λ, ν, τ in [L2(B3/4(0))]n and there is a subsequence converging

weakly to ξ ∈ [L2(B3/4(0))]n as ϵ, λ/ν → 0. Let D be any compact subset in B3/4(0) ∩ Ω/ν∗. So if ν is close to ν∗, then
D ⊂ B3/4(0) ∩Ω/ν. Multiply (5.16) for ν close to ν∗ by any function ζ ∈ C∞

0 (D) to see
D
(K̂λ,ν∇Ψϵ,λ,νXΩλf /ν

+ ϵ2τ k̂λ,ν∇ψϵ,λ,νXΩλm/ν
)∇ζdx =


D
(Gϵ,λ,νXΩλf /ν

+ ϵτ gϵ,λ,νXΩλm/ν
)ζdx.

As ϵ, λ/ν → 0, we see, by (5.17)–(5.18),

∇ · ξ = 0 in D.

Since D is any compact subset in B3/4(0) ∩Ω/ν∗, we prove statement (2).
Let η ∈ C∞

0 (B3/4(0)) be a bell-shaped function satisfying η ∈ [0, 1] and η = 1 in B1/2(0). From (5.16), we have

−∇ · (ηK̂λ,ν∇Ψϵ,λ,ν) = ηGϵ,λ,ν − K̂λ,ν∇Ψϵ,λ,ν∇η in B 3
4
(0) ∩Ωλ

f /ν,

−ϵ2τ∇ · (ηk̂λ,ν∇ψϵ,λ,ν) = ηϵτ gϵ,λ,ν − ϵ2τ k̂λ,ν∇ψϵ,λ,ν∇η in B 3
4
(0) ∩Ωλ

m/ν,

ηK̂λ,ν∇Ψϵ,λ,ν · n⃗λ/ν = ηϵ2τ k̂λ,ν∇ψϵ,λ,ν · n⃗λ/ν on B 3
4
(0) ∩ ∂Ωλ

m/ν,

ηΨϵ,λ,ν = ηψϵ,λ,ν on B 3
4
(0) ∩ ∂Ωλ

m/ν,

ηΨϵ,λ,νXΩλf /ν
+ ηψϵ,λ,νXΩλm/ν

= 0 on ∂(B 3
4
(0) ∩Ω/ν).

(5.19)
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Claim that ∇ · (ηQλ/ν(K̂λ,ν∇Ψϵ,λ,ν)) is in a compact subset of H−1(D), where D is any compact subset in B3/4(0) ∩ Ω/ν∗.
Multiply (5.19) for ν close to ν∗ by any ζϵ,ν ∈ H1

0 (D) to obtain

⟨−∇ · (ηQλ/ν(K̂λ,ν∇Ψϵ,λ,ν)), ζϵ,ν⟩H−1(B3/4(0)),H1
0 (B3/4(0))

=


B3/4(0)

ηQλ/ν(K̂λ,ν∇Ψϵ,λ,ν)∇ζϵ,νdx =


B3/4(0)∩Ωλf /ν

ηK̂λ,ν∇Ψϵ,λ,ν∇ζϵ,νdx

= −ϵ2τ

B3/4(0)∩Ωλm/ν

ηk̂λ,ν∇ψϵ,λ,ν∇ζϵ,νdx +


B3/4(0)

η(Gϵ,λ,νXΩλf /ν
+ ϵτ gϵ,λ,νXΩλm/ν

)ζϵ,νdx

−


B3/4(0)

∇η(K̂λ,ν∇Ψϵ,λ,νXΩλf /ν
+ ϵ2τ k̂λ,ν∇ψϵ,λ,νXΩλm/ν

)ζϵ,νdx. (5.20)

We choose ζϵ,ν ∈ H1
0 (D) in (5.20) satisfying

1ζϵ,ν = ∇ · (ηQλ/ν(K̂λ,ν∇Ψϵ,λ,ν)) in D,
ζϵ,ν = 0 on ∂D.

(5.21)

(5.21) is solvable uniquely by the Lax–Milgram theorem [17] and ∥ζϵ,ν∥H1(D) is bounded by a constant independent of ϵ, λ, ν
by (5.18). By the compactness principle, ζϵ,ν weakly converges to ζ inH1

0 (D) as ϵ, λ/ν → 0, and ζ satisfies, by statement (2),
1ζ = ∇ · (ηξ) in D,
ζ = 0 on ∂D.

By (5.17), (5.18), (5.20), (5.21), and Lemma 6.1 [29],

∥∇ · (ηQλ/ν(K̂λ,ν∇Ψϵ,λ,ν))∥2
H−1(D) → ⟨−ξ∇η, ζ ⟩L2(B3/4(0)),L2(B3/4(0))

as ϵ, λ/ν → 0. Since ∇ · ξ = 0 in B3/4(0) ∩Ω/ν∗ by statement (2),

⟨−ξ∇η, ζ ⟩L2(B3/4(0)),L2(B3/4(0)) = ∥∇ · (ξη)∥2
H−1(D).

Since ∇ · (ηQλ/ν(K̂λ,ν∇Ψϵ,λ,ν)) converges weakly to ∇ · (ξη) in H−1(B3/4(0)) as ϵ, λ/ν → 0, we know that ∇ ·

(ηQλ/ν(K̂λ,ν∇Ψϵ,λ,ν)) converges to ∇ · (ξη) in H−1(D) by Remark 1.16 and Proposition 1.17 [30]. The above convergence is
true for any compact subset D in B3/4(0) ∩Ω/ν∗. The claim then follows by a diagonal process.

Also note that, by statement (2), ∇ · (Qλ/ν(K̂λ,ν∇Ψϵ,λ,ν)) converges to 0 in H−1(B1/2(0)∩ D) as ϵ, λ/ν → 0. So we prove
statement (3). �

For any solution Ψϵ,λ,ν in (5.16), we define

Sν(Πλ/νΨϵ,λ,ν) ≡


Πλ/νΨϵ,λ,ν if x ∈ B3/4(0) ∩Ω/ν,
0 if x ∈ B3/4(0) \Ω/ν.

Modifying of the proofs of Lemmas 5.2 and 5.3, we also have

Lemma 5.5. Under the same assumptions of Lemma 5.4, there is an element K∗
∈ M(γ−2α, β; B1/2(0) ∩Ω/ν∗) and a subse-

quence of Ψϵ,λ,ν (same notation for subsequence) such that, as ϵ, λ/ν → 0 and ν → ν∗,

(1) Sν(Πλ/νΨϵ,λ,ν) converges to Ψ weakly in H1(B1/2(0) ∩Ω/ν∗),
(2) Qλ/ν(K̂λ,ν∇Ψϵ,λ,ν) converges to K∗

∇Ψ weakly in [L2(B1/2(0) ∩Ω/ν∗)]
n,

(3)


−∇ · (K∗
∇Ψ ) = 0 in B1/2(0) ∩Ω/ν∗,

Ψ = 0 on B1/2(0) ∩ ∂Ω/ν∗.

Note: γ here is the γ (Yf , p) in Remark 2.1.

6. Proof of (3.6) of Lemma 3.3

This section includes two Sections 6.1 and 6.2. The Hölder estimate in the interior region is derived in Section 6.1, and the
Hölder estimate around the boundary is in Section 6.2. The idea of the proof for the Hölder estimate is from the three-step
compactness argument in [8]. A1–A2 are assumed in this section.

6.1. Interior estimate

For convenience we assume B1(0) ⊂ Ω .
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Lemma 6.1. For δ, τ > 0, there areµ, θ1, θ2 ∈ (0, 1) (depending on n, δ, α, β, Yf ) satisfying θ1 < θ22 and there is a ϵ0 ∈ (0, 1)
(depending on θ1, θ2, n, δ, τ , α, β, Yf ) such that if

−∇ · (K̂λ,ν∇Ψϵ,λ,ν) = Gϵ,λ,ν in B1(0) ∩Ωλ
f /ν,

−ϵ2τ∇ · (k̂λ,ν∇ψϵ,λ,ν) = ϵτ gϵ,λ,ν in B1(0) ∩Ωλ
m/ν,

K̂λ,ν∇Ψϵ,λ,ν · n⃗λ/ν = ϵ2τ k̂λ,ν∇ψϵ,λ,ν · n⃗λ/ν on B1(0) ∩ ∂Ωλ
m/ν,

Ψϵ,λ,ν = ψϵ,λ,ν on B1(0) ∩ ∂Ωλ
m/ν,

(6.1)

if 
∥Ψϵ,λ,ν∥L2(B1(0)∩Ωλf /ν)

, ϵτ∥ψϵ,λ,ν∥L2(B1(0)∩Ωλm/ν)
≤ 1,

ϵ−1
0 ∥Gϵ,λ,νXΩλf /ν

+ max{ϵτ , λ/ν}gϵ,λ,νXΩλm/ν
∥Ln+δ(B1(0)) ≤ 1, (6.2)

and if ϵ, λ/ν ≤ ϵ0, ν ∈ (0, 1], and θ ∈ [θ1, θ2], then
−


Bθ (0)

|Πλ/νΨϵ,λ,ν − (Πλ/νΨϵ,λ,ν)0,θ |
2dx ≤ θ2µ,

−


Bθ (0)∩Ωλm/ν

ϵ2τ |ψϵ,λ,ν − (Πλ/νΨϵ,λ,ν)0,θ |
2dx ≤ θ2µ.

(6.3)

See Section 2 for K̂λ,ν, k̂λ,ν, (Πλ/νΨϵ,λ,ν)0,θ .

Proof. Assume K∗
∈ M(γ−2α, β;Ω) and Ψ is a solution of the uniform elliptic equation −∇ · (K∗

∇Ψ ) = 0 in B1/2(0).
Then, by Theorem 8.24 [17],

∥Ψ ∥Cs(B1/8(0)) ≤ c∥Ψ ∥L2(B1/2(0)),

where s(< 1), c are constants depending on n, α, β, Yf . Define µ ≡
1
2 min{s, δ

n+δ }. If µ
′ satisfies µ < µ′ < 2µ, then, by

Theorem 1.2 in page 70 [33],

−


Bθ (0)

|Ψ − (Ψ )0,θ |
2dx ≤ θ2µ

′

−


B1/2(0)

|Ψ |
2dx (6.4)

for θ (depending on µ, n, α, β, Yf ) sufficiently small. Fix two values θ1, θ2 ≤ 1/8 such that (1) θ1 < θ22 and (2) Inequality
(6.4) holds for any θ ∈ [θ1, θ2].

With µ, θ1, θ2 above, we claim (6.3)1. If not, there is a sequence {ϵλ, λ, νλ, θϵλ,λ,νλ ,Ψϵλ,λ,νλ , ψϵλ,λ,νλ ,Gϵλ,λ,νλ , gϵλ,λ,νλ}
satisfying (6.1) and

ϵλ, λ/νλ → 0,
νλ ∈ (0, 1], θϵλ,λ,νλ ∈ [θ1, θ2],
max{∥Ψϵλ,λ,νλ∥L2(B1(0)∩Ωλf /νλ)

, ϵτλ∥ψϵλ,λ,νλ∥L2(B1(0)∩Ωλm/νλ)
} ≤ 1,

lim
ϵλ,λ/νλ→0

∥Gϵλ,λ,νλ∥Ln+δ(B1(0)∩Ωλf /νλ)
+ max{ϵτ , λ/νλ}∥gϵλ,λ,νλ∥Ln+δ(B1(0)∩Ωλm/νλ)

= 0,

−


Bθϵλ,λ,νλ

(0)
|Πλ/νλΨϵλ,λ,νλ − (Πλ/νλΨϵλ,λ,νλ)0,θϵλ,λ,νλ

|
2dx > θ

2µ
ϵλ,λ,νλ

.

(6.5)

By Lemma 5.3, there is a subsequence (same notation for subsequence) such that, as ϵλ, λ/νλ → 0,
θϵλ,λ,νλ → θ∗ ∈ [θ1, θ2],

Πλ/νλΨϵλ,λ,νλ → Ψ in L2(B1/2(0)) strongly,
K̂λ,νλ∇Ψϵλ,λ,νλXΩλf /νλ

→ K∗
∇Ψ in [L2(B1/2(0))]n weakly,

ϵ2τλ k̂λ,νλ∇ψϵλ,λ,νλXΩλm/νλ
→ 0 in [L2(B1/2(0))]n strongly,

(6.6)

whereK∗
∈ M(γ−2α, β;Ω) andΨ is a solution of the uniform elliptic equation−∇ ·(K∗

∇Ψ ) = 0 in B1/2(0). By (6.4)–(6.6),

θ2µ
∗

= lim
ϵλ,λ/νλ→0

θ
2µ
ϵλ,λ,νλ

≤ lim
ϵλ,λ/νλ→0

−


Bθϵλ,λ,νλ

(0)
|Πλ/νλΨϵλ,λ,νλ − (Πλ/νλΨϵλ,λ,νλ)0,θϵλ,λ,νλ

|
2dx

= −


Bθ∗ (0)

|Ψ |
2dx −

−

Bθ∗ (0)

Ψ dx


2

= −


Bθ∗ (0)

|Ψ − (Ψ )0,θ∗ |
2dx ≤ θ2µ

′

∗
−


B1/2(0)

|Ψ |
2dx.
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If θ2 is small enough, then the right hand side of the above equation is less than θ2µ
′′

∗ for some µ′′
∈ (µ,µ′). So we get

θ
2µ
∗ ≤ θ

2µ′′

∗ for µ′′
∈ (µ,µ′). But this is impossible. Therefore we prove (6.3)1.

Let us define
Ψ̂ϵ,λ,ν ≡ θ−µ(Πλ/νΨϵ,λ,ν − (Πλ/νΨϵ,λ,ν)0,θ ),

ψ̂ϵ,λ,ν ≡ θ−µ(ψϵ,λ,ν − (Πλ/νΨϵ,λ,ν)0,θ ).

Then (6.1) implies, for any smooth function η with support in λν−1(Ym + j) ⊂ Bθ (0) ∩Ωλ
m/ν for some j ∈ Zn,

ϵ2τ

λν−1(Ym+j)

(ψ̂ϵ,λ,ν − Ψ̂ϵ,λ,ν)∇ · (k̂λ,ν∇η)dx =


λν−1(Ym+j)

ϵ2τ k̂λ,ν∇Ψ̂ϵ,λ,ν∇η − θ−µϵτη gϵ,λ,ν dx.

If η is the solution of
∇ · (k̂λ,ν∇η) = ψ̂ϵ,λ,ν − Ψ̂ϵ,λ,ν in λν−1(Ym + j),
η = 0 on λν−1(∂Ym + j),

then

c1
ν

λ
∥η∥L2(λν−1(Ym+j)) ≤ ∥∇η∥L2(λν−1(Ym+j)) ≤ c2

λ

ν
∥ψ̂ϵ,λ,ν − Ψ̂ϵ,λ,ν∥L2(λν−1(Ym+j)),

where c1, c2 are independent of ϵ, λ/ν. Inequality (6.3)2 follows from above estimates if ϵ0 is small enough. �

Lemma 6.2. Let δ, τ , µ(< δ
2(n+δ) ), θ1, θ2, ϵ0 be same as those in Lemma 6.1. If

−∇ · (Kλ∇Ψϵ,λ) = Gϵ,λ in B1(0) ∩Ωλ
f ,

−ϵ2τ∇ · (kλ∇ψϵ,λ) = ϵτ gϵ,λ in B1(0) ∩Ωλ
m,

Kλ∇Ψϵ,λ · n⃗λ = ϵ2τkλ∇ψϵ,λ · n⃗λ on B1(0) ∩ ∂Ωλ
m,

Ψϵ,λ = ψϵ,λ on B1(0) ∩ ∂Ωλ
m,

(6.7)

then, for any ϵ, λ ≤ ϵ0, θ ∈ [θ1, θ2], and k satisfying λ/θ k ≤ ϵ0,
−


B
θk (0)

|ΠλΨϵ,λ − (ΠλΨϵ,λ)0,θk |
2dx ≤ θ2kµJ2ϵ,λ,

−


B
θk (0)∩Ω

λ
m

ϵ2τ |ψϵ,λ − (ΠλΨϵ,λ)0,θk |
2dx ≤ θ2kµJ2ϵ,λ,

(6.8)

where Jϵ,λ ≡ ∥Ψϵ,λXΩλf
+ ϵτψϵ,λXΩλm

∥L2(B1(0)) + ϵ−1
0 ∥Gϵ,λXΩλf

+ max{ϵτ , λ}gϵ,λXΩλm
∥Ln+δ(B1(0)).

Proof. For k = 1, we define Ψ̂ϵ ≡
Ψϵ,λ

Jϵ,λ
, ψ̂ϵ ≡

ψϵ,λ
Jϵ,λ
, Ĝϵ ≡

Gϵ,λ
Jϵ,λ
, ĝϵ ≡

gϵ,λ
Jϵ,λ

. Then these functions satisfy (6.1) and (6.2) with
ν = 1. By Lemma 6.1,

−


Bθ (0)

|ΠλΨ̂ϵ − (ΠλΨ̂ϵ)0,θ |
2dx ≤ θ2µ,

−


Bθ (0)∩Ωλm

ϵ2τ |ψ̂ϵ − (ΠλΨ̂ϵ)0,θ |
2dx ≤ θ2µ.

This implies (6.8) for k = 1. If (6.8) holds for some k satisfying λ/θ k ≤ ϵ0, we define
Ψ̂ϵ(x) ≡ J−1

ϵ,λθ
−kµ Ψϵ,λ(θ kx)− (ΠλΨϵ,λ)0,θk


Ĝϵ(x) ≡ J−1

ϵ,λθ
k(2−µ)Gϵ,λ(θ kx)

in B1(0) ∩Ωλ
f /θ

k,
ψ̂ϵ(x) ≡ J−1

ϵ,λθ
−kµ ψϵ,λ(θ kx)− (ΠλΨϵ,λ)0,θk


ĝϵ(x) ≡ J−1

ϵ,λθ
k(2−µ)gϵ,λ(θ kx)

in B1(0) ∩Ωλ
m/θ

k.

Then these functions satisfy
−∇ · (K̂λ,θk∇Ψ̂ϵ) = Ĝϵ in B1(0) ∩Ωλ

f /θ
k,

−ϵ2τ∇ · (k̂λ,θk∇ψ̂ϵ) = ϵτ ĝϵ in B1(0) ∩Ωλ
m/θ

k,

K̂λ,θk∇Ψ̂ϵ · n⃗λ/θ
k
= ϵ2τ k̂λ,θk∇ψ̂ϵ · n⃗λ/θ

k
on B1(0) ∩ ∂Ωλ

m/θ
k,

Ψ̂ϵ = ψ̂ϵ on B1(0) ∩ ∂Ωλ
m/θ

k,
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where n⃗λ/θk is a unit vector normal to ∂Ωλ
m/θ

k. See (2.1) for K̂λ,θk , k̂λ,θk . By induction,max{∥Ψ̂ϵ∥L2(B1(0)∩Ωλf /θ
k), ϵ

τ
∥ψ̂ϵ∥L2(B1(0)∩Ωλm/θk)

} ≤ 1,

ϵ−1
0 ∥ĜϵXΩλf /θ

k + max{ϵτ , λθ−k
}ĝϵXΩλm/θ

k∥Ln+δ(B1(0)) ≤ 1.

By Lemma 6.1 (take ν = θ k), we obtain
−


Bθ (0)

Πλ/θk Ψ̂ϵ − (Πλ/θk Ψ̂ϵ)0,θ

2 dx ≤ θ2µ,

−


Bθ (0)∩Ωλm/θk

ϵ2τ
ψ̂ϵ − (Πλ/θk Ψ̂ϵ)0,θ

2 dx ≤ θ2µ.

(6.9)

Note, by Remark 2.1,

−


Bθ (0)

Πλ/θk Ψ̂ϵ − (Πλ/θk Ψ̂ϵ)0,θ

2 dx = −


B
θk+1 (0)

ΠλΨϵ,λ − (ΠλΨϵ,λ)0,θk+1
2

J2ϵ,λθ2kµ
dx, (6.10)

−


Bθ (0)∩Ωλm/θk

ψ̂ϵ − (Πλ/θk Ψ̂ϵ)0,θ

2 dx = −


B
θk+1 (0)∩Ωλm

ψϵ,λ − (ΠλΨϵ,λ)0,θk+1
2

J2ϵ,λθ2kµ
dx. (6.11)

Eqs. (6.9)–(6.11) imply (6.8) for k + 1 case. �

Lemma 6.3. For any δ, τ > 0, there are µ, ϵ∗ ∈ (0, 1) (depending on n, δ, τ , α, β, Yf ) such that if ϵ, λ ≤ ϵ∗, any solution
of (6.7) satisfies

[Ψϵ,λ]Cµ(B1/2(0)∩Ω
λ
f )

+ sup
j∈Zn

λ(Ym+j)⊂B1/2(0)∩Ω
λ
m

ϵτ [ψϵ,λ]Cµ(λ(Ym+j)) ≤ cJϵ,λ,

where c is a constant independent of ϵ, λ. See Lemma 6.2 for Jϵ,λ and µ < δ
2(n+δ) is from Lemma 6.2.

Proof. Let θ1, θ2, ϵ0, µ(< δ
2(n+δ) ) be same as those in Lemma 6.2, define ϵ∗ ≡ ϵ0θ2/2, and let ϵ, λ ≤ ϵ∗. Denote by c a

constant independent of ϵ, λ. Because of θ1 < θ22 , for any r ∈ [λ/ϵ0, θ2], there are θ ∈ [θ1, θ2] and k ∈ N satisfying r = θ k.
Lemma 6.2 implies, for any r ∈ [λ/ϵ0, θ2],

−


Br (0)

ΠλΨϵ,λ − (ΠλΨϵ,λ)0,r
2 dx ≤ cr2µJ2ϵ,λ,

−


Br (0)∩Ωλm

ϵ2τ
ψϵ,λ − (ΠλΨϵ,λ)0,r

2 dx ≤ cr2µJ2ϵ,λ.
(6.12)

Define
Ψ̂ϵ(x) ≡ J−1

ϵ,λλ
−µ

Ψϵ,λ(λx)− (ΠλΨϵ,λ)0,2λ/ϵ0


Ĝϵ(x) ≡ J−1

ϵ,λλ
2−µGϵ,λ(λx)

in B 2
ϵ0
(0) ∩Ωλ

f /λ,
ψ̂ϵ(x) ≡ J−1

ϵ,λλ
−µ

ψϵ,λ(λx)− (ΠλΨϵ,λ)0,2λ/ϵ0


ĝϵ(x) ≡ J−1

ϵ,λλ
2−µgϵ,λ(λx)

in B 2
ϵ0
(0) ∩Ωλ

m/λ.

Then those functions satisfy

−∇ · (K̂λ,λ∇Ψ̂ϵ) = Ĝϵ in B 2
ϵ0
(0) ∩Ωλ

f /λ,

−ϵ2τ∇ · (k̂λ,λ∇ψ̂ϵ) = ϵτ ĝϵ in B 2
ϵ0
(0) ∩Ωλ

m/λ,

K̂λ,λ∇Ψ̂ϵ · n⃗λ/λ = ϵ2τ k̂λ,λ∇ψ̂ϵ · n⃗λ/λ on B 2
ϵ0
(0) ∩ ∂Ωλ

m/λ

Ψ̂ϵ = ψ̂ϵ on B 2
ϵ0
(0) ∩ ∂Ωλ

m/λ,
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where n⃗λ/λ is a unit vector normal to ∂Ωλ
m/λ. See (2.1) for K̂λ,λ, k̂λ,λ. Take r =

2λ
ϵ0

in (6.12) to get

∥Ψ̂ϵXΩλf /λ
+ ϵτ ψ̂ϵXΩλm/λ

∥
L2

B 2
ϵ0
(0)

 + ∥ĜϵXΩλf /λ
+ ĝϵXΩλm/λ

∥
Ln+δ


B 2
ϵ0
(0)

 ≤ c.

By A1–A2 and Lemma 4.2,

[Ψ̂ϵ]
Cµ

B 1
ϵ0
(0)∩Ωλf /λ

 + ϵτ [ψ̂ϵ]
Cµ

B 1
ϵ0
(0)∩Ωλm/λ

 ≤ c. (6.13)

Remark 2.1, (6.13), and Theorem 1.2 in page 70 [33] imply

−


Br (0)

ΠλΨϵ,λ − (ΠλΨϵ,λ)0,r
2 dx ≤ cr2µJ2ϵ,λ for r ≤ λ/ϵ0.

Then we shift the origin of the coordinate system to any point z ∈ B1/2(0) and repeat above argument to see that (6.12)1
with 0 replaced by z also holds for r ∈ (0, θ2). Together with Theorem 1.2 in page 70 [33], we obtain the Hölder estimate of
ΠλΨϵ,λ in B1/2(0). Hölder estimate of ψϵ,λ in λ(Ym + j) ⊂ B1/2(0) ∩Ω

λ

m is from (6.13). �

6.2. Boundary estimate

Assume (5.14)–(5.15). So 0 ∈ ∂Ω .

Lemma 6.4. If δ, τ > 0, there are µ, θ̃1, θ̃2 ∈ (0, 1) (depending on n, δ, α, β, Yf ,Ω) satisfying θ̃1 < θ̃22 and there is a ϵ̃0 ∈

(0, 1) (depending on θ̃1, θ̃2, n, δ, τ , α, β, Yf ,Ω) satisfying ϵ̃0 < min{
2
3 , ϵ0} (ϵ0 is that in Lemma 6.1) such that if

−∇ · (K̂λ,ν∇Ψϵ,λ,ν) = Gϵ,λ,ν in B1(0) ∩Ωλ
f /ν,

−ϵ2τ∇ · (k̂λ,ν∇ψϵ,λ,ν) = ϵτ gϵ,λ,ν in B1(0) ∩Ωλ
m/ν,

K̂λ,ν∇Ψϵ,λ,ν · n⃗λ/ν = ϵ2τ k̂λ,ν∇ψϵ,λ,ν · n⃗λ/ν on B1(0) ∩ ∂Ωλ
m/ν,

Ψϵ,λ,ν = ψϵ,λ,ν on B1(0) ∩ ∂Ωλ
m/ν,

Ψϵ,λ,ν = 0 on B1(0) ∩ ∂Ω/ν,

(6.14)

and if

max{∥Ψϵ,λ,ν∥L2(B1(0)∩Ωλf /ν)
, ϵτ∥ψϵ,λ,ν∥L2(B1(0)∩Ωλm/ν)

, ϵ̃−1
0 ∥Gϵ,λ,νXΩλf /ν

+ max{ϵτ , λ/ν}gϵ,λ,νXΩλm/ν
∥Ln+δ(B1(0))} ≤ 1,

then, for any ϵ, λ/ν ≤ ϵ̃0, ν ∈ (0, 1], and θ̃ ∈ [θ̃1, θ̃2],
−


B
θ̃
(0)∩Ω/ν

|Πλ/νΨϵ,λ,ν |
2dx ≤ θ̃2µ,

−


B
θ̃
(0)∩Ωλm/ν

ϵ2τ |ψϵ,λ,ν |
2dx ≤ θ̃2µ.

(6.15)

See (2.1) for K̂λ,ν, k̂λ,ν .

Proof. Let K∗
∈ M(γ−2α, β; B1(0) ∩Ω/ν∗) for ν∗ ∈ [0, 1] and assume Ψ is a solution of the uniform elliptic equation

−∇ · (K∗
∇Ψ ) = 0 in B1/2(0) ∩Ω/ν∗,

Ψ = 0 on B1/2(0) ∩ ∂Ω/ν∗.
(6.16)

By Theorem 8.25 and Theorem 8.29 [17] and (5.15), we have

∥Ψ ∥Cs(B1/4(0)∩Ω/ν∗) ≤ c∥Ψ ∥L2(B1/2(0)∩Ω/ν∗), (6.17)

where s(< 1), c are constants depending on n, α, β, Yf ,Ω . Define µ ≡
1
2 min{s, δ

n+δ }. If θ̃ is small enough (depending on
µ, n, α, β, Yf ,Ω but independent of ν∗), then, by (6.17),

−


B
θ̃
(0)∩Ω/ν∗

|Ψ |
2dx ≤ θ̃2µ

′

−


B1/2(0)∩Ω/ν∗

|Ψ |
2dx (6.18)

holds for someµ′
∈ (µ, 2µ). Fix two values θ̃1, θ̃2 ≤ 1/4 such that (1) θ̃1 < θ̃22 and (2) Inequality (6.18) holds for θ̃ ∈ [θ̃1, θ̃2].
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With µ, θ̃1, θ̃2 above, we claim (6.15)1. If not, there is a sequence {ϵλ, λ, νλ, θ̃ϵλ,λ,νλ ,Ψϵλ,λ,νλ , ψϵλ,λ,νλ ,Gϵλ,λ,νλ , gϵλ,λ,νλ}
satisfying (6.14) and

ϵλ, λ/νλ → 0,
νλ ∈ (0, 1], θ̃ϵλ,λ,νλ ∈ [θ̃1, θ̃2],
max{∥Ψϵλ,λ,νλ∥L2(B1(0)∩Ωλf /νλ)

, ϵτλ∥ψϵλ,λ,νλ∥L2(B1(0)∩Ωλm/νλ)
} ≤ 1,

lim
ϵλ,λ/νλ→0

∥Gϵλ,λ,νλ∥Ln+δ(B1(0)∩Ωλf /νλ)
+ max{ϵτ , λ/νλ}∥gϵλ,λ,νλ∥Ln+δ(B1(0)∩Ωλm/νλ)

= 0,

−


B
θ̃ϵλ,λ,νλ

(0)∩Ω/νλ

Πλ/νλΨϵλ,λ,νλ

2 dx > θ̃
2µ
ϵλ,λ,νλ

.

(6.19)

By Lemma 5.5, there is a subsequence (same notation for subsequence) such that, as ϵλ, λ/νλ → 0,
νλ → ν∗ ∈ [0, 1],
θ̃ϵλ,λ,νλ → θ̃∗ ∈ [θ̃1, θ̃2],

Sνλ(Πλ/νλΨϵλ,λ,νλ) → Ψ in L2(B1/2(0) ∩Ω/ν∗) strongly,
Qλ/νλ(K̂λ,νλ∇Ψϵλ,λ,νλ) → K∗

∇Ψ in [L2(B1/2(0) ∩Ω/ν∗)]
n weakly,

ϵ2τλ k̂λ,νλ∇ψϵλ,λ,νλXΩλm/νλ
→ 0 in [L2(B1/2(0) ∩Ω/ν∗)]

n strongly,

(6.20)

and Ψ is a solution of (6.16). By (6.18)–(6.20), we conclude

θ̃2µ
∗

= lim
ϵλ,λ/νλ→0

θ̃
2µ
ϵλ,λ,νλ

≤ lim
ϵλ,λ/νλ→0

−


B
θ̃ϵλ,λ,νλ

(0)∩Ω/νλ

Πλ/νλΨϵλ,λ,νλ

2 dx
= −


B
θ̃∗
(0)∩Ω/ν∗

|Ψ |
2dx ≤ θ̃2µ

′

∗
−


B1/2(0)∩Ω/ν∗

|Ψ |
2dx. (6.21)

If θ̃2 is small enough, the right hand side of (6.21) is less than θ̃2µ
′′

∗ for µ′′
∈ (µ,µ′). Which means θ̃2µ∗ ≤ θ̃

2µ′′

∗ for µ′′
∈

(µ,µ′) and this is impossible. Therefore, we prove (6.15)1. Clearly, ϵ̃0 can be chosen so that ϵ̃0 < ϵ0. The proof of (6.15)2 is
similar to that of (6.3)2, so we skip it. �

Lemma 6.5. Let δ, τ , µ(< δ
2(n+δ) ), θ̃1, θ̃2, ϵ̃0 be same as those in Lemma 6.4. If


−∇ · (Kλ∇Ψϵ,λ) = Gϵ,λ in B1(0) ∩Ωλ

f ,

−ϵ2τ∇ · (kλ∇ψϵ,λ) = ϵτ gϵ,λ in B1(0) ∩Ωλ
m,

Kλ∇Ψϵ,λ · n⃗λ = ϵ2τkλ∇ψϵ,λ · n⃗λ on B1(0) ∩ ∂Ωλ
m,

Ψϵ,λ = ψϵ,λ on B1(0) ∩ ∂Ωλ
m,

Ψϵ,λ = 0 on B1(0) ∩ ∂Ω,

(6.22)

then, for any ϵ, λ ≤ ϵ̃0, θ̃ ∈ [θ̃1, θ̃2], and k satisfying λ/θ̃ k ≤ ϵ̃0,
−


B
θ̃k (0)∩Ω

ΠλΨϵ,λ
2 dx ≤ θ̃2kµ J̃2ϵ,λ,

−


B
θ̃k (0)∩Ω

λ
m

ϵ2τ
ψϵ,λ2 dx ≤ θ̃2kµ J̃2ϵ,λ,

(6.23)

where J̃ϵ,λ ≡ ∥Ψϵ,λXΩλf
+ ϵτψϵ,λXΩλm

∥L2(B1(0)) +
1
ϵ̃0

∥Gϵ,λXΩλf
+ max{ϵτ , λ}gϵ,λXΩλm

∥Ln+δ(B1(0)).

Proof. The proof is similar to that of Lemma 6.2 and is done by induction on k. For k = 1, (6.23) is deduced from Lemma 6.4
with ν = 1. Suppose (6.23) holds for some k satisfying λ/θ̃ k ≤ ϵ̃0, then we define

Ψ̂ϵ(x) ≡ J̃−1
ϵ,λ θ̃

−kµΨϵ,λ(θ̃
kx)

Ĝϵ(x) ≡ J̃−1
ϵ,λ θ̃

k(2−µ)Gϵ,λ(θ̃ kx)
in B1(0) ∩Ωλ

f /θ̃
k,

ψ̂ϵ(x) ≡ J̃−1
ϵ,λ θ̃

−kµψϵ,λ(θ̃
kx)

ĝϵ(x) ≡ J̃−1
ϵ,λ θ̃

k(2−µ)gϵ,λ(θ̃ kx)
in B1(0) ∩Ωλ

m/θ̃
k,

Ψ̂bϵ (x) ≡ 0 in B1(0) ∩Ω/θ̃ k.
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Then these functions satisfy

−∇ · (K̂λ,θ̃k∇Ψ̂ϵ) = Ĝϵ in B1(0) ∩Ωλ
f /θ̃

k,

−ϵ2τ∇ · (k̂λ,θ̃k∇ψ̂ϵ) = ϵτ ĝϵ in B1(0) ∩Ωλ
m/θ̃

k,

K̂λ,θ̃k∇Ψ̂ϵ · n⃗ϵ/θ̃
k
= ϵ2τ k̂λ,θ̃k∇ψ̂ϵ · n⃗ϵ/θ̃

k
on B1(0) ∩ ∂Ωλ

m/θ̃
k,

Ψ̂ϵ = ψ̂ϵ on B1(0) ∩ ∂Ωλ
m/θ̃

k,

Ψ̂ϵ(x) = 0 in B1(0) ∩Ω/θ̃ k,

where n⃗ϵ/θ̃k is a unit vector normal to ∂Ωλ
m/θ̃

k. See (2.1) for K̂λ,θ̃k , k̂λ,θ̃k . By induction,
max{∥Ψ̂ϵ∥L2(B1(0)∩Ωλf /θ̃

k), ϵ
τ
∥ψ̂ϵ∥L2(B1(0)∩Ωλm/θ̃k)

} ≤ 1,

ϵ−1
0 ∥ĜϵXΩλf /θ̃

k + max{ϵτ , λθ̃−k
}ĝϵXΩλm/θ̃

k∥Ln+δ(B1(0)) ≤ 1.

By Lemma 6.4 (take ν = θ̃ k), we obtain
−


B
θ̃
(0)∩Ω/θ̃k

Πλ/θ̃k Ψ̂ϵ

2 dx ≤ θ̃2µ,

−


B
θ̃
(0)∩Ωλm/θ̃k

ϵ2τ
ψ̂ϵ2 dx ≤ θ̃2µ.

(6.24)

Note, by Remark 2.1,

−


B
θ̃
(0)∩Ω/θ̃k

Πλ/θ̃k Ψ̂ϵ

2 dx = −


B
θ̃k+1 (0)∩Ω

ΠλΨϵ,λ
2

J̃2ϵ,λ θ̃2kµ
dx, (6.25)

−


B
θ̃
(0)∩Ωλm/θ̃k

ψ̂ϵ2 dx = −


B
θ̃k+1 (0)∩Ωλm

ψϵ,λ2
J̃2ϵ,λ θ̃2kµ

dx. (6.26)

Eqs. (6.24)–(6.26) imply (6.23) for k + 1 case. �

Lemma 6.6. For any δ, τ > 0, there are µ, ϵ̃∗ ∈ (0, 1) (depending on n, δ, τ , α, β, Yf ,Ω) such that if ϵ, λ ≤ ϵ̃∗, any solution
of (6.22) satisfies

[Ψϵ,λ]Cµ(B1/2(0)∩Ω
λ
f )

+ sup
j∈Zn

λ(Ym+j)⊂B1/2(0)∩Ω
λ
m

ϵτ [ψϵ,λ]Cµ(λ(Ym+j)) ≤ cJ̃ϵ,λ, (6.27)

where c is a constant independent of ϵ, λ. See Lemma 6.5 for J̃ϵ,λ and µ < δ
2(n+δ) is from Lemma 6.5.

Proof. Let θ̃1, θ̃2, ϵ̃0, µ(< δ
2(n+δ) ) be same as those in Lemma 6.5, define ϵ̃∗ ≡ min{ϵ̃0θ̃2/3, ϵ∗} where ϵ∗ is the one in

Lemma 6.3, and let ϵ, λ ≤ ϵ̃∗. Denote by c a constant independent of ϵ, λ. For any x ∈ Bθ̃2/3(0)∩Ω
λ
f , define η(x) ≡ |x − x0|

where x0 ∈ ∂Ω satisfying |x − x0| = miny∈∂Ω |x − y|. Then we have either case (1) η(x) > 2λ
3ϵ̃0

or case (2) η(x) ≤
2λ
3ϵ̃0

.

Let us consider case (1). Because of θ̃1 < θ̃22 , for any r ∈ [λ/ϵ̃0, θ̃2], there are θ̃ ∈ [θ̃1, θ̃2] and k ∈ N satisfying r = θ̃ k.

Since η(x) ∈ [
2λ
3ϵ̃0
,
θ̃2
3 ], by Lemma 6.5,

−


Br (x0)∩Ω

ΠλΨϵ,λ
2 dy ≤ r2µ J̃2ϵ,λ

−


Br (x0)∩Ωλm

ϵ2τ
ψϵ,λ2 dy ≤ r2µ J̃2ϵ,λ

for r ∈


3
2
η(x), θ̃2


.

So 
−


Bs(x)∩Ω

ΠλΨϵ,λ − (ΠλΨϵ,λ)x,s
2 dy ≤ cs2µ J̃2ϵ,λ

−


Bs(x)∩Ωλm

ϵ2τ
ψϵ,λ − (ΠλΨϵ,λ)x,s

2 dy ≤ cs2µ J̃2ϵ,λ

for s ∈


η(x)
2
,
θ̃2

3


. (6.28)
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Shift the coordinate system so that the origin is at x and define
Ψ̂ϵ(y) ≡ J̃−1

ϵ,λη
−µ(x)


Ψϵ,λ(η(x)y)− (ΠλΨϵ,λ)x,η(x)


Ĝϵ(y) ≡ J̃−1

ϵ,λη
2−µ(x)Gϵ,λ(η(x)y)

in B1(x) ∩Ωλ
f /η(x),

ψ̂ϵ(y) ≡ J̃−1
ϵ,λη

−µ(x)

ψϵ,λ(η(x)y)− (ΠλΨϵ,λ)x,η(x)


ĝϵ(y) ≡ J̃−1

ϵ,λη
2−µ(x)gϵ,λ(η(x)y)

in B1(x) ∩Ωλ
m/η(x).

Then these functions satisfy
−∇ · (K̂λ,η(x)∇Ψ̂ϵ) = Ĝϵ in B1(x) ∩Ωλ

f /η(x),
−ϵ2τ∇ · (k̂λ,η(x)∇ψ̂ϵ) = ϵτ ĝϵ in B1(x) ∩Ωλ

m/η(x),
K̂λ,η(x)∇Ψ̂ϵ · n⃗λ/η(x) = ϵ2τ k̂λ,η(x)∇ψ̂ϵ · n⃗λ/η(x) on B1(x) ∩ ∂Ωλ

m/η(x),
Ψ̂ϵ = ψ̂ϵ on B1(x) ∩ ∂Ωλ

m/η(x),

(6.29)

where n⃗λ/η(x) is a unit vector normal to ∂Ωλ
m/η(x). See (2.1) for K̂λ,η(x), k̂λ,η(x). Take s = η(x) in (6.28) to see

∥Ψ̂ϵXΩλf /η(x)
+ ϵτ ψ̂ϵXΩλm/η(x)

∥L2(B1(x)) + ϵ̃−1
0 ∥Ĝϵ∥Ln+δ(B1(x)∩Ωλf /η(x))

+ ϵ̃−1
0 max{ϵτ , λη−1(x)}∥ĝϵ∥Ln+δ(B1(x)∩Ωλm/η(x))

≤ c.

Apply Lemma 6.3 to (6.29) to obtain

[Ψ̂ϵ]Cµ(B1/2(x)∩Ω
λ
f /η(x))

+ sup
j∈Zn

λ
η(x) (Ym+j)⊂B1/2(0)∩Ω

λ
m/η(x)

ϵτ [ψ̂ϵ]Cµ


λ
η(x) (Ym+j)

 ≤ c (6.30)

which implies, by Remark 2.1 and Theorem 1.2 in page 70 [33],

−


Bs(x)∩Ω

ΠλΨϵ,λ − (ΠλΨϵ,λ)x,s
2 dy ≤ cs2µ J̃2ϵ,λ for s < η(x)/2. (6.31)

Now we consider case (2). Because of θ̃1 < θ̃22 , for any r ∈ [λ/ϵ̃0, θ̃2], there are θ̃ ∈ [θ̃1, θ̃2] and k ∈ N satisfying r = θ̃ k.
By Lemma 6.5,

−


Br (x0)∩Ω

ΠλΨϵ,λ
2 dy ≤ cr2µ J̃2ϵ,λ

−


Br (x0)∩Ωλm

ϵ2τ
ψϵ,λ2 dy ≤ cr2µ J̃2ϵ,λ

for r ∈ [λ/ϵ̃0, θ̃2]. (6.32)

This implies, for s ∈ [
λ

3ϵ̃0
,
θ̃2
3 ],


−


Bs(x)∩Ω

ΠλΨϵ,λ − (ΠλΨϵ,λ)x,s
2 dy ≤ cs2µ J̃2ϵ,λ,

−


Bs(x)∩Ωλm

ϵ2τ
ψϵ,λ − (ΠλΨϵ,λ)x,s

2 dy ≤ cs2µ J̃2ϵ,λ.
(6.33)

Again we shift the origin to x and define
Ψ̂ϵ(y) ≡ J̃−1

ϵ,λλ
−µ

Ψϵ,λ(λy)− (ΠλΨϵ,λ)x,λ/ϵ̃0


Ĝϵ(y) ≡ J̃−1

ϵ,λλ
2−µGϵ,λ(λy)

in B 1
ϵ̃0
(x) ∩Ωλ

f /λ,
ψ̂ϵ(y) ≡ J̃−1

ϵ,λλ
−µ

ψϵ,λ(λy)− (ΠλΨϵ,λ)x,λ/ϵ̃0


ĝϵ(y) ≡ J̃−1

ϵ,λλ
2−µgϵ,λ(λy)

in B 1
ϵ̃0
(x) ∩Ωλ

m/λ,

Ψ̂bϵ ≡ −J̃−1
ϵ,λλ

−µ(ΠλΨϵ,λ)x,λ/ϵ̃0 in B 1
ϵ̃0
(x) ∩Ω/λ.
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From (6.32) 1, Ψ̂bϵ is a constant independent of ϵ, λ. Then these functions satisfy

−∇ · (K̂λ,λ∇Ψ̂ϵ) = Ĝϵ in B 1
ϵ̃0
(x) ∩Ωλ

f /λ,

−ϵ2τ∇ · (k̂λ,λ∇ψ̂ϵ) = ϵτ ĝϵ in B 1
ϵ̃0
(x) ∩Ωλ

m/λ,

K̂λ,λ∇Ψ̂ϵ · n⃗λ/λ = ϵ2τ k̂λ,λ∇ψ̂ϵ · n⃗λ/λ on B 1
ϵ̃0
(x) ∩ ∂Ωλ

m/λ,

Ψ̂ϵ = ψ̂ϵ on B 1
ϵ̃0
(x) ∩ ∂Ωλ

m/λ,

Ψ̂ϵ = Ψ̂bϵ on B 1
ϵ̃0
(x) ∩ ∂Ω/λ,

where n⃗λ/λ is a unit vector normal to ∂Ωλ
m/λ. See (2.1) for K̂λ,λ, k̂λ,λ. Take s =

λ
ϵ̃0

in (6.33) to see

∥Ψ̂ϵXΩλf /λ
+ ϵτ ψ̂ϵXΩλm/λ

∥
L2

B 1
ϵ̃0
(x)

 + ∥ĜϵXΩλf /λ
+ ĝϵXΩλm/λ

∥
Ln+δ


B 1
ϵ̃0
(x)

 + ∥Ψ̂bϵ∥
W2,n+δ


B 1
ϵ̃0
(x)∩Ω/λ

 ≤ c.

A1–A2 and Lemma 4.3 imply

[Ψ̂ϵ]
Cµ

B 1
2ϵ̃0

(x)∩Ωλf /λ

 + ϵτ [ψ̂ϵ]
Cµ

B 1
2ϵ̃0

(x)∩Ωλm/λ

 ≤ c. (6.34)

Remark 2.1 and (6.34) imply (6.33)1 holds for s ≤
λ

2ϵ̃0
.

The Hölder estimate ofΠλΨϵ,λ follows from (6.28)1, (6.31), (6.33)1, (6.34), and Theorem 1.2 in page 70 [33]. The Hölder
estimate of ψϵ,λ in λ(Ym + j) ⊂ B1/2(0) ∩Ω

λ

m is from (6.30) and (6.34). �

Clearly, if ϵ < 1 and τ ∈ (0, 1], then ϵ ≤ ϵτ . If we take λ = ϵ in (6.7) and (6.22), then we have, by the energy method,
partition of unity, and Lemmas 3.2, 6.3 and 6.6,

For any τ ∈ (0, 1], δ > 0, there are µ, ϵ̃∗ ∈ (0, 1) such that, for any ϵ ≤ ϵ̃∗, the solution of (3.4) satisfies (3.6).
By the energy method, partition of unity, and Lemmas 3.2, 4.2 and 4.3, we also see

For any τ ∈ (0, 1], δ > 0, there are µ, ϵ̃∗ ∈ (0, 1) such that, for any ϵ ∈ [ϵ̃∗, 1], the solution of (3.4) satisfies (3.6).
Combining above two results, we know that (3.6) of Lemma 3.3 holds.
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