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In this paper, the development of a two-dimensional plasma fluid modeling code using the cell-centered
finite-volume method and its parallel implementation on distributed memory machines is reported.
Simulated discharge currents agree very well with the measured data in a planar dielectric barrier
discharge (DBD). Parallel performance of simulating helium DBD solved by the different degrees of
overlapping of additive Schwarz method (ASM) preconditioned generalized minimal residual method
(GMRES) for different modeling equations is investigated for a small and a large test problem,
respectively, employing up to 128 processors. For the large test problem, almost linear speedup can
be obtained by using up to 128 processors. Finally, a large-scale realistic two-dimensional DBD problem
is employed to demonstrate the capability of the developed fluid modeling code for simulating the low-
temperature plasma with complex chemical reactions.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Low-temperature plasma has been widely used in various in-
dustrial fields such as display technologies, materials processing,
and fabrication of electronic devices, among others [1,2]. Under-
standing of low-temperature plasma had strongly relied on ex-
perimental observations or trial-and-error approaches, which are
expensive and time-consuming due to its complex physical and
chemical processes. Recently, numerical simulation has become
an indispensable method for revealing the underlying physics and
chemistry of plasmas since direct quantitative measurements are
either prohibitively costly or difficult. Hence, developing a fast, ro-
bust, and efficient plasma solver, which can handle the large-scale
multidimensional plasma problems with many species and com-
plex chemistry reactions involved, is eagerly needed in the com-
munity of plasma physics and engineering.

Particle-in-Cell with Monte Carlo collision (PIC/MCC) and fluid
modeling are two of the major approaches that have been devel-
oped for the simulation of low-temperature plasma. On one hand,
PIC/MCC approach is suitable for discharges at very low pressure,
in which the energy distribution is far from equilibrium so that the
physics of plasmas cannot be modeled properly by the assumption
of a continuum fluid. However, the kinetic particle-based PIC/MCC
requires tracking of a large number of pseudo particles to reduce

* Corresponding author at: Department of Mechanical Engineering, National Chiao
Tung University, Hsinchu, Taiwan. Tel.: +886 3 573 1693; fax: +886 3 611 0023.

E-mail address: chongsin@faculty.nctu.edu.tw (J.-S. Wu).
0010-4655/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.02.001
statistical uncertainties of the simulation, which is often very time-
consuming and was thus rarely used to treat the discharges with
complex plasma chemistry. Hybrid modeling is another alternative
numerical technique by taking advantage of both the PIC/MCC and
fluid modeling method [3]. Similarly, this method requires track-
ing of a sufficiently large number of particles, which could result
in unacceptable runtime for a practical problem.

On the other hand, fluid modeling of low-temperature plasma
is based on the governing equations derived from the velocity
moments of the Boltzmann equation with appropriate assump-
tions [2]. Fluid modeling is suitable for low-temperature plasmas
in a wide range of pressures (from low pressure to atmospheric
pressure). Generally, there are two types of approximations used in
the fluid modeling: 1) local field approximation (LFA) and 2) local-
mean-energy approximation (LMEA). The former assumes the lo-
cally absorbed electric power is fully balanced by the power dis-
sipated through ionization, while the latter solves the electron en-
ergy density equation to obtain the electron temperature which is
related to the evaluation of reaction rate constants and other trans-
port properties associated with electrons. LMEA has been shown to
be more accurate than LFA in fluid modeling of low-pressure gas
discharges [4]. For wider future applications, the LMEA is adopted
in the current study to consider non-local effect of electron energy
distribution that LFA generally lacks.

Fluid modeling generally requires less computational time as
compared to other methods. Nevertheless, it is still an issue for lar-
ge-scale multidimensional problems with many species and com-
plex chemistry, which could lead to unacceptable computational
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time. Recently, a representative plasma simulation package Plasimo
using the finite-volume method, developed by van Dijk et al.
[5], has been demonstrated as a parallel version using symmet-
ric multi-processing (SMP) with OpenMP protocol. To speed up the
computation of large-scale plasma fluid modeling, parallel comput-
ing using very popular distributed memory machines with mes-
sage passing interface (MPI) is required.

In the past, there are very few studies focusing on paral-
lel implementation of low-temperature plasma fluid modeling on
distributed memory machines, albeit the importance of reduced
computational time cannot be overemphasized for practical appli-
cations. Among the very few, the parallel fully implicit Newton–
Krylov–Schwarz (NKS) algorithm was employed to solve the cou-
pled large sparse, algebraic nonlinear system of the discrete gov-
erning equations of fluid modeling derived from the fully implicit
scheme [6,7]. Although the speedup of parallel computing is scal-
able up to hundreds of processors, the overall computational time
is too large for realistic large-scale multidimensional problems.
This obstacle could be overcome by the so-called semi-implicit
method, which solves the fluid modeling equations independently
with proper linearization of the source terms of the Poisson equa-
tion [8] and the electron energy density equation [9]. In this ap-
proach, the coupled nonlinear system of plasma fluid modeling
equations become linear and decoupled so that they can be solved
equation by equation. It was shown that much larger time step
could be employed to greatly shorten the computational time in
sequential implementation [8,9].

Thus, the major objective of this paper is to develop a paral-
lel two-dimensional plasma fluid modeling code using the cell-
centered finite-volume method with the semi-implicit approach.
The resulting linear systems of discretized equations are solved by
the parallel generalized minimal residual method (GMRES) [10] in
conjunction with the parallel additive Schwarz method (ASM) [11]
as the preconditioner to accelerate its convergence. The Schwarz
type methods have been proved to be theoretically optimal for
many types of problems, and practically powerful for solving large
problems on computers with thousands of processors. The precon-
ditioner is decomposed into several sub-domains by domain de-
composition for parallel computing. The computational time could
be dramatically reduced with the combination of preconditioning
and linear matrix solvers for various modeling equations.

The remainder of the paper is organized as follows. The plasma
fluid model and numerical method are introduced in Sections 2
and 3, followed by the results of parallel performance presented
in Section 4. Finally, the major findings of the present study are
summarized at the end of this paper.

2. Model description

2.1. Plasma fluid model

The governing equations for the plasma fluid model are similar
to those solved by Hung et al. [12] and briefly described below for
completeness. The general continuity equation for ion species can
be written as

∂np

∂t
+ �∇ · �Γp =

rp∑
i=1

S pi p = 1, . . . , K (1)

where np is the number density of ion species p, K is the number
of ion species, rp is the number of reaction channels that involve
the creation and destruction of ion species p and �Γp is the particle
flux that is expressed, based on the drift–diffusion approximation,
as

�Γp = sign(qp)μpnp �E − D p �∇np (2)
�E = −�∇φ (3)

where qp , �E , φ, μp , and D p are the ion charge, the electric field,
the electric potential, the ion mobility, and the ion diffusivity re-
spectively. Note that the form of the source term S pi can be mod-
ified according to the modeled reactions describing how the ion
species p is generated or destroyed in reaction channel i.

The continuity equation for electron species can be written as

∂ne

∂t
+ �∇ · �Γe =

re∑
i=1

Sei (4)

where ne is the number density of electrons, re is the number of
reaction channels that involve the creation and destruction of elec-
trons and �Γe is the corresponding particle flux that is expressed,
based on the drift–diffusion approximation, as

�Γe = −μene �E − De �∇ne (5)

where μe and De are the electron mobility and electron diffusivity,
respectively. These two transport coefficients can be readily ob-
tained as a function of the electron temperature from the solution
of a publicly available computer code for the Boltzmann equation,
named BOLSIG+ [13]. Similar to S Pi , the form of Sei can also be
modified according to the modeled reactions that generate or de-
stroy the electron in reaction channel i.

The continuity equation for neutral species can be written as

∂nuc

∂t
+ �∇ · �Γuc =

ruc∑
i=1

Suci uc = 1, . . . , L (6)

where nuc is the number density of uncharged neutral species uc,
L is the number of neutral species, ruc is the number of reaction
channels that involve the generation and destruction of uncharged
species uc and �Γuc is the corresponding particle flux which can be
expressed as

�Γuc = −Duc �∇nuc (7)

where Duc is the diffusivity of neutral species. It is noted that the
convective effect is neglected in this study. Similarly, the form of
Suci can also be modified according to the modeled reactions that
generate or destroy the neutral species in reaction channel i.

The electron energy density equation can be expressed as

∂nε

∂t
+ �∇ · �Γnε = −e �Γe · �E −

sc∑
i=1

εikinine

− 3
me

M
nekB vm(Te − T g) (8)

where nε (= 3
2 nekB Te) is the electron energy density, Te is the

electron temperature, εi and ki are the energy loss and rate con-
stant for the ith inelastic electron collision respectively, ni is the
number density of species related to the ith inelastic electron col-
lision, Sc is the number of reaction channels of inelastic electron
collision, kB is the Boltzmann constant, νm is the momentum ex-
change collision frequency between the electron (mass me) and the
background neutral (mass M), T g is the background gas tempera-
ture and is assumed to be 400 K. �Γnε is the corresponding electron
energy density flux and can be expressed as

�Γnε = 5

2
kB Te �Γe − 5

2
Dene �∇(kB Te) (9)

The second term on the right-hand side of Eq. (8) represents the
sum of the energy losses of the electrons due to inelastic collision
with other species. The last term on the right-hand side of Eq. (8)
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can be ignored for low-pressure gas discharges, while it is impor-
tant for medium-to-atmospheric pressure discharges.

The Poisson equation for electrostatic potential can be ex-
pressed as

�∇ · (ε �∇φ) = −
K∑

i=1

(qn)i (10)

where φ is the potential and the permittivity ε, is a function of
position, is written as

ε = εrε0 (11)

where ε0 is the vacuum permittivity, and εr is the relative permit-
tivity of each region. Several different regions including discharge,
dielectric materials (such as alumina, substrate, and Teflon), and
conductors are considered simultaneously in this study. All of these
regions are meshed and solved to obtain the electrostatic potential
distribution by using the Poisson equation.

2.2. Boundary conditions

The flux-type boundary conditions for the ions, electrons, and
neutral species are employed on the solid surfaces (dielectric or
electrode) as

�Γp = a · sign(qp)μpnp �E − D p �∇np (12)

�Γe = −a · μene �E − De �∇ne + 1

4
ne vth (13)

�Γuc = −Duc �∇nuc (14)

where a = 1 if drift velocity (sign(qp)μp �E) points toward the di-
electric surface, and a = 0 otherwise. We assume that the ions and
electrons accumulate and the neutral species quench at the dielec-
tric surface in the present study. The thermal velocity of electron
is

vth =
√

8kB Te

πme
(15)

where me is the electron mass. Note that the effect of secondary
electron emission is neglected. For all species, the fluxes at the
boundaries of computational domain (except the dielectric sur-
faces) are assumed to be zero.

The boundary conditions of electron energy density flux at the
dielectric surfaces are

�Γnε = 2kB Te �Γe (16)

For the Poisson equation, the potentials of powered and grounded
electrode are assigned with applied voltage and zero potential re-
spectively. Neumann boundary conditions with zero gradients are
applied to the other boundaries of the computational domain for
the Poisson equation.

2.3. Plasma chemistry

For the case of parallel performance study, we consider a he-
lium dielectric barrier discharge containing trace nitrogen impurity
since it was shown that discharge current calculated from pure he-
lium data does not quantitatively agree with experiment results
[14]. Although the impurity level is typically less than 0.01%, it
was reported that the impurity plays an important role in “pure”
helium discharges [15,16]. In the plasma chemistry, we consider 10
species (e−, He+, He+

2 , N+, N+
2 , N+

4 , He∗
m, He∗∗

ex , He∗
2, and N) and

43 reaction channels as listed in Table 1. Note consideration of the
complex plasma chemistry of this level is not uncommon in prac-
tical applications (e.g., [20]). Reaction channels 1 to 27 consider
chemistry for the pure helium discharge, and reaction channels 28
to 43 consider the effect of trace addition of N2 and the interaction
between helium and nitrogen as the mimics of impurity. Generally,
the number of species considered (if not too small) does not influ-
ence the results of parallel performance which is presented later,
because we have solved the continuity equations of species one by
one. In addition, number of the reaction channels only influences
the algebraic operations of the source terms of the species conti-
nuity equation originating from various reactions, which does not
change the parallel performance of the problem very much.

The transport coefficients and the rate constants related to the
electrons are calculated by solving the Boltzmann equation us-
ing BOLSIG+ as mentioned earlier. Note that these coefficients are
predicted and stored in a lookup table as a function of electron
temperature prior to the simulation. The value of mobility for each
ion species are taken from the literature [18,21–23], and the cor-
responding diffusivities are calculated using the Einstein relation.
The diffusion coefficients of neutral species, such as those of He∗

m,
He∗∗

ex , He∗
2, and N, are also taken from literature [18,24].

3. Numerical method

3.1. Semi-implicit treatment for the Poisson and electron energy density
equations

It was reported that explicit evaluation of the source term of
the Poisson equation leads to a very small time step due to the
restriction of dielectric relaxation time [8]. The so-called semi-
implicit treatment is thus applied on the source term of the Pois-
son equation to expand the time step by a Taylor’s series expansion
(TSE) in time. With some derivations based on a TSE in time and
approximations, the Poisson equation, Eq. (10), can be rewritten as

�∇ ·
[(

ε + �t
K∑

i=1

(|q|μn
)

i

)
�∇φ

]
= −

K∑
i=1

qini (17)

Note the number densities and mobilities of semi-implicit term
in Eq. (17) are approximated from the values of previous time
level. Similar constraint on time step size can be found on the
source term of the electron energy density equation, Eq. (8), and
the energy source term is linearized by a TSE in electron energy
with some approximations for increasing the time step size of the
simulation [9]. Thus, the electron energy density equation can be
rewritten as

∂nε

∂t
+ �∇ · �Γnε

= −e �Γe · �E − ne

sc∑
i=1

εikini − 3
me

M
nekB vm(Te − T g)

−
[

e

ne

�E · ∂ �Γe

∂μe

∂μe

∂ε̄
+ e

ne

�E · ∂ �Γe

∂ De

∂ De

∂ε̄

+
sc∑

i=1

εi
∂ki

∂ε̄
ni + 3

me

M
kB

∂vm

∂ε̄
(Te − T g)

]
(nε − ne ε̄) (18)

where ε̄ = 3/2kB Te . The discretization form of ∂ �Γe
∂μe

∂μe
∂ε̄ + ∂ �Γe

∂ De

∂ De
∂ε̄

has been derived by Hagelaar et al. [9], and the finite difference
method is applied to evaluate ∂ki

∂ε̄ and ∂vm
∂ε̄ . Details of the imple-

mentation can be found in Refs. [8,9], and are not described here
for brevity.



1228 K.-M. Lin et al. / Computer Physics Communications 183 (2012) 1225–1236
Table 1
Summary of helium plasma chemistry with nitrogen impurity.

No Reaction channel Rate constant (m3 s−1) Threshold (eV) Reference

01 e + He → e + He BOLSIG+ 0 [17]

02 e + He → e + He∗
m BOLSIG+ 19.82 [17]

03 e + He → e + He∗
m BOLSIG+ 20.61 [17]

04 e + He → e + He∗∗
ex BOLSIG+ 20.96 [17]

05 e + He → e + He∗∗
ex BOLSIG+ 21.21 [17]

06 e + He → e + He∗∗
ex BOLSIG+ 22.97 [17]

07 e + He → e + He∗∗
ex BOLSIG+ 23.7 [17]

08 e + He → e + He∗∗
ex BOLSIG+ 24.02 [17]

09 e + He → 2e + He+ BOLSIG+ 24.58 [17]

10 e + He∗
m → 2e + He+ BOLSIG+ 4.78 [17]

11 e + He∗
m → e + He 2.9 × 10−15 −19.8 [17]

12 e + He∗
2 → e + 2He 3.8 × 10−15 −17.9 [17]

13a He+ + 2e → e + He∗
m 6 × 10−32 −4.78 [17]

14a He+
2 + 2e → He∗

m + He + e 2.8 × 10−32 0 [17]

15a He+
2 + e + He → He∗

m + 2He 3.5 × 10−39 0 [17]

16a He+
2 + 2e → He∗

2 + e 1.2 × 10−33 0 [17]

17a He+
2 + e + He → He∗

2 + He 1.5 × 10−39 0 [17]

18 He∗∗
ex + He → He+

2 + e 1.5 × 10−17 0 [17]

19 He∗
m + He∗

m → He+
2 + e 2.03 × 10−15 −18.2 [17]

20 He∗
m + He∗

m → He+ + He + e 8.7 × 10−16 −15.8 [17]

21a He+ + 2He → He+
2 + He 6.5 × 10−44 0 [17]

22a He∗
m + 2He → He∗

2 + He 1.9 × 10−46 0 [17]

23 He∗
m + He∗

2 → He+ + 2He + e 5 × 10−16 −13.5 [17]

24 He∗
m + He∗

2 → He+
2 + He + e 2 × 10−15 −15.9 [17]

25 He∗
2 + He∗

2 → He+ + 3He + e 3 × 10−16 −11.3 [17]

26 He∗
2 + He∗

2 → He+
2 + 2He + e 1.2 × 10−15 −13.7 [17]

27 He∗
2 + He → 3He 4.9 × 10−22 0 [17]

28 He∗
m + N2 → e + N+

2 + He 7.0 × 10−17 0 [18]

29 He∗
2 + N2 → e + N+

2 + 2He 7.0 × 10−17 0 [18]

30 He+ + N2 → N+
2 + He 5.0 × 10−16 0 [18]

31 He+ + N2 → N+ + N + He 7.0 × 10−16 0 [18]

32 He+
2 + N2 → N+

2 + 2He 5.0 × 10−16 0 [18]

33 He+
2 + N2 → N+ + N + 2He 7.0 × 10−16 0 [18]

34a,b 2e + N+
2 → e + N2 5.651 × 10−39 T −0.8

e 0 [18]

35b e + N+
2 → 2N 2.540 × 10−12 T −0.5

e 0 [18]

36b e + N2 → e + 2N 1.959 × 10−12 T −0.7
e exp(− 1.132×105

Te
) 9.757 [18]

37b e + N → 2e + N+ 8.401 × 10−11 exp(− 1.682×105

Te
) 14.5 [18]

38b e + N2 → 2e + N+
2 4.483 × 10−13 T −0.3

e exp(− 1.81×105

Te
) 15.6 [18]

39b e + N+
4 → 2N2 2.0 × 10−12(

T g
Te

)0.5 0 [19]

40a N+
2 + 2N2 → N+

4 + N2 1.9 × 10−41 0 [19]

41a N+
2 + He + N2 → N+

4 + He 1.9 × 10−41 0 [19]

42 N+
4 + N2 → N+

2 + 2N2 2.5 × 10−21 0 [19]

43 N+
4 + He → N+

2 + He + N2 2.5 × 10−21 0 [19]

a Rate constants are in m6 s−1.
b Te is the electron temperature, and T g is the background gas temperature. Both are in Kevin.
3.2. Finite volume discretization with Scharfetter–Gummel flux
approximation

In the present study, the above equations are discretized using
the collocated cell-centered finite-volume method [25] as

∂η

∂t
+ Fi+1/2, j − Fi−1/2, j

�xi, j
+ Gi, j+1/2 − Gi, j−1/2

�yi, j
= Si, j (19)

with

η =

⎡
⎢⎢⎢⎣

np

ne

nuc

nε

0

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

Γp

Γe

Γuc

Γε

Γ

⎤
⎥⎥⎥⎦
i, j φ x
G =

⎡
⎢⎢⎢⎣

Γp

Γe

Γuc

Γε

Γφ

⎤
⎥⎥⎥⎦

y

, S =

⎡
⎢⎢⎢⎣

S p

Se

Suc

Sε

Sφ

⎤
⎥⎥⎥⎦

i, j

where the subscripts i and j represent the indices of cell in x- and
y-direction respectively. For simplicity of presentation, the rectan-
gular computational domain is assumed and a set of regular grids
is considered. �x and �y are the cell width in x- and y-direction
respectively. The fluxes in the continuity equations and the elec-
tron energy density equation are calculated with the Scharfetter–
Gummel (SG) scheme [26]. After the backward Euler method is
employed as a time-integrator, the discretized form of continuity
equation is written as
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nk+1
i, j − nk

i, j

�t
+ Γ k+1

i+1/2, j − Γ k+1
i−1/2, j

�xi, j
+ Γ k+1

i, j+1/2 − Γ k+1
i, j−1/2

�yi, j

= Sk
i, j (20)

with

Γ k+1
i+1/2, j = − Dk

i+1/2, j

xi+1, j − xi, j

[
B(−Xi+1/2, j)n

k+1
i+1, j − B(Xi+1/2, j)n

k+1
i, j

]

Xi+1/2, j = sign(q)μk
i+1/2, j

Dk
i+1/2, j

(φi+1, j − φi, j)
k+1

Γ k+1
i−1/2, j = − Dk

i−1/2, j

xi, j − xi−1, j

[
B(−Xi−1/2, j)n

k+1
i, j − B(Xi−1/2, j)n

k+1
i−1, j

]

Xi−1/2, j = sign(q)μk
i−1/2, j

Dk
i−1/2, j

(φi, j − φi−1, j)
k+1

Γ k+1
i, j+1/2 = − Dk

i, j+1/2

yi, j+1 − yi, j

[
B(−Xi, j+1/2)n

k+1
i, j+1 − B(Xi, j+1/2)n

k+1
i, j

]

Xi, j+1/2 = sign(q)μk
i, j+1/2

Dk
i, j+1/2

(φi, j+1 − φi, j)
k+1

Γ k+1
i, j−1/2 = − Dk

i, j−1/2

yi, j − yi, j−1

[
B(−Xi, j−1/2)n

k+1
i, j − B(Xi, j−1/2)n

k+1
i, j−1

]

Xi, j−1/2 = sign(q)μk
i, j−1/2

Dk
i, j−1/2

(φi, j − φi, j−1)
k+1

where the superscripts k and k + 1 represent properties of the
previous and current time levels respectively and the Bernoulli
function B(X) = X

e X −1
.

Similarly, the discretized form of electron energy density equa-
tion (8) is written as

nk+1
ε(i, j) − nk

ε(i, j)

�t
+ Γ k+1

ε(i+1/2, j) − Γ k+1
ε(i−1/2, j)

�xi, j

+ Γ k+1
ε(i, j+1/2)

− Γ k+1
ε(i, j−1/2)

�yi, j
= Sk

ε(i, j) (21)

with

Γ k+1
ε(i+1/2, j)

= −5

3

Dk
i+1/2, j

xi+1, j − xi, j

[
B(−Xi+1/2, j)n

k+1
ε(i+1, j) − B(Xi+1/2, j)n

k+1
ε(i, j)

]
Γ k+1

ε(i−1/2, j)

= −5

3

Dk
i−1/2, j

xi, j − xi−1, j

[
B(−Xi−1/2, j)n

k+1
ε(i, j) − B(Xi−1/2, j)n

k+1
ε(i−1, j)

]
Γ k+1

ε(i, j+1/2)

= −5

3

Dk
i, j+1/2

yi, j+1 − yi, j

[
B(−Xi, j+1/2)n

k+1
ε(i, j+1)

− B(Xi, j+1/2)n
k+1
ε(i, j)

]
Γ k+1

ε(i, j−1/2)

= −5

3

Dk
i, j−1/2

yi, j − yi, j−1

[
B(−Xi, j−1/2)n

k+1
ε(i, j) − B(Xi, j−1/2)n

k+1
ε(i, j−1)

]

Sk
ε(i, j) = −e

⇀

Γ e · ⇀

E −
Se∑

εmkk
m(i, j)n

k
m(i, j)n

k
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The Poisson equation (10) is discretized in a similar method as
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(22)

where �hx(i, j) and �hy(i, j) represents the half cell width of cell
(i, j) in the x- and y-direction respectively. Note the effective local
permittivity is defined as

ε′
i, j = εi, j + �t

(
m∑

l=1

(|q|μi, jni, j
)

l

)k

(23)

where the semi-implicit treatment is included.

3.3. Implementation of parallel fluid modeling code

At each time step, the resulting algebraic linear systems are
solved equation by equation using parallel preconditioned Krylov
subspace method provided by PETSc library [27] through do-
main decomposition technique on top of the MPI protocol. Fig. 1
shows the proposed flowchart of simulation. After the evaluation
of transport properties and rate constants of reaction channels, the
discretized governing equations are solved sequentially with ac-
ceptable time step size benefiting from the use of semi-implicit
scheme.

Fig. 2 shows the computational domain of the test case. The
electrodes are surrounded by Teflon, and the right-hand side do-
main is bounded by a substrate. Details of the experimental con-
figuration can be found in Chiang et al. [28] and are not repeated
here for brevity. The computational domain is decomposed with
vertex-based partition [29] into several horizontal (or vertical) sub-
domains along the y- (or x-) direction. In our implementation,
each sub-domain is assigned to a single processor. Such partition
does not distinguish different types of physical regions such as
electrodes, dielectric materials, and discharge region. Hence, the
sub-domain of each processor may or may not contain a region of
multi-physics.

Load balance is an important issue in parallel computing and
indeed plays a great impact on the performance of a parallel code.
Since the solution to the Poisson equation in the electrode region
and the number densities of gas species to the continuity equa-
tions in the region of solid materials are known in priori but are
all included in the solution process, it may potentially lead an is-
sue of load imbalance. However, the load imbalance problem is not
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Fig. 1. The flowchart of fluid modeling simulation.

Fig. 2. Sketch of the simulation domain.

studied in the current paper but of course should be worthy of fur-
ther investigation in the future.

The Poisson equation is an elliptic partial differential equa-
tion (PDE) while the continuity equations and the electron energy
density equation are convection–diffusion–reaction equations ei-
ther parabolic or hyperbolic types of PDE depending on the Peclet
number (ratio of drift to diffusion fluxes). The continuity equa-
tions of species can be further classified into charged (such as
electron and ions) and neutral species. The continuity equation of
charged species consists of the mobility, the diffusivity, and the lo-
cal distribution of electric field, which are varied both temporally
and spatially. The coefficients of the matrices for these continuity
equations need to be updated at each time step. It follows that
the corresponding preconditioners of the continuity equation of
charged species need to be reconstructed at each time step. On
the other hand, the continuity equations of neutral species are dif-
fusive equations and their diffusivities are treated as constant for
most neutral species. Thus, the coefficients of these matrices are
unchanged at each time step, leading to a constant precondition-
ing matrix for neutral species is sufficient.

The matrices resulting from the discretization are asymmetric
because of the inclusion of the Dirichlet conditions, non-uniform
cell size, and the use of SG scheme. We have employed GMRES
due to its robustness for all cases tested. In addition, regarding pre-
conditioning, we investigate the performance of additive Schwarz
preconditioners, where either LU or incomplete LU decomposi-
tion without fill-in is used as a sub-domain solver. The effect of
ASM with different degrees of overlapping is also discussed. Other
preconditioners available in PETSc, for example, point Jacobi or
Successive Over-Relaxation (SOR), are not efficient enough for the
convergence of GMRES and thus excluded for further discussion.
Note that GMRES without preconditioning is not worth to mention
because it often leads to divergence based on our experience.

4. Results and discussion

To test the parallel performance and computational time of the
continuity equations of charged and neutral species separately, we
select the electron continuity equation since electrons are the most
representative species among all charged species in a discharge. In
addition, we only select one of the continuity equations of neu-
tral species to test parallel performance since they have similar
performance and convergence behavior. Accordingly, four types of
model equations, (i) the Poisson equation, (ii) the electron conti-
nuity equation, (iii) the continuity equation of a neutral species,
and (iv) the electron energy density equation are tested and dis-
cussed in this study. The selected representative equations are
timed separately and the numbers of iterations of these equations
are collected separately. Note that all equations are solved in the
simulation since it is a self-consistent model.

The helium Dielectric Barrier Discharge (DBD) with trace ni-
trogen (100 ppm) between two parallel electrodes covered by
ceramic materials (alumina) is simulated for testing the parallel
performance of the developed code. The values of relative permit-
tivity of each region modeled in this study are εr,Discharge = 1.0,
εr,Alumina = 11.63 (measured), εr,Teflon = 2.1 [30] and εr,Substrate =
10.0 for some dielectric materials. The computational domain is
shown in Fig. 2. Two problems with different sizes (501×310 cells
and 1001 × 620 cells) are considered. Hereafter the former and the
latter are referred to as the small and large problems respectively.

The data presented in the following are averaged from the re-
sults of 1000 time steps unless otherwise specified. The employed
time step in the test cases was fixed at 5 × 10−10 seconds. The
relative tolerance for GMRES is set as small as 10−7 to guaran-
tee the physical correctness of the computed solution. In general,
except for the Poisson equation, GMRES for solving the continu-
ity equations and the electron energy density equation converge to
this criterion in less than 30 iterations. The typical number of it-
erations required for solving the Poisson equation is generally few
hundreds. All simulations were performed on the IBM-1350 su-
percomputing system at the National Center for High-performance
Computing (NCHC) of Taiwan with 3.0 GHz of CPU speed and 4 GB
of RAM per processor.

Fig. 3 shows the comparison of the simulated and measured
discharge currents, which were sampled during the 5th cycle of the
applied voltages in the simulation. Good agreement of discharge
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Fig. 3. Simulated and experimental discharge current for helium discharges with
V pp = 6.0 kV (peak-to-peak voltage). The frequency of power source is 25 kHz
(1001 × 620 cells).

currents can be found between simulations and measurements.
In a typical plasma simulation with ∼kHz frequency of voltage,
the physical properties (such as species number density) reach the
quasi-steady level within two or three cycles in the discharge re-
gion between electrodes; however, it may require 40–50 cycles for
the discharge reaches the quasi-steady level in the post-discharge
region near the substrate. The DBD problem investigated here is
driven by nearly sinusoidal voltages with a frequency of 25 kHz.
Input temporal voltages are fitted using a Fourier series expansion
of 25 kHz as fundamental frequency with 15 terms in total. Two
gas breakdowns during a cycle are reproduced in both phase and
magnitude accurately in the simulation. Details of the other sim-
ulated discharge properties are not reported here since we only
focus on discussing the parallel performance in the current study.

In the following, we present a systematic study for the parallel
performance of the developed fluid modeling code for the small
and large problems in turn.

4.1. Small problem case

Fig. 4 shows the averaged runtimes required for each time step
for each of the different equation types solved by ASM precondi-
tioned GMRES with respect to the number of processors for the
small problem. The degree of overlapping for ASM is set to be one,
and ILU and LU sub-domain solvers are employed. Table 2 sum-
marizes the corresponding average numbers of iterations required
for convergence for the equations solved. As shown from the fig-
ure and the table, the computational expense associated with each
component of the plasma simulation can be sorted (in order from
most expensive to least expensive) as the Poisson equation, the
electron energy density equation, the electron continuity equation
and the neutral-species continuity equation. Despite its mathe-
matical simplicity, solving the Poisson equation requires most of
the computational resources because of the general difficulties as-
sociated with the elliptic PDEs with discontinuous jump coeffi-
cients. Although both the electron energy density equation and
the electron continuity equation are both convection–diffusion–
reaction types of PDEs, the preconditioned GMRES for the former
is slightly more difficult to converge than for the latter. GMRES for
the neutral-species continuity equation converges fastest among all
the equations and thus requires the lowest computational time.
Note that the constant preconditioner of neutral species are con-
structed only at the first time step, which further reduces the
computational time. The reasons leading to the above observations
are explained next.
Fig. 4. Averaged time per time step of equations with sub-domain of ASM precon-
ditioner solved by ILU and LU methods for small problem case (501 × 310 cells).

We have conducted some preliminary analyses, including the
calculation of diagonal dominance and the eigenvalue spectrum
analysis, to analyze the convergence rate of an iterative method for
different type of model equations. Results (not shown in the study)
show that the neutral continuity equation has the potential to con-
verge faster than other types of equations, and the electron conti-
nuity equation and electron energy density equation have similar
level of convergence speed, which are much faster than that of
the Poisson equation. Although it is clearer that the convergence
of an iterative method of the symmetric positive definite problems
depends on the condition number of coefficient matrices, the con-
vergence of an iterative method for solving asymmetric problems
does not depend only on a single factor such as the distribution of
eigenvalues, the magnitude of eigenvalues, or the diagonal domi-
nance of matrices. It requires further investigation to fully under-
stand the convergence behavior of GMRES for these plasma model
equations.

The cases with preconditioning using the LU method required
fewer number of iterations than those using the ILU method
since the LU method obtains more accurate solutions in each
sub-domain than the ILU method. In addition, the number of it-
erations increases with increasing number of processors. This is
mainly because the corresponding preconditioner is divided into
more sub-domains while more processors are used. Although each
sub-domain is solved correctly with the LU method or the ILU
method, the overall performance of the ASM preconditioning is not
as good as that when fewer processors are used. This is caused by
more erroneous inter-processor boundary data because of domain
decomposition. In other words, the domain decomposition of the
preconditioner induces slower convergence for solving the linear
algebraic systems when using an iterative method as more proces-
sors are used. Resulting performance characteristics of the Poisson
equation show a dramatic increase of number of iterations as more
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Table 2
Averaged iteration number per time step of equations with sub-domain of ASM preconditioner with one-level overlapping solved by ILU and LU methods for small problem
case (501 × 310 cells).

Poisson Electron

CPU ILU LU CPU ILU LU

2 167.4 25.9 2 4.0 2.6
4 204.9 36.9 4 4.0 2.6
8 216.9 85.5 8 4.9 4.0

16 233.0 117.2 16 5.1 4.8
32 229.2 131.9 32 6.0 5.0
64 237.8 136.7 64 6.9 6.0

128 253.1 184.8 128 9.7 9.6

Neutral Te

CPU ILU LU CPU ILU LU

2 2.0 2.0 2 8.5 4.4
4 2.0 2.0 4 8.5 4.3
8 2.0 2.0 8 10.0 7.9

16 2.0 2.0 16 11.4 9.2
32 2.0 2.0 32 13.5 11.7
64 2.0 2.0 64 15.6 13.6

128 2.1 2.4 128 24.6 24.5
Fig. 5. Averaged time per time step of equations with sub-domain of ASM precon-
ditioner solved by ILU and LU methods for large problem case (1001 × 620 cells).

processors are used, while only slight increases in number of iter-
ations are experienced for the solution to the remaining equations,
with increasing numbers of processors. The overall performance of
the cases using the ILU and the LU methods are comparable and
there is no advantage in time saving when more than 64 proces-
sors are employed for the small problem presented.

4.2. Large problem case

Fig. 5 shows the timing results for the large problem, and Ta-
ble 3 summarizes the corresponding numbers of iterations for the
same cases. Similar to the previous small problem, solving the
Poisson equation takes most of the computational time. The solu-
tion of the electron energy density equation converges slower than
the electron continuity equation, while the neutral-species conti-
nuity equation contributes the least computational time.

The number of iterations required for the convergence of the
large problem is higher than that of the small problem, espe-
cially for the Poisson equation as shown in Table 3, because a
much larger matrix system results from the former than the lat-
ter. The number of iterations of the large problem also increases
while more processors are used. The overall parallel performance
improves because of the increased grain size.

In brief summary, the computational time using the ILU method
is faster than that using the LU method, mainly because the LU fac-
torization is more costly in each sub-domain for the large problem.

4.3. Effect of ASM overlapping

To further explore the performance of GMRES with ASM pre-
conditioner, we study the impact on the degrees of overlapping for
ASM preconditioner for the cases of 32 processors or more. The re-
sults are summarized in Tables 4 and 5 for the ASM sub-domain
problem solved by ILU and LU methods, respectively, for the large
problem. The results for small problem cases are not shown here
due to the similar trends of the results for the large problem cases.
In general, the numbers of iterations of the cases with more over-
lapping degrees for both the ILU and the LU methods are generally
reduced to some extent for all the equations with the same num-
ber of processors as shown in Tables 4(a) and 5(a) respectively.
The more overlapping degree is used, the faster the convergence is
because of increasing rate of information propagation among var-
ious sub-domains. However, this increase of convergence pays off
with an increasing amount of data communication, which may in
turn trade off the benefit of increasing rate of convergence. The
overall runtime of test cases with different degrees of overlapping
are summarized in Tables 4(b) and 5(b). As a result, for most of
the test cases, the increased degree of overlapping does not reduce
the runtime for all types of equations. It concludes that increasing
overlapping degrees of ASM preconditioning has no advantage in
terms of runtime for discharge simulations, at least, in the current
test conditions.

4.4. Parallel performance

Figs. 6 and 7 show the speedup of the one-level overlapping
ASM preconditioning solved by the ILU and LU methods for the
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Table 3
Averaged iteration number per time step of equations with sub-domain of ASM preconditioner with one-level overlapping solved by ILU and LU methods for large problem
case (1001 × 620 cells).

Poisson Electron

CPU ILU LU CPU ILU LU

2 311.0 32.9 2 4.9 3.0
4 339.7 48.7 4 4.9 3.0
8 400.8 94.2 8 5.9 4.7

16 292.6 137.9 16 6.4 5.3
32 349.0 169.5 32 8.4 7.1
64 402.4 172.2 64 9.1 8.0

128 373.4 213.5 128 11.5 10.0

Neutral Te

CPU ILU LU CPU ILU LU

2 2.2 2.0 2 12.3 5.6
4 2.1 2.0 4 12.3 5.6
8 2.1 2.0 8 13.7 10.0

16 2.1 2.0 16 15.0 11.5
32 2.1 2.0 32 19.5 16.1
64 2.1 2.0 64 22.4 19.6

128 2.1 2.0 128 29.2 26.6

Table 4
The parallel performance of different degree of overlapping ASM preconditioner with sub-domain solved by ILU method on the large problem (1001 × 620 cells). (a) Averaged
iteration number per time step of equations. (b) The runtime per time step. “OL 1”, “OL 2”, and “OL 3” represent one-, two-, and three-level overlapping, respectively.

(a)

Poisson Electron

CPU OL1 OL2 OL3 CPU OL1 OL2 OL3

32 349.0 384.7 379.6 32 8.4 7.1 6.6
64 402.4 360.9 335.3 64 9.1 8.0 7.0

128 373.4 362.8 349.7 128 11.5 9.6 8.7

Neutral Te

CPU OL1 OL2 OL3 CPU OL1 OL2 OL3

32 2.1 2.2 2.2 32 19.5 16.7 15.3
64 2.1 2.2 2.2 64 22.4 19.0 17.1

128 2.1 2.2 2.6 128 29.2 24.0 20.4

(b)

CPU OL1 OL2 OL3

32 3.08 3.43 3.67
64 1.50 1.60 1.59

128 0.68 0.77 0.88

Table 5
The parallel performance of different degree of overlapping ASM preconditioner with sub-domain solved by LU method on the large problem (1001 × 620 cells). (a) Averaged
iteration number per time step of equations. (b) The runtime per time step. “OL 1”, “OL 2”, and “OL 3” represent one-, two-, and three-level overlapping, respectively.

(a)

Poisson Electron

CPU OL1 OL2 OL3 CPU OL1 OL2 OL3

32 169.5 149.0 132.5 32 7.1 5.6 4.9
64 172.2 144.5 128.6 64 8.0 6.1 5.1

128 213.5 205.0 155.2 128 10.0 8.0 7.9

Neutral Te

CPU OL1 OL2 OL3 CPU OL1 OL2 OL3

32 2.0 2.0 2.0 32 16.1 12.4 10.3
64 2.0 2.0 2.0 64 19.6 15.0 12.4

128 2.0 2.0 2.6 128 26.6 20.6 18.6

(b)

CPU OL1 OL2 OL3

32 4.09 4.02 4.06
64 1.88 1.97 2.09

128 0.94 1.26 1.41
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Fig. 6. Speedup of cases with sub-domain of ASM preconditioner solved by ILU and
LU methods for small problem case (501 × 310 cells).

Fig. 7. Speedup of cases with sub-domain of ASM preconditioner solved by ILU and
LU methods for large problem case (1001 × 620 cells).

Fig. 8. Proportions of time consumed by different types of equations of the demon-
stration case (1001 × 620 cells). Note that “others” includes evaluation of transport
properties and data communication among processors.

small and large problems respectively. In these two figures, we
take timings using two processors as the baseline for calculating
the speedup.

Results show the speedup achieves up to 50 times as 64 pro-
cessors are used for the small problem (Fig. 6), and levels off
afterwards with either ILU or LU solver for the sub-domain of ASM
preconditioner for the small problem. For the large problem, the
ASM with ILU sub-domain solver for GMRES is able to obtain up
to 130 times speed up using 128 processors, which is better than
that with LU method (Fig. 7). Meanwhile, the absolute runtime
of cases for ASM-ILU preconditioner are also less than those of
cases with ASM-LU preconditioner, e.g., 0.68 second/step vs. 0.94
second/step for the case of 128 processors. The above observa-
tions show that the developed parallel fluid modeling code can
be very useful in practice for simulating low-temperature plasma
discharges in greatly reducing the computational time up to two
orders of magnitude with a limited number of processors (e.g., 60–
128).

4.5. Demonstration of the results of the large problem in 5th cycle

To demonstrate the capacity of the developed parallel fluid
modeling code for predicting complex plasma phenomena, we
have conducted a complete simulation of the large problem case.
The helium discharge (with nitrogen impurity of 100 ppm) in this
simulation is driven by a nearly sinusoidal voltage with 3.0 kV in
amplitude and 25 kHz in frequency under atmospheric-pressure
condition. As mentioned earlier, there are six charged species, four
neutral species, and 43 reaction channels involved in this demon-
stration. The complete simulation run for 5 cycles took about 48
hours by using 128 processors with the time size of 5× 10−10 sec-
ond. It is also noted that the convergence and computational time
required for solving equations are varied in different phases of one
cycle; therefore, the runtime of this demonstration case may not
be consistent with the runtime given in Fig. 5.

The breakdown of computational time consumed by the solu-
tion of different type of equations is shown in Fig. 8. It takes 87.7%
of the total time for solving all governing equations and 12.3% of
that for data communication and other calculation such as evalua-
tion of transport properties and rate constants. Fig. 9 shows several
typical cycle-averaged spatial distributions of plasma properties
such as the potential, the electron temperature (Te), the number
density of electron, and the number density of N+

4 , which is the
dominant positive ion, near the exit of the parallel-plate DBD at
the 5th cycle. The average plasma potential is calculated to be 140
volts in the bulk, which is higher than those of sheaths which are
positively charged. The distribution of Te shows that the average
Te is approximately 4–5 eV in both bulk and sheaths, which is gen-
erally high as compared to those driven by MHz-level atmospheric-
pressure discharges. The electron number density is sustained at
about 1016 m−3 and N+

4 is sustained at the same order of mag-
nitude (1016). The detailed plasma physics and chemistry of this
problem will be reported elsewhere in the near future.

5. Conclusion

In the current study, we have presented a parallel two-
dimensional fluid modeling solver using the cell-centered finite-
volume method. The simulated discharge currents are compared
with the measured currents of helium DBD. The parallel perfor-
mance of the four equation types present in these plasma sim-
ulations (the Poisson equation, the electron continuity equation,
the neutral-species continuity equation, and the electron energy
density equation) are presented for the cases solved by the paral-
lel GMRES with parallel ASM preconditioning. Two problem sizes
(small and large) are studied using the ILU and LU methods for
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Fig. 9. Cycle-averaged spatial distributions of (a) potential, (b) electron temperature, (c) number density of electron, (d) number density of N+
4 in the 5th cycle.
sub-domain solution in parallel ASM preconditioning with dif-
ferent overlapping degrees. The number of cells (i.e., problem
size) required for simulation strongly depends on the geometri-
cal size, numbers of charged and neutral species, and rarefaction
of the problem. It is noted that the large problem presented in
the current study is representative of actual applications of two-
dimensional discharge simulation. The plasma chemistry investi-
gated (helium with nitrogen impurity) includes 10 species and
43 reaction channels. A practical atmospheric-pressure discharge
driven by a 25 kHz power source is also presented to demonstrate
the capability of the developed parallel code.

In summary, the computational expense associated with each
component of the plasma simulation can be sorted (in order from
most expensive to least expensive) as the Poisson equation, the
electron energy density equation, the electron continuity equation
and the neutral-species continuity equation. Increasing degrees of
ASM overlapping does not show any significant effect on the run-
time though the number of iterations is generally reduced. Results
show that an increase in performance of up to 50 times using 64
processors with either ILU or LU method is applied for the sub-
domain of ASM preconditioner for the small problem, while an
increase in performance of up to 130 times with ILU method and
60 times with LU method using 128 processors for the large prob-
lem are obtained. The results demonstrate that parallel computing
using domain decomposition with MPI for a two-dimensional fluid
modeling code can be very useful in practice in greatly reducing
the computational time up to two to three orders of magnitude
with a limited number of processors.
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