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T cells of the immune system, upon maturation, differentiate into
either Th1 or Th2 cells that have different functions. The decision
to which cell type to differentiate depends on the concentrations
of transcription factors T-bet (x1) and GATA-3 (x2). These factors
are translated by the mRNA whose levels of expression, y1 and y2,
depend, respectively, on x1 and x2 in a nonlinear nonlocal way.
The population density of T cells, φ(t, x1, x2, y1, y2), satisfies a hy-
perbolic conservation law with coefficients depending nonlinearly
and nonlocally on (t, x1, x2, y1, y2), while the xi , yi satisfy a sys-
tem of ordinary differential equations. We study the long time
behavior of φ and show, under some conditions on the parameters
of the system of differential equations, that the gene expressions
in the T-cell population aggregate at one, two or four points, which
connect to various cell differentiation scenarios.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The development of a multicellular organism from a single fertilized egg cell to specialized cells
depends on programs of gene expression. Following the initial stage of cell determination is a mat-
uration process, called differentiation, by which cells acquire specific recognizable phenotypes and
functions. For example, the T lymphocytes of the immune system, upon maturation, differentiate
into either Th1 or Th2 cells. These cells are different by the repertoire of chemokines they produce.
Th1 cells secrete IFNγ needed to combat intracellular pathogens and, if abnormal, are associated with
inflammatory and autoimmune diseases. Th2 cells secrete cytokines that activate B cells to produce
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antibodies against extracellular pathogens and, if abnormal, are associated with asthma and other
allergies.

The variables of primary interest in a quantitative description of gene expression are the number
of mRNA copies of a given gene and the number of transcription factors (proteins). The mRNA are
translated into proteins, and transcription factors promote the mRNA transcription by genes. Hence in
order to determine quantitatively the cellular concentration of mRNA and protein, we need a math-
ematical model that connects these two concentrations. In terms of the balance equations, these
concentrations are governed by

d(mRNA)

dt
= vtranscription − vmRNA degradation, (1.1)

d(protein)

dt
= vtranslation − vprotein degradation, (1.2)

where the v ’s are the rates of transcription, translation, and degradation as indicated; cf. [9].
In the case of T cell differentiation, the decision to which cell type to differentiate, Th1 or Th2,

depends on proteins x1 and x2, and their mRNA y1 and y2, where x1 is the concentration of transcrip-
tion factor T-bet and x2 is the concentration of transcription factor GATA-3; yi is the concentration of
the mRNA which translates into xi . By (1.2), we then have

dxi

dt
= vi yi − τi xi =: gi, (1.3)

where vi, τi are constants. On the other hand, the rate of change dyi/dt is far more complex, since
vtranscription depends on intrinsic signals from all the T cells and on extrinsic signals by IL4 and IL12.
Yates et al. [10] introduced the following model for the rate of the transcription of xi :

vtranscription =
(
αi

xn
i

kn
i + xn

i

+ σi
Si

ρi + Si

)
· 1

1 + x j/γ j
+ βi,

where αi , ki , σi , ρi , γi , βi are constants and j = 2 if i = 1, j = 1 if i = 2. Here Si is the combined
intrinsic/extrinsic signal, and x j inhibits xi ( j �= i); the autocatalytic process, given by αi xn

i /(k
n
i + xn

i ),
is modeled by Hill’s dynamics with exponents n � 2. The first balance equation (1.1) then becomes

dyi

dt
= −μi yi +

(
αi

xn
i

kn
i + xn

i

+ σi
Si

ρi + Si

)
· 1

1 + x j/γ j
+ βi =: f i, (1.4)

for (i, j) = (1,2) and (i, j) = (2,1).
Introducing the population density of cells with concentration (x1, x2, y1, y2) at time t , φ(t, x1, x2,

y1, y2), the mass conservation law then yields

∂φ

∂t
+

2∑
i=1

∂

∂xi
(giφ) +

2∑
i=1

∂

∂ yi
( f iφ) = g∗φ, (1.5)

where g∗ is the growth factor.
For a healthy normal individual in homeostasis, the expressions of mRNA/T-bet and mRNA/GATA-3

are at stationary levels, and, at intermediate times, Th0 does not differentiate into Th1 or Th2. How-
ever, when a strong signal Si is generated in response to pathogens, the Th cells differentiate into
either Th1 or Th2, but usually not both. In the present model, a single cell with high (low) con-
centration of T-bet (x1) and low (high) concentration of GATA-3 (x2) corresponds to the polarization
toward differentiation into Th1 (Th2). For cell population model (1.5), the expressions of mRNA/T-bet
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and mRNA/GATA-3 may aggregate at one or several points y1/x1 and y2/x2, respectively. For those
cells whose expressions aggregate at the point with low-x1 and low-x2, cell differentiation does not
occur, while the cells whose expressions aggregate at the point with high (low) x1 and low (high) x2,
differentiate into Th1 (Th2). The model parameters (although similar to those in Yates et al. [10]) are
not experimentally known; hence our aim is to show that with a specific choice of parameters, the
present model illustrates the main biological phenomena on cell differentiation. The fact that we end
up with 1, 2, or 4 limit aggregations may not be biologically significant; the model with other param-
eters may end up with different number of aggregation points. What is important is that although
there may be a number of limit points, only points with significant contrast of protein concentrations,
i.e., x2 � x1 or x1 � x2, indicate cell differentiation. In a recent paper, we studied the asymptotic
behavior of the reduced system (with yi ≡ xi )

dxi

dt
= −μi xi +

(
αi

xn
i

kn
i + xn

i

+ σi
Si

ρi + Si

)
· 1

1 + x j/γ j
+ βi =: f̃ i, (1.6)

for (i, j) = (1,2) and (i, j) = (2,1), with the conservation law

∂φ

∂t
+

2∑
i=1

∂

∂xi
( f̃ iφ) = g∗φ, (1.7)

where φ = φ(t, x1, x2), and proved under some conditions on the parameters of (1.6) that φ(t, x1, x2)

converges to a linear combination of one, two, or four Dirac functions, as t → ∞.
In the present paper, we consider the more general model (1.3), (1.4), (1.5) and establish

similar asymptotic behaviors for the population density of T cells, φ(t, x1, x2, y1, y2). The proof,
however, involves a far deeper analysis than the analysis we used in the reduced case of (1.6)
and (1.7).

2. The mathematical model

Denote x1 and x2 as the concentrations of transcription factors T-bet and GATA-3, respectively, and
by y1 and y2 their respective mRNA concentrations. By combining the models of Yates et al. [10] and
Mariani et al. [9] (see also [1]), we obtain the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1

dt
= −μ1 y1 +

(
α1

xn
1

kn
1 + xn

1
+ σ1

S1

ρ1 + S1

)
1

1 + x2/γ2
+ β1 =: f1(x1, x2, y1, S1),

dy2

dt
= −μ2 y2 +

(
α2

xn
2

kn
2 + xn

2
+ σ2

S2

ρ2 + S2

)
1

1 + x1/γ1
+ β2 =: f2(x1, x2, y2, S2),

dx1

dt
= ν1 y1 − τ1x1 =: g1(x1, y1),

dx2

dt
= ν2 y2 − τ2x2 =: g2(x2, y2).

(2.1)

The first term on the right-hand side of the yi-equation represents the rate of mRNA degradation,
and βi is a constant basal rate of mRNA synthesis. The autoactivation rate of protein xi is represented
by the term

αi
xn

i

kn + xn

i i
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where n � 2 is the Hill exponent that tunes the sharpness of the activation switch. The contribution
of combined cytokine signaling to the rate of growth in yi is given by the term

σi
Si

ρi + Si
.

The cross-inhibition between y1 and y2 occurs at both the autoactivation level and the cytokine
(membrane) signaling level, and is represented by the factors

1

1 + x j/γ j
.

The parameter γ j is the value of x j at which the ratio of production of yi (i �= j), due to the combined
autoactivation and cytokine signaling, is halved.

We denote by φ(t, x1, x2, y1, y2) the population density of T cells with protein concentration
(x1, x2) and mRNA concentration (y1, y2) at time t . Then the total levels of expression of T-bet and
GATA-3, at time t in the cell population are given by

∫
xiφ̃(t, x1, x2)dx1 dx2,

for i = 1 and i = 2, respectively, where φ̃(t, x1, x2) = ∫
φ(t, x1, x2, y1, y2)dy1 dy2. If we denote by

Ei(t) the exogenous (non-T cell) signals that stimulate T-bet and GATA-3 expressions, then the total
cytokine Si is given by

Si(t) = Ei(t) + ∫
xiφ̃(t, x1, x2)dx1 dx2∫

φ̃(t, x1, x2)dx1 dx2
, i = 1,2. (2.2)

Here, a normalization by total cell numbers is adopted in order to impose the limitation of access
to cytokines due to cell crowding. The evolution of the population density is then derived from the
equation of continuity, or mass conservation law:

∂φ

∂t
+ ∂

∂x1
(g1φ) + ∂

∂x2
(g2φ) + ∂

∂ y1
( f1φ) + ∂

∂ y2
( f2φ) = g∗φ, (2.3)

where g∗ is a growth factor. Note that (2.3) is associated with the velocity field described by

dxi(t)

dt
= gi

(
xi(t), yi(t)

)
, (2.4)

dyi(t)

dt
= f i

(
t, xi(t), yi(t), Si(t)

)
, (2.5)

where f i and gi are defined in (2.1). We shall consider system (2.4)–(2.5) in the rectangular region

Ω = {0 � x1 � B1, 0 � x2 � B2, 0 � y1 � A1, 0 � y2 � A2}
where

Bi = νi

τi
Ai, i = 1,2, (2.6)

Ai = αi + σi + βi

μ
, i = 1,2, (2.7)
i



A. Friedman et al. / J. Differential Equations 252 (2012) 5679–5711 5683
and set

Ω̃ = {0 � x1 � B1, 0 � x2 � B2}.

Then Ω is a positively invariant and an attracting set for (2.4)–(2.5). Therefore, in order to solve (2.3)
for (x1, x2, y1, y2) in Ω , we need to assign both initial and boundary conditions to φ:

φ(0, x1, x2, y1, y2) = φ0(x1, x2, y1, y2) in Ω, (2.8)

φ(t, x1, x2, y1, y2)|∂Ω = 0 for all t > 0. (2.9)

Assuming, for simplicity, that g∗ = g∗(t), and setting

G(t) =
t∫

0

g∗(s)ds, N0 =
∫
Ω

φ0(x1, x2, y1, y2), (2.10)

ψ(t, x1, x2, y1, y2) = e−G(t)φ(t, x1, x2, y1, y2), (2.11)

ψ̃(t, x1, x2) =
∫

ψ(t, x1, x2, y1, y2)dy1 dy2,

we can replace (2.3) by the simpler equation

∂ψ

∂t
+ ∂

∂x1
(g1ψ) + ∂

∂x2
(g2ψ) + ∂

∂ y1
( f1ψ) + ∂

∂ y2
( f2ψ) = 0, (2.12)

and rewrite Si(t) in the form

Si(t) = Ei(t)e−G(t)

N0
+

∫
xiψ̃(t, x1, x2)dx1 dx2

N0
, (2.13)

where N0 is the initial total population, and the integral in (2.13) is taken over Ω̃.

Let Φ(t, x1, x2, y1, y2) denote the solution map (flow map) of (2.4)–(2.5) and set Ω(t) = Φ(t,Ω).
Integrating the transport equation (2.12) over Ω(t), we find that

d

dt

∫
Ω(t)

ψ(t, x1, x2, y1, y2)dx1 dx2 dy1 dy2 = 0.

Furthermore, if Ω(t) → (ā1, ā2, ā3, ā4) as t → ∞, then for any continuous function h(x1, x2, y1, y2),

∫
Ω

h(x1, x2, y1, y2)ψ(t, x1, x2, y1, y2)dx1 dx2 dy1 dy2 → h(ā1, ā2, ā3, ā4)N0 as t → ∞,

i.e.,

ψ(t, x1, x2, y1, y2) → N0δ(ā1,ā2,ā3,ā4) in measure, as t → ∞.

In the subsequent sections, we study the asymptotic behavior of the solutions of (2.4)–(2.5) in con-
junction with the behavior of Ω(t). Similarly to [2], one can prove that the system (2.3), (2.8), (2.9)
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has a unique solution for all t � 0. Hence we shall focus here only on the asymptotic behavior of the
solution. We shall prove that Ω(t) converges to one, two, or four points, as t → ∞, depending on the
parameters of the dynamical system (2.4)–(2.5). The asymptotic study of dynamical system (2.4)–(2.5)
will require a far deeper analysis than that developed for Eqs. (1.6)–(1.7) in [2].

3. Upper and lower dynamics

The system (2.1) can be written as a system of two second-order equations,

d2x1

dt2
+ (τ1 + μ1)

dx1

dt
= h1

(
x1, x2, S1(t)

)
, (3.1)

d2x2

dt2
+ (τ2 + μ2)

dx2

dt
= h2

(
x1, x2, S2(t)

)
, (3.2)

where

h1
(
x1, x2, S1(t)

) = −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

S1(t)

ρ1 + S1(t)

)
1

1 + x2/γ2
+ ν1β1,

h2
(
x1, x2, S2(t)

) = −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

S2(t)

ρ2 + S2(t)

)
1

1 + x1/γ1
+ ν2β2.

We introduce the upper bounds ĥi for the functions hi :

ĥi(xi) = −μiτi xi + νi

(
αi

xn
i

kn
i + xn

i

+ σi
Ŝ i

ρi + Ŝ i

)
+ νiβi for 0 � xi < ∞, i = 1,2, (3.3)

where Ŝ i = supt>0 Si(t), and lower bounds ȟi for hi :

ȟ1(x1) = −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Š1

ρ1 + Š1

)
· 1

1 + B2/γ2
+ ν1β1, (3.4)

ȟ2(x2) = −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Š2

ρ2 + Š2

)
· 1

1 + B1/γ1
+ ν2β2, (3.5)

where Š i = inft>0 Si(t). Clearly,

ĥi(0) > 0, ĥ′
i(0) < 0, ĥi(xi) < 0,

ȟi(0) > 0, ȟ′
i(0) < 0, ȟi(xi) < 0,

for Bi � xi < ∞. Also

ĥ′
i(xi) = −μiτi + νiαi

nkn
i xn−1

i

(kn
i + xn

i )
2
,

and, as easily verified, the maximum of the last term is attained at the point

ξ̃i = ki

(
n − 1

n + 1

)1/n

, and ĥ′
i(ξ̃i) = −μiτi + νiαiñ

k
(3.6)
i
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where

ñ = (n + 1)1+1/n(n − 1)1−1/n/4n.

The maximum of ȟ′
i is also attained at the same point ξ̃i with

ȟ′
i(ξ̃i) = −μiτi + νiαiñ

ki
· 1

1 + B j/γ j

for (i, j) = (1,2) and (i, j) = (2,1). Clearly, ȟ′
i(ξ) < ĥ′

i(ξ) for all ξ .
The systems

d2x̂i

dt2
+ (τi + μi)

dx̂i

dt
= ĥi(x̂i) (i = 1,2), (3.7)

d2x̌i

dt2
+ (τi + μi)

dx̌i

dt
= ȟi(x̌i) (i = 1,2), (3.8)

will be used to provide the upper and lower bounds for the dynamics of (3.1)–(3.2).
It will be convenient to use a change of variables (x1, y1, x2, y2) ↔ (x1, v1, x2, v2) where

v1 = ν1 y1 − τ1x1, v2 = ν2 y2 − τ2x2

so that the system (2.1) can be rewritten in the form

dxi

dt
= vi, (3.9)

dvi

dt
= −(τi + μi)vi + hi(x1, x2, Si), (3.10)

i = 1,2, in the transformed region

Ω∗ = {0 � x1 � B1, −τ1x1 � v1 � ν1 A1 − τ1x1, 0 � x2 � B2, −τ2x2 � v2 � ν2 A2 − τ2x2}.

Notice that Ω∗ remains positively invariant under (3.9)–(3.10).
We need several lemmas to study the asymptotic behavior of (3.9)–(3.10). The first one deals with

a system

du

dt
= v, (3.11)

dv

dt
= −δv + q(u), (3.12)

where δ is a positive constant and q is a continuously differentiable function on [0,∞). We shall
consider (3.11)–(3.12) on a region D ⊆ [0,∞) × R, which is positively invariant under the flow Ψt

generated from the system. Let Bε(u, v) ⊂ R
2 be an open disc with center (u, v) and radius ε , and K

be a compact set in D .
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Lemma 3.1. Assume that limu→∞ q(u) = −∞. Then the following holds.

(i) Every solution of (3.11)–(3.12) tends to the set {(u,0) ∈ D: q(u) = 0}, as t → ∞; if, in addition, the set of
zeros for q is finite, then each solution of (3.11)–(3.12) tends to a single point in set {(u,0) ∈ D: q(u) = 0},
as t → ∞.

(ii) If q has a unique zero a with q′(a) < 0 and (a,0) ∈ D, then A := {(a,0)} is the global attractor; thus, for
any small ε > 0, there exists a T such that Ψt(K ) ⊂ Bε(a,0), for all t � T .

(iii) If q has exactly three zeros a,b, c with a < b < c, q′(a) < 0, q′(b) > 0, q′(c) < 0, and (a,0), (b,0),

(c,0) ∈ D, then A := W u(b,0) ∪ {(a,0)} ∪ {(c,0)} is the global attractor, where W u(b,0) is the
unstable manifold of (b,0). Moreover, for any small ε > 0, there exists a T > 0 such that |Ψt(K \
W s

ε(b,0)) − {(a,0), (c,0)}| < ε , for all t � T , where W s
ε(b,0) := {(u, v): |(u, v) − W s(b,0)| < ε}

is the ε-neighborhood of W s(b,0).

Proof. (i) Consider the Lyapunov function

V (u, v) = 1

2
v2 −

u∫
0

q(s)ds.

Then

V̇ (u, v) = v · [−δv + q(u)
] − q(u) · v

= −δv2 � 0, (3.13)

and V̇ = 0 if and only if v = 0. All solutions are bounded in forward time due to limu→∞ q(u) = −∞.
By LaSalle’s invariance principle [4,5], every solution of (3.11)–(3.12) tends to the maximal invariant
set in

{
(u, v): V̇ (u, v) = 0

} = {
(u,0)

}

which is the set

{
(u,0): q(u) = 0

}
,

as t → ∞. Since the ω-limit set of an orbit is connected, if q has a finite number of zeros, then the
ω-limit set for an orbit of (3.11)–(3.12) is a single point (u,0), where u is a zero of q.

(ii) If q has a unique zero a with q′(a) < 0, then (a,0) is a sink. From (3.13), it follows that
{(a,0)} is the global attractor for (3.11)–(3.12). The assertion about Ψt(K ) ⊂ Bε(a,0) for t � T follows
from [5,8].

(iii) If q has exactly three zeros a,b, c with a < b < c and q′(a) < 0, q′(b) > 0, q′(c) < 0, then
(a,0), (c,0) are both sinks, and (b,0) is a saddle, for system (3.11)–(3.12). By (3.13), the level curve
analysis, and Poincare–Bendixson Theorem, the unstable manifold W u(b,0) for (b,0) consists of het-
eroclinic orbits connecting (b,0) with (a,0) and with (c,0) respectively; cf. Fig. 1. It follows that
A := W u(b,0) ∪ {(a,0)} ∪ {(c,0)} is the global attractor for (3.11)–(3.12); cf. [6, p. 395]. Therefore,
for any ε > 0 there exists a T > 0, so that Ψt(K ) falls within a distance ε > 0 from A, for all t � T .
Moreover, for every point (u, v) in compact set K \ W s

ε(b,0), Φt(u, v) approaches (a,0) or (c,0),
as t tends to infinity. By the continuity with respect to initial condition and the compactness of K ,
there exists a T > 0 such that Ψt(u, v) ∈ Bε(a,0) or Bε(c,0), for all (u, v) ∈ K \ W s

ε(b,0), for all
t � T . �
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Fig. 1. Stable manifold W s(b,0) (indicated as blue lines) and unstable manifold W u(b,0) (indicated as red lines) of the saddle
point (b,0) of (3.11)–(3.12). The green dots allocate three equilibria (a,0), (b,0), (c,0). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Lemma 3.1 applies to system (3.7)–(3.8) on the domain Di , i = 1,2, respectively, where

Di := {
(xi, vi): 0 � xi � Bi, −τi xi � vi � νi Ai

} ⊂R
2.

In particular, every solution x̂i(t) (resp., x̌i(t)) of (3.7) (resp., (3.8)) tends to the set of zeros of ĥi

(resp., ȟi), as t → ∞, i = 1,2.

Lemma 3.2. Consider the non-autonomous equation

d2z

dt2
+ (τ + μ)

dz

dt
+ a(t)z = f (t), 0 < t < ∞, (3.14)

where a(t) � α, f (t) � 0 for 0 � t < ∞, and f (0) > 0, 0 < 4α < (τ + μ)2 . If z(0) = (dz/dt)(0) = 0, then
z(t) � 0 for all t � 0.

Proof. We rewrite (3.14) in the form

d2z

dt2
+ (τ + μ)

dz

dt
+ αz = f (t) + (

α − a(t)
)
z(t). (3.15)

Eq. (3.15) has two linearly independent homogeneous solutions eλ1t , eλ2t where

λ1,2 = −(τ + μ) ± √
(τ + μ)2 − 4α

2

and, by assumption, λ1 < λ2 < 0. Since z(0) = (dz/dt)(0) = 0, we can represent z, by the variation of
constant formula, in the form

z(t) =
t∫

0

eλ2(t−s) − eλ1(t−s)

(λ2 − λ1)

[
f (s) + (

α − a(s)
)
z(s)

]
ds; (3.16)

indeed observe that the right-hand side vanishes at t = 0 together with its first derivative.
Since f (0) − (α − a(0))z(0) = f (0) > 0, z(t) > 0 for small t . We claim that z(t) > 0 for all t > 0.

Indeed, otherwise there exists a smallest time t = t0 such that z(t) > 0 if 0 < t < t0 and z(t0) = 0.
But since α − a(t) � 0, we have f (t) + (α − a(t))z(t) > 0 for 0 < t < t0 and from (3.16) we obtain
z(t0) > 0, a contradiction. �
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Remark 3.1. By approximation, the lemma remains true if f (0) = 0 and 4α � (τ + μ)2.

Lemma 3.2 can be used to compare solutions (x1(t), x2(t)) of (3.1)–(3.2) with solutions x̂1(t), x̂2(t)
of (3.7), and x̌1(t), x̌2(t) of (3.8), provided they have the same initial conditions.

Lemma 3.3. Let (x1(t), x2(t)) be a solution of (3.1), (3.2). Suppose

min
{

ȟ′
i(η): η ∈ [0, Bi]

}
�μiτi, i = 1 or i = 2.

(i) If a solution x̂i(t) of (3.7) satisfies

x̂i(0) = xi(0), (dx̂i/dt)(0) = (dxi/dt)(0)

then

x̂i(t) � xi(t) for all t > 0.

(ii) If a solution x̌i(t) of (3.8) satisfies

x̌i(0) = xi(0), (dx̌i/dt)(0) = (dxi/dt)(0)

then

x̌i(t) � xi(t) for all t > 0.

(iii) If solutions x̂i(t), x̌i(t) of (3.7)–(3.8) satisfy

x̂i(0) = x̌i(0), (dx̂i/dt)(0) = (dx̌i/dt)(0)

then

x̂i(t) � x̌i(t) for all t > 0.

Proof. From (3.3), (3.4), and (3.5), it follows that

ĥ′
i(η) �−μiτi, ȟ′

i(η) � −μiτi . (3.17)

Consider case (i). The function X = x̂i − xi satisfies

d2 X

dt2
+ (τi + μi)

dX

dt
= ĥi(x̂i) − hi(x1, x2)

and the right-hand side is equal to

ĥi(x̂i) − ĥi(xi) + ĥi(xi) − hi(x1, x2) = ĥ′
i(ηi)X + ĥi(xi) − hi(x1, x2)

where ηi = ηi(t) lies between xi and x̂i , by the mean value theorem. Hence

d2 X
2

+ (τi + μi)
dX + a(t)X = ĥi(xi) − hi(x1, x2)
dt dt



A. Friedman et al. / J. Differential Equations 252 (2012) 5679–5711 5689
where

a(t) = −ĥ′
i(ηi) �μiτi

by (3.17) and ĥi(xi) − hi(xi, x j) � 0, (i, j) = (1,2), (i, j) = (2,1). Applying Lemma 3.2 and Remark 3.1,
we conclude that X(t)� 0 for all t > 0. Hence

x̂i(t) � xi(t) for all t > 0.

The proofs of cases (ii) and (iii) are similar. �
3.1. Single equilibrium

In this section, let us discuss the conditions under which ĥi (resp., ȟi ) has a single zero and,
consequently, by Lemma 3.1, all solutions to (3.7) (resp., (3.8)) converge to a single point (âi,0) (resp.,
(ǎi,0)), as t → ∞.

According to (3.6), if

μiτi >
νiαiñ

ki
(3.18)

then ĥ′
i(ξ̃i) < 0 and, consequently,

−μiτi � ĥ′
i(xi) < 0 for all 0 � xi � Bi;

then also

ȟ′
i(xi) < 0 and

∂hi(x1, x2)

∂xi
< 0 for 0 � xi � Bi .

Note that ∂hi(x1, x2)/∂xi (with x2 fixed if i = 1 and x2 fixed if i = 2) attains its maximum at the same
point xi = ξ̃i where ĥi(xi) attains its maximum.

In addition to condition (3.18), we consider other situations which are more of biological interest.
Analogously to [2], we assume that, for a given i (i = 1 or i = 2),

μiτi <
νiαiñ

ki
· 1

1 + B j/γ j
, j �= i. (3.19)

These conditions are equivalent to ȟ′
i(ξ̃i) > 0 and, in that case, if ξ̃i < Bi then each of ĥi , ȟi has

two critical points. Let p̂m
i , p̂M

i (resp., p̌m
i , p̌M

i ) denote the points where ĥi (resp., ȟi) achieves its

local minimum and maximum. Each of functions ĥi, ȟi may have one or three zeros as illustrated in
Fig. 2.

We consider the following cases for i = 1 or i = 2:

(Mai) ĥi(p̂M
i ) < 0;

(Mbi) ȟi(p̌m
i ) > 0;

(Bi) ĥi(p̂m
i ) < 0, ȟi(p̌M

i ) > 0.

From Lemma 3.1 we deduce the following:
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Fig. 2. ĥ1 and ȟ1 have one zero in cases (a), (b), (c), and three zeros in case (d).

Proposition 3.4. Suppose one of the conditions (3.18) or (3.19) with (Mai), or (3.19) with (Mbi) holds for
i = 1 or i = 2. Then every solution of (3.7) (resp., (3.8)) converges to a single equilibrium (âi,0) (resp., (ǎi,0)).

3.2. Multiple equilibria

In this section we assume that (3.19) and (Bi) hold where i = 1 or i = 2. Then the dynamics (3.7)
(resp., (3.8)) has three equilibrium points: (âi,0), (b̂i,0), (ĉi,0) (resp., (ǎi,0), (b̌i,0), (či,0)) where âi <

b̂i < ĉi (resp., ǎi < b̌i < či) and ǎi < âi , či < ĉi , but

b̌i > b̂i . (3.20)

From Lemma 3.1, we conclude the following proposition for i = 1 or i = 2.
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Proposition 3.5. Under the conditions (3.19) and (Bi), every solution of (3.7) (resp., (3.8)) converges to one
of the equilibrium points (âi,0), (b̂i,0), (ĉi,0) (resp., (ǎi,0), (b̌i,0), (či,0)).

It can easily be computed that the equilibrium points (âi,0), (ĉi,0) (resp., (ǎi,0), (či,0)) of (3.7)
(resp., (3.8)) are both sinks, whereas the equilibrium (b̂i,0) (resp., (b̌i,0)) is a saddle. In addition,
one branch of the unstable manifold for (b̂i,0) (resp., (b̌i,0)) converges to (âi,0) (resp., (ǎi,0)), and
the other branch converges to (ĉi,0) (resp., (či,0)), as t → ∞, cf. Fig. 1. We denote by W s(b̂i) (resp.,
W s(b̌i)) the (one-dimensional) stable manifold for (b̂i,0) (resp., (b̌i,0)) and set ŷi = dx̂i/dt , y̌i =
dx̌i/dt . We partition the phase plane for (3.7) and (3.8) respectively

{
(x̂i, ŷi): 0 � x̂i � Bi, ŷi ∈R

} = W s(b̂i) ∪ U (âi) ∪ U (ĉi),

{
(x̌i, y̌i): 0 � x̌i � Bi, y̌i ∈R

} = W s(b̌i) ∪ U (ǎi) ∪ U (či),

where U (p) is the basin of attraction for sink (p,0) = (âi,0), (ĉi,0), (ǎi,0), (či,0). Notice that W s(b̂i)

and W s(b̌i) do not intersect. Indeed, if they intersect at one point (u0, v0), then we can apply
Lemma 3.3(iii) with initial point (u0, v0) and deduce that b̂i < b̌i , a contradiction to (3.20). In ad-
dition, W s(b̂i) lies on the left-hand side of W s(b̌i), again by Lemma 3.3(iii). Moreover, W s(b̂i) (resp.,
W s(b̌i)) is tangent at (b̂i,0) (resp., (b̌i,0)) to the stable subspace Es which is given, respectively, by

Es(b̂i,0) = span

{(
1,

−(τi + μi) −
√

(τi + μi)
2 + 4ĥ′

i(b̂i)

2

)}
,

Es(b̌i,0) = span

{(
1,

−(τi + μi) −
√

(τi + μi)
2 + 4ȟ′

i(b̌i)

2

)}
.

Let (x̂i(t; u0, v0), ŷi(t; u0, v0)) (resp., (x̌i(t; u0, v0), y̌i(t; u0, v0))) be the solution to (3.7) (resp., (3.8)),
starting from point (u0, v0) at t = 0, i = 1,2. Clearly, if (u0, v0) ∈ U (âi) ∩ U (ǎi), then as t → ∞,

(
x̂i(t; u0, v0), ŷi(t; u0, v0)

) → (âi,0),
(
x̌i(t; u0, v0), y̌i(t; u0, v0)

) → (ǎi,0);

if (u0, v0) ∈ U (ĉi) ∩ U (či), then

(
x̂i(t; u0, v0), ŷi(t; u0, v0)

) → (ĉi,0),
(
x̌i(t; u0, v0), y̌i(t; u0, v0)

) → (či,0);

if (u0, v0) ∈ [U (ĉi) ∩ U (ǎi)], then

(
x̂i(t; u0, v0), ŷi(t; u0, v0)

) → (ĉi,0),
(
x̌i(t; u0, v0), y̌i(t; u0, v0)

) → (ǎi,0) as t → ∞.

In addition, U (âi) ∩ U (či) = ∅, according to Lemma 3.3. As seen in Fig. 3, W s(b̌i) lies to the right of
W s(b̂i). Orbits of (3.9)–(3.10) cannot enter the region bounded by W s(b̌i) and W s(b̂i), but an orbit
initially from this region may exit it.
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Fig. 3. Stable manifolds W s(b̂1), W s(b̌1) (indicated as blue lines) and unstable manifolds W u(b̂1), W u(b̌1) (indicated as red
lines) of (b̂1,0) and (b̌1,0). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4. Asymptotic behavior: single limit point

As in [2], we shall introduce an iterative scheme to prove convergence to a single point; the last
step in the convergence proof will require the following condition:

ν1(α1 + σ1)

γ2
<

∣∣∣∣μ1τ1 − ν1α1ñ

k1

∣∣∣∣ − ν1σ1

ρ1
,

ν2(α2 + σ2)

γ1
<

∣∣∣∣μ2τ2 − ν2α2ñ

k2

∣∣∣∣ − ν2σ2

ρ2
. (4.1)

We also assume that functions G(t) (in (2.10)) and Ei(t) (in (2.13)) satisfy the following conditions:

lim
t→∞ G(t) and lim

t→∞ Ei(t) exist. (4.2)

Theorem 4.1. Assume that (3.18) holds for i = 1 and i = 2, and that (4.1) and (4.2) hold. Then every solution
of (3.9)–(3.10) converges to a single point (ā1,0, ā2,0), as t → ∞.

Corollary 4.2. The solution ψ of (2.8)–(2.13) has the following asymptotic behavior: ψ(t, x1, x2, y1, y2) →
N0δ(ā1,ā2,τ1ā1/ν1,τ2ā2/ν2) in measure, as t → ∞.

Proof of Theorem 4.1. Set, for t � 0,

Smin
i (t) = inf

{
Si(s): s ∈ [t,∞)

}
, Smax

i (t) = sup
{

Si(s): s ∈ [t,∞)
}
.

Then Smin
i (t) � Si(t) � Smax

i (t). Note that Smin
i (t) is nondecreasing, Smax

i (t) is nonincreasing, and

Smin
i (t)

ρi + Smin
i (t)

� Si(t)

ρi + Si(t)
�

Smax
i (t)

ρi + Smax
i (t)

for t � 0.

Under the condition (3.18), ĥi (resp., ȟi ) is a strictly decreasing function, and has a single zero, denoted
by âi (resp., ǎi). Let (x1(t), v1(t), x2(t), v2(t)) be the solution to (3.9)–(3.10), starting from arbitrary
initial point (x1(0), v1(0), x2(0), v2(0)) ∈ Ω∗ . By Lemmas 3.1(ii), 3.3 and Proposition 3.4, for any small
ε0 > 0, there exists a time T0 > 0 such that
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(
x1(t), x2(t)

) ∈ Ω(0) := [ǎ1 − ε0, â1 + ε0] × [ǎ2 − ε0, â2 + ε0]
⊂ [0, B1] × [0, B2],

for t � T0. For the following use of iteration argument, we set ǎ(0)
i = ǎi , â(0)

i = âi . We define

ĥ(1)
1 (x1) = −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0)

ρ1 + Smax
1 (T0)

)
· 1

1 + (ǎ(0)
2 − ε0)/γ2

+ ν1β1,

ȟ(1)
1 (x1) = −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T0)

ρ1 + Smin
1 (T0)

)
· 1

1 + (â(0)
2 + ε0)/γ2

+ ν1β1,

ĥ(1)
2 (x2) = −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T0)

ρ2 + Smax
2 (T0)

)
· 1

1 + (ǎ(0)
1 − ε0)/γ1

+ ν2β2,

ȟ(1)
2 (x2) = −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (T0)

ρ2 + Smin
2 (T0)

)
· 1

1 + (ǎ(0)
1 + ε0)/γ1

+ ν2β2.

Then ȟ(0)
i (xi) < ȟ(1)

i (xi) < ĥ(1)
i (xi) < ĥ(0)

i (xi) for xi ∈ [0, Bi], i = 1,2. Let â(1)
i and ǎ(1)

i denote the unique

zeros of ĥ(1)
i and ȟ(1)

i , respectively. Then â(1)
i < â(0)

i and ǎ(1)
i > ǎ(0)

i . Furthermore,

ȟ(1)
i (xi) � hi

(
x1, x2, Si(t)

)
� ĥ(1)

i (xi)

for all (x1, x2) ∈ Ω(0) , t � T0, i = 1,2, and ȟ(1)
i (xi) > 0 for xi < ǎ(1)

i , ĥ(1)
i (xi) < 0 for xi > â(1)

i . Hence for
any small ε1 > 0, there exists a T1 > T0 such that

(
x1(t), x2(t)

) ∈ Ω(1) := [
ǎ(1)

1 − ε1, â(1)
1 + ε1

] × [
ǎ(1)

2 − ε1, â(1)
2 + ε1

] ⊂ Ω(0),

for all t � T1, for the solution (x1(t), v1(t), x2(t), v2(t)) to (3.9)–(3.10), starting from (x1(0), x2(0),
v1(0), v2(0)) ∈ Ω∗ . We can proceed in a similar manner to define successively ĥ(k)

i and ȟ(k)
i , k � 2, by

ĥ(k)
1 (x1) = −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

)
· 1

1 + (ǎ(k−1)
2 − εk−1)/γ2

+ ν1β1,

ȟ(k)
1 (x1) = −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

)
· 1

1 + (â(k−1)
2 + εk−1)/γ2

+ ν1β1,

ĥ(k)
2 (x2) = −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (Tk−1)

ρ2 + Smax
2 (Tk−1)

)
· 1

1 + (ǎ(k−1)
1 − εk−1)/γ1

+ ν2β2,

ȟ(k)
2 (x2) = −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (Tk−1)

ρ2 + Smin
2 (Tk−1)

)
· 1

1 + (â(k−1)
1 + εk−1)/γ1

+ ν2β2,

and their zeros â(k)
i , ǎ(k)

i , i.e.,

ĥ(k+1)
i

(
â(k)

i

) = 0, ȟ(k+1)
i

(
ǎ(k)

i

) = 0. (4.3)
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We can then prove that for any small εk > 0, there exists a Tk > 0 such that (x1(t), x2(t)) ∈ Ω(k) :=
[ǎ(k)

1 −εk, â(k)
1 +εk]×[ǎ(k)

2 −εk, â(k)
2 +εk] ⊂ Ω(k−1) for t � Tk , for any solution (x1(t), v1(t), x2(t), v2(t))

starting from (x1(0), v1(0), x2(0), v2(0)) ∈ Ω∗ . We may clearly assume that Tk → ∞ and εk → 0 as
k → ∞.

Note that for each i = 1,2, {ǎ(k)
i −εk} is an increasing sequence, {â(k)

i +εk} is a decreasing sequence,

and ǎ(k)
i − εk < â(k)

i + εk for each k. Hence,

ǎ∗
i = lim

k→∞
ǎ(k)

i , â∗
i = lim

k→∞
â(k)

i exist, and ǎ∗
i � â∗

i .

We claim that the intersection
⋂∞

k=1 Ω(k) consists of just one point. To prove it, we assume that⋂∞
k=1 Ω(k) is not a single point, so that â∗

i > ǎ∗
i for either i = 1 or i = 2 (or both) and proceed to

derive a contradiction. By passing to the limit in (4.3), we obtain

−μ1τ1ǎ∗
1 + ν1

[
α1

(ǎ∗
1)

n

kn
1 + (ǎ∗

1)
n

+ σ1
Š1

ρ1 + Š1

]
· 1

1 + â∗
2/γ2

+ ν1β1 = 0, (4.4)

−μ2τ2â∗
2 + ν2

[
α2

(â∗
2)

n

kn
2 + (â∗

2)
n

+ σ2
Ŝ2

ρ2 + Ŝ2

]
· 1

1 + ǎ∗
1/γ1

+ ν2β2 = 0, (4.5)

−μ1τ1â∗
1 + ν1

[
α1

(â∗
1)

n

kn
1 + (â∗

1)
n

+ σ1
Ŝ1

ρ1 + Ŝ1

]
· 1

1 + ǎ∗
2/γ2

+ ν1β1 = 0, (4.6)

−μ2τ2ǎ∗
2 + ν2

[
α2

(ǎ∗
2)

n

kn
2 + (ǎ∗

2)
n

+ σ2
Š2

ρ2 + Š2

]
· 1

1 + â∗
1/γ1

+ ν2β2 = 0, (4.7)

where

Ŝ i = lim
t→∞ Smax

i (t), Š i = lim
t→∞ Smin

i (t), (4.8)

and

Ŝ1 � â∗
1 + Ē1, Š1 � ǎ∗

1 + Ē1, (4.9)

Ŝ2 � â∗
2 + Ē2, Š2 � ǎ∗

2 + Ē2, (4.10)

with

Ē i = lim
t→∞ Ei(t)e−G(t)/N0. (4.11)

Taking the difference of (4.4), (4.6), we obtain

μ1τ1
(
â∗

1 − ǎ∗
1

) − ν1α1

[
(â∗

1)
n

kn
1 + (â∗

1)
n

− (ǎ∗
1)

n

kn
1 + (ǎ∗

1)
n

]
· 1

1 + ǎ∗
2/γ2

= ν1

[
α1

(ǎ∗
1)

n

kn
1 + (ǎ∗

1)
n

+ σ1
Š1

ρ1 + Š1

]
·
[

1

1 + ǎ∗
2/γ2

− 1

1 + â∗
2/γ2

]

+ ν1σ1

[
Ŝ1

ρ + Ŝ
− Š1

ρ + Š

]
· 1

1 + ǎ∗/γ2
.

1 1 1 1 2
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Thus, by the mean value theorem and the estimates (4.9) for Ŝ1, Š1,

∣∣â∗
1 − ǎ∗

1

∣∣ ·
∣∣∣∣μ1τ1 − ν1α1ñ

k1

∣∣∣∣ � ν1(α1 + σ1)

γ2

∣∣ǎ∗
2 − â∗

2

∣∣ + ν1σ1

ρ1

∣∣â∗
1 − ǎ∗

1

∣∣,
or

∣∣â∗
1 − ǎ∗

1

∣∣ ·
[∣∣∣∣μ1τ1 − ν1α1ñ

k1

∣∣∣∣ − ν1σ1

ρ1

]
� ν1(α1 + σ1)

γ2

∣∣ǎ∗
2 − â∗

2

∣∣. (4.12)

Similarly, from (4.5), (4.7), (4.10) we obtain

∣∣ǎ∗
2 − â∗

2

∣∣ ·
[∣∣∣∣μ2τ2 − ν2α2ñ

k2

∣∣∣∣ − ν2σ2

ρ2

]
� ν2(α2 + σ2)

γ1

∣∣â∗
1 − ǎ∗

1

∣∣. (4.13)

If the left-hand sides of (4.12) and (4.13) are positive, then these two inequalities yield

[∣∣∣∣μ1τ1 − ν1α1ñ

k1

∣∣∣∣ − ν1σ1

ρ1

]
·
[∣∣∣∣μ1τ2 − ν2α2ñ

k2

∣∣∣∣ − ν2σ2

ρ2

]

<
ν2(α2 + σ2)

γ1
· ν2(α1 + σ1)

γ2
, (4.14)

which is a contradiction to (4.1). We thus conclude that ǎ∗
i = â∗

i for i = 1,2, and the theorem fol-
lows. �
Remark 4.1. Theorem 4.1 and Corollary 4.2 remain true with essentially the same proof under the
conditions in Proposition 3.4 and conditions (4.1), (4.2).

5. Asymptotic behavior: multiple limit points

5.1. Behavior of solutions of (3.5)–(3.6)

We first investigate the dynamical system (3.9)–(3.10) with ĥi and ȟi each having three zeros.
We assume that the conditions (3.19) and (Bi ) hold for either i = 1 or i = 2. Let us denote by
U (p) ⊂ R

2 the basin of attraction for sinks (p,0) = (âi,0), (ĉi,0), (ǎi,0), (či,0) of (3.7) and (3.8),
respectively.

We shall consider the orbits (x1(t), v1(t), x2(t), v2(t)) of (3.9)–(3.10) initiating from any point
in Ω∗ . However, from Lemma 3.3 and Proposition 3.5, we may take initial conditions to belong to
one of the following regions:

(i) (xi(0), vi(0)) ∈ U (âi) ∩ U (ǎi),
(ii) (xi(0), vi(0)) ∈ U (ĉi) ∩ U (či),

(iii) (xi(0), vi(0)) ∈ U (âi) ∩ U (či) ∪ W s(b̂i) ∪ W s(b̌i) =: U (b̌i, b̂i).

For the first two cases, it follows from Lemma 3.3 and Proposition 3.5 that

lim
t→∞ xi(t) ∈ [ǎi, âi] if

(
xi(0), vi(0)

) ∈ U (âi) ∩ U (ǎi),

lim xi(t) ∈ [či, ĉi] if
(
xi(0), vi(0)

) ∈ U (ĉi) ∩ U (či).

t→∞
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In order to analyze the global dynamics in the next sections, we need to establish uniform-in-time
properties for all orbits of the system. For a small ε > 0, we introduce the ε-neighborhood of U (b̌i, b̂i),
namely,

Uε(b̌i, b̂i) := {
(xi, vi):

∣∣(xi, vi) − U (b̌i, b̂i)
∣∣ < ε

}

and sets

Uε(ǎi, âi) := [
U (âi) ∩ U (ǎi)

] \ [
Uε(b̌i, b̂i) \ U (b̌i, b̂i)

]
,

Uε(či, ĉi) := [
U (ĉi) ∩ U (či)

] \ [
Uε(b̌i, b̂i) \ U (b̌i, b̂i)

]
,

and consider a decomposition of Di (in the (xi, vi)-plane) as follows

Di = Uε(b̌i, b̂i) ∪ Uε(ǎi, âi) ∪ Uε(či, ĉi).

By Lemmas 3.1 and 3.2, we conclude that for a small ε > 0, there exists a τ̃ > 0 such that

xi(t) ∈ (ǎi − ε, âi + ε) for t � τ̃ , if
(
xi(0), vi(0)

) ∈ Uε(ǎi, âi),

xi(t) ∈ (či − ε, ĉi + ε) for t � τ̃ , if
(
xi(0), vi(0)

) ∈ Uε(či, ĉi).

We next track the evolutions of points (x1(0), v1(0), x2(0), v2(0)) in case (iii). These are points
(x1(0), v1(0), x2(0), v2(0)) with (xi(0), vi(0)) lying between and on the stable manifolds W s(b̂i) of
(b̂i,0) and W s(b̌i) of (b̌i,0). For these initial points, there are three possibilities:

• (xi(t), vi(t)) enters into U (âi) ∩ U (ǎi) in finite time,
• (xi(t), vi(t)) enters into U (ĉi) ∩ U (či) in finite time,
• (xi(t), vi(t)) stays in U (b̌i, b̂i) for all time.

Note that once (xi(t), vi(t)) enters U (âi) ∩ U (ǎi) (resp., U (ĉi) ∩ U (či)), then it will be attracted to
segment {(xi,0): xi ∈ [ǎi, âi]} (resp., {(xi,0): xi ∈ [či, ĉi]}).

Next, we claim that a dichotomy can be established for all orbits (x1(t), v1(t), x2(t), v2(t)) evolved
from Uε(b̌i, b̂i); namely, there exists a τ ∗ > 0 such that, for all t > τ ∗ , either

(iii-a) (xi(t), vi(t)) enters into Uε(âi, ǎi) or Uε(ĉi, či), or
(iii-b) (xi(t), vi(t)) lies in an arbitrarily small neighborhood of the segment connecting b̂i, b̌i .

The assertion will be justified by considerations that involve local Lyapunov functions and analysis
of vector field and level curves of the Lyapunov functions. We first observe that

L̂i(x1, v1, x2, v2) = L̂i(xi, vi) := 1

2
v2

i −
xi∫

0

ĥi(s)ds

is a Lyapunov function for (3.9)–(3.10) on the region vi � 0. Indeed,

˙̂Li(x1, v1, x2, v2) = vi · [−(τi + μi)vi + hi(x1, x2, Si)
] − ĥi(xi) · vi

= −(τi + μi)v2
i − vi

[
ĥi(xi) − hi(x1, x2, Si)

]
� −(τi + μi)v2

i � 0, (5.1)
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Fig. 4. (a) The vector field for (3.9)–(3.10) projected onto (x1, v1)-plane. (b) The graphs for − ∫ x1
0 ĥ1(s)ds and − ∫ x1

0 ȟ1(s)ds.

if vi � 0. Similarly,

Ľi(x1, v1, x2, v2) = Ľi(xi, vi) := 1

2
v2

i −
xi∫

0

ȟi(s)ds,

is a Lyapunov functions for (3.9)–(3.10) on the region vi � 0. Accordingly, the value of L̂i (resp., Ľi)
along an orbit or a portion of an orbit of (3.9)–(3.10) is strictly decreasing when lying in {vi > 0}
(resp., {vi < 0}). On the other hand, − ∫ xi

0 ĥi(s)ds (resp., − ∫ xi
0 ȟi(s)ds) has a local maximum at b̂i

(resp., b̌i ) and local minimum at âi and ĉi (resp., ǎi and či ). Moreover, the minimal value of L̂i

(resp., Ľi) is attained at (xi, vi) = (âi,0) or (ĉi,0), (resp., (ǎi,0) or (či,0)). Thus, L̂i(b̌i,0) < L̂i(b̂i,0),
and Ľi(b̌i,0) > Ľi(b̂i,0). We depict these scenarios in Figs. 4(a), 4(b) (for i = 1). Note that as we con-
sider solutions evolved from a compact set in Ω∗ , the values of L̂i and Ľi on the evolutions of these
points are bounded above and below.

Let δ be a sufficiently small positive number. Note that for (xi, vi) ∈ Uε(b̌i, b̂i) ∩ {|vi | � δ},

L̂i(xi, vi) � L̂i(b̂i, δ) if vi > 0, Ľi(xi, vi) � Ľi(b̌i, δ) if vi < 0; (5.2)



5698 A. Friedman et al. / J. Differential Equations 252 (2012) 5679–5711
Fig. 5. (a) Level curves for L̂1 in {v1 � 0}, and for Ľ1 in {v1 � 0}. (b) The bounded region enclosed by {(x1, v1): L̂1(x1, v1) =
L̂1(b̂1, δ), v1 � 0}, {(x1, v1): Ľ1(x1, v1) = Ľ1(b̌1,−δ), v1 � 0}, W s(b̂1), and W s(b̌1), lies in B2ε (b̌1, b̂1).

cf. Fig. 5(a). We divide the orbits of (3.9)–(3.10) evolved from points (x1(0), v1(0), x2(0), v2(0)) with
(xi(0), vi(0)) ∈ Uε(b̌i, b̂i) into two classes:

Class-I: Orbit starts from Uε(b̌i, b̂i) ∩ {vi > δ} and remains in {vi > δ} before leaving Uε(b̌i, b̂i) (i.e.,
before entering Uε(ǎi, âi) or Uε(či, ĉi)), or orbit starts from Uε(b̌i, b̂i) ∩ {vi < −δ} and remains in
{vi < −δ} before entering Uε(ǎi, âi) or Uε(či, ĉi);

Class-II: Orbit initiates from, or enters into, Uε(b̌i, b̂i) ∩ {|vi | � δ}.

According to (5.1), all class-I orbits take less than a finite time τ ∗ to enter Uε(ǎi, âi) ∪ Uε(či, ĉi). In
addition, it also takes less than a finite time τ ∗ for all class-II orbits initiating from Uε(b̌i, b̂i) ∩
{|vi | > δ} to enter Uε(b̌i, b̂i) ∩ {|vi | � δ}, again by (5.1). If an orbit starting from {vi > 0} (resp.,
{vi < 0}) crosses {vi = 0} to enter {vi < 0} (resp., {vi > 0}) while it remains in Uε(b̌i, b̂i), then
the value of Ľi (resp., L̂i ) at such orbit cannot exceed Ľi(b̌i,0) (resp., L̂i(b̂i,0)) at all later times
while lying in {vi < 0} (resp. {vi > 0}). Therefore, the solutions initiating from, or entering into,
Uε(b̌i, b̂i) ∩ {|vi | � δ} will be constrained by (5.2) and thus be bounded by the level curves

{
(xi, vi): L̂i(xi, vi) = L̂i(b̂i, δ), vi � 0

}
,
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{
(xi, vi): Ľi(xi, vi) = Ľi(b̌i,−δ), vi � 0

}
, (5.3)

at all future time; cf. Fig. 5(b). For ξ1 < ξ2 and ε > 0, we introduce an ε-neighborhood of the segment
connecting (ξ1,0), (ξ2,0) in R

2 by

Bε(ξ1, ξ2) := {
(xi, vi):

∣∣(xi, vi) − {
(η,0): ξ1 � η � ξ2

}∣∣ < ε
}
.

Then, the region bounded by (5.3) comprises parts of Uε(ǎi, âi), Uε(či, ĉi), and part of B2ε(b̌i, b̂i),
provided δ is chosen sufficiently small. The dichotomy (iii-a)–(iii-b) is thus justified.

Using the properties of Lyapunov functions L̂i , Ľi , and Lemma 3.1, Lemma 3.3, we also conclude
that solutions lying in Uε(ǎi, âi) (resp., Uε(či, ĉi)) enter Bε(ǎi, âi) (resp., Bε(či, ĉi)) in finite time.
Summarizing the above discussion, we conclude that for a small ε > 0, there exist τ0 > 0 and T0 > 0
such that for all orbits (x1(t), v1(t), x2(t), v2(t)) of (3.9)–(3.10) initiating from Ω∗ , (xi(t), vi(t)) lie in
Bε(ǎi, âi) or Bε(či, ĉi), for all t > T0 + τ0 or enter into B2ε(b̌i, b̂i) at time t = T0. In particular, their
xi -coordinates satisfy either

xi(t) ∈ [ǎi − ε, âi + ε] ∪ [či − ε, ĉi + ε],

for all t > T0 + τ0 or xi(T0) ∈ [b̂i − 2ε, b̌i + 2ε].

5.2. Two limit points

In this section, we prove that system (3.9)–(3.10) admits two limit points provided the condi-
tions (B1) and (Ma2) or (Mb2) hold. The same result can be established under the conditions (B2) and
(Ma1) or (Mb1).

Under the conditions (B1) and (Ma2) or (Mb2), ĥ1 (resp., ȟ1) has three zeros â1, b̂1, ĉ1 (resp.,
ǎ1, b̌1, č1), and ĥ2 (resp., ȟ2) has one zero â2 (resp., ǎ2). According to the discussion in Sec-
tion 4 and Section 5.1, for a small ε0 > 0, there exist τ0 > 0 and T0 > 0 such that all solutions
(x1(t), v1(t), x2(t), v2(t)) of (3.9)–(3.10) with initial values from the compact set Ω∗ either lie in
[Bε0(ǎ1, â1)∪ Bε0 (č1, ĉ1)]× Bε0 (ǎ2, â2), for all t > T0 +τ0 or stay in B2ε0(b̌1, b̂1)× Bε0 (ǎ2, â2) at t = T0.
In particular,

(
x1(t), x2(t)

) ∈ ([ǎ1 − ε0, â1 + ε0] ∪ [č1 − ε0, ĉ1 + ε0]
) × [ǎ2 − ε0, â2 + ε0], t > T0 + τ0,(

x1(t), x2(t)
) ∈ [b̂1 − 2ε0, b̌1 + 2ε0] × [ǎ2 − ε0, â2 + ε0], t = T0.

Therefore, to determine the asymptotic behavior of (3.9)–(3.10) for t > T0, we only need to consider
the evolution of points which belong to

[
Bε0(ǎ1, â1) ∪ Bε0(č1, ĉ1) ∪ B2ε0(b̌1, b̂1)

] × Bε0(ǎ2, â2) (5.4)

at time t = T0.
We first focus on the evolutions of points in B2ε0(b̌1, b̂1)× Bε0(ǎ2, â2). Let us define sharper upper

and lower bounds of hi , for the evolutions of points from this region:

ĥ(1)
1,m(x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0)

ρ1 + Smax
1 (T0)

)
· 1

1 + (ǎ2 − 2ε0)/γ2
+ ν1β1,

ȟ(1)
1,m(x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn + xn + σ1
Smin

1 (T0)

ρ + Smin(T )

)
· 1

1 + (â2 + 2ε0)/γ2
+ ν1β1,
1 1 1 1 0
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ĥ(1)
2,m(x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T0)

ρ2 + Smax
2 (T0)

)
· 1

1 + (b̂1 − 3ε0)/γ1

+ ν2β2,

ȟ(1)
2,m(x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (T0)

ρ2 + Smin
2 (T0)

)
· 1

1 + (b̌1 + 3ε0)/γ1

+ ν2β2.

Since

ȟ1 < ȟ(1)
1,m < ĥ(1)

1,m < ĥ1,

ȟ2 < ȟ(1)
2,m < ĥ(1)

2,m < ĥ2,

ȟ(1)
1,m (resp., ĥ(1)

1,m) has three zeros ǎ(1)
1,m, b̌(1)

1,m, č(1)
1,m (resp., â(1)

1,m, b̂(1)
1,m, ĉ(1)

1,m), and ȟ(1)
2,m (resp., ĥ(1)

2,m) has

one zero ǎ(1)
2,m (resp., â(1)

2,m). Clearly,

ǎ(1)
1,m > ǎ1, b̌(1)

1,m < b̌1, č(1)
1,m > č1,

â(1)
1,m < â1, b̂(1)

1,m > b̂1, ĉ(1)
1,m < ĉ1,

â(1)
2,m < â2, ǎ(1)

2,m > ǎ2.

By continuity, for a short while after T0, the evolutions of points in B2ε0 (b̌1, b̂1) × Bε0 (ǎ2, â2) under

(3.9)–(3.10) are constrained by the sharper upper and lower dynamics defined by (3.7)–(3.8) with ȟi

and ĥi replaced by ȟ(1)
i,m and ĥ(1)

i,m, respectively. Note that W s(b̂(1)
1,m) and W s(b̌(1)

1,m) lie between W s(b̂1)

and W s(b̌1), by Lemma 3.3(iii), where W s(b̂(1)
1,m) is the stable manifold of equilibrium point (b̂(1)

1,m,0)

for the new upper system and W s(b̌(1)
1,m) is the stable manifold of (b̌(1)

1,m,0) for the new lower system.

Accordingly, the region U (b̌(1)
1,m, b̂(1)

1,m), bounded by W s(b̂(1)
1,m) and W s(b̌(1)

1,m), satisfies

U
(
b̌(1)

1,m, b̂(1)
1,m

) ⊂ U (b̌1, b̂1).

In addition, for t � T0

ȟ(1)
1,m(x1) < h1

(
x1, x2, S1(t)

)
< ĥ(1)

1,m(x1) if x2 ∈ [ǎ2 − 2ε0, â2 + 2ε0],
ȟ(1)

2,m(x2) < h2
(
x1, x2, S2(t)

)
< ĥ(1)

2,m(x2) if x1 ∈ [b̂1 − 3ε0, b̌1 + 3ε0].

Hence, for any ε1 with 0 < 3ε1 < ε0, one can define B2ε1(b̌
(1)
1,m, b̂(1)

1,m) and Bε1 (ǎ
(1)
2,m, â(1)

2,m) as before,
with

B2ε1

(
b̌(1)

1,m, b̂(1)
1,m

) ⊂ B2ε0(b̌i, b̂i), Bε1

(
ǎ(1)

2,m, â(1)
2,m

) ⊂ Bε0(ǎ2, â2),

and the following holds:
There exists a T1 > T0, such that the solutions (x1(t), v1(t), x2(t), v2(t)) of (3.9)–(3.10) with

(x1(T0), v1(T0), x2(T0), v2(T0)) ∈ B2ε0 (b̌1, b̂1)× Bε0 (ǎ2, â2) for which (x1(T1), v1(T1), x2(T1), v2(T1)) /∈
B2ε1 (b̌

(1)
1,m, b̂(1)

1,m) × Bε1 (ǎ
(1)
2,m, â(1)

2,m) will be attracted to [Bε0(ǎ1, â1) ∪ Bε0(č1, ĉ1)] × Bε0(ǎ2, â2), i.e.,
there exists a τ1 > τ0 such that (x1(t), v1(t), x2(t), v2(t)) ∈ [Bε0(ǎ1, â1) ∪ Bε0(č1, ĉ1)] × Bε0(ǎ2, â2), for
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t > T1 + τ1. Hence, after t = T1, we shall focus on the evolution of points lying in B2ε1(b̌
(1)
1,m, b̂(1)

1,m) ×
Bε1 (ǎ

(1)
2,m, â(1)

2,m). Proceeding by induction we define successively

ĥ(k)
1,m(x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (Tk−1)

ρ1 + Smax
1 (Tk−1)

)
· 1

1 + (ǎ(k−1)
2,m − 2εk−1)/γ2

+ ν1β1,

ȟ(k)
1,m(x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (Tk−1)

ρ1 + Smin
1 (Tk−1)

)
· 1

1 + (â(k−1)
2,m + 2εk−1)/γ2

+ ν1β1,

ĥ(k)
2,m(x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (Tk−1)

ρ2 + Smax
2 (Tk−1)

)
· 1

1 + (b̂(k−1)
1,m − 3εk−1)/γ1

+ ν2β2,

ȟ(k)
2,m(x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smin
2 (Tk−1)

ρ2 + Smin
2 (Tk−1)

)
· 1

1 + (b̌(k−1)
1,m + 3εk−1)/γ1

+ ν2β2,

where 0 < 3εk−1 < εk−2, Tk−1 > Tk−2, k � 2. Let b̌(k)
1,m and b̂(k)

1,m, be the middle zero of ȟ(k)
1,m and ĥ(k)

1,m

respectively, and ǎ(k)
2,m and â(k)

2,m be the unique zero of ȟ(k)
2,m and ĥ(k)

2,m respectively. Then

b̌(k)
1,m < b̌(k−1)

1,m , b̂(k)
1,m > b̂(k−1)

1,m ,

ǎ(k)
2,m > ǎ(k−1)

2,m , â(k)
2,m < â(k−1)

2,m .

For any εk with 0 < 3εk < εk−1, there exist Tk > 0 and τk > 0 such that the solutions (x1(t), v1(t),
x2(t), v2(t)) of (3.9)–(3.10) with (x1(Tk−1), v1(Tk−1), x2(Tk−1), v2(Tk−1)) ∈ B2εk−1(b̌

(k−1)
1,m , b̂(k−1)

1,m ) ×
Bεk−1 (ǎ

(k−1)
2,m , â(k−1)

2,m ) but (x1(Tk), v1(Tk), x2(Tk), v2(Tk)) /∈ B2εk (b̌
(k)
1,m, b̂(k)

1,m) ×Bεk (ǎ
(k)
2,m, â(k)

2,m) will lie in
[Bε0(ǎ1, â1) ∪ Bε0(č1, ĉ1)] × Bε0 (ǎ2, â2), for t > Tk + τk .

Recalling (5.4), we see that it remains to consider the solutions of (3.9)–(3.10) with

(
x1(t), v1(t), x2(t), v2(t)

) ∈ [
Bε0(ǎ1, â1) ∪ Bε0(č1, ĉ1)

] × Bε0(ǎ2, â2) (5.5)

for all t � T0 + τ0. These solutions are constrained by sharper upper and lower dynamics defined by
(3.7)–(3.8) with ȟi, ĥi replaced by ȟ(1)

1,l , ĥ(1)

1,l , ȟ(1)

2,l , ĥ(1)

2,l on region Bε0 (ǎ1, â1)× Bε0(ǎ2, â2), and ȟ(1)
1,u, ĥ(1)

1,u,

ȟ(1)
2,u, ĥ(1)

2,u on region Bε0(č1, ĉ1) × Bε0(ǎ2, â2), where

ĥ(1)

1,l (x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T0 + τ0)

ρ1 + Smax
1 (T0 + τ0)

)
· 1

1 + (ǎ2 − ε0)/γ2
+ ν1β1,

ȟ(1)

1,l (x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T0 + τ0)

ρ1 + Smin
1 (T0 + τ0)

)
· 1

1 + (â2 + ε0)/γ2
+ ν1β1,

ĥ(1)

2,l (x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T0 + τ0)

ρ2 + Smax
2 (T0 + τ0)

)
· 1

1 + (ǎ1 − ε0)/γ1
+ ν2β2,

ȟ(1)

2,l (x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn + xn + σ2
Smin

2 (T0 + τ0)

ρ + Smin(T + τ )

)
· 1

1 + (â1 + ε0)/γ1
+ ν2β2,
2 2 2 2 0 0
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and ĥ(1)
1,u, ȟ(1)

1,u, ĥ(1)
2,u, ȟ(1)

2,u are defined similarly. Denote the smallest zeros of ĥ(1)

1,l and ȟ(1)

1,l by â(1)

1,l

and ǎ(1)

1,l , largest zeros of ĥ(1)
1,u and ȟ(1)

1,u by ĉ(1)
1,u and č(1)

1,u, and the unique zeros of ĥ(1)

2,l , ȟ(1)

2,l , ĥ(1)
2,u,

ȟ(1)
2,u by â(1)

2,l , ǎ(1)

2,l , â(1)
2,u, ǎ(1)

2,u, respectively. Then,

â(1)

1,l < â1, ǎ(1)

1,l > ǎ1, â(1)

2,l < â2, ǎ(1)

2,l > ǎ2,

ĉ(1)
1,u < ĉ1, č(1)

1,u > č1, â(1)
2,u < â2, ǎ(1)

2,u > ǎ2.

For 0 < ε1 < ε0, there exists a T̃1 > 0 such that

(
x1(t), v1(t), x2(t), v2(t)

) ∈ [
Bε1

(
ǎ(1)

1,l , â(1)

1,l

) × Bε1

(
ǎ(1)

2,l , â(1)

2,l

)] ∪ [
Bε1

(
č(1)

1,u, ĉ(1)
1,u

) × Bε1

(
ǎ(1)

2,u, â(1)
2,u

)]

for all t � T̃1, for those solutions in (5.5). Similarly and successively, for 0 < εk−1 < εk−2, and T̃k−1 >

T̃k−2, we can define

ĥ(k)

1,l (x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smax
1 (T̃k−1)

ρ1 + Smax
1 (T̃k−1)

)
· 1

1 + (ǎ(k−1)

2,l − εk−1)/γ2

+ ν1β1,

ȟ(k)

1,l (x1) := −μ1τ1x1 + ν1

(
α1

xn
1

kn
1 + xn

1
+ σ1

Smin
1 (T̃k−1)

ρ1 + Smin
1 (T̃k−1)

)
· 1

1 + (â(k−1)

2,l + εk−1)/γ2

+ ν1β1,

ĥ(k)

2,l (x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T̃k−1)

ρ2 + Smax
2 (T̃k−1)

)
· 1

1 + (ǎ(k−1)

1,l − εk−1)/γ1

+ ν2β2,

ȟ(k)

2,l (x2) := −μ2τ2x2 + ν2

(
α2

xn
2

kn
2 + xn

2
+ σ2

Smax
2 (T̃k−1)

ρ2 + Smax
2 (T̃k−1)

)
· 1

1 + (â(k−1)

1,l + εk−1)/γ1

+ ν2β2,

and similarly ĥ(k)
i,u, ȟ(k)

i,u, i = 1,2. The corresponding zeros â(k)

1,l , ǎ(k)

1,l , ĉ(k)
1,u, č(k)

1,u â(k)

2,l , ǎ(k)

2,l â(k)
2,u, ǎ(k)

2,u respec-
tively satisfy

â(k)

1,l < â(k−1)

1,l , ǎ(k)

1,l > ǎ(k−1)

1,l , â(k)

2,l < â(k−1)

2,l , ǎ(k)

2,l > ǎ(k−1)

2,l ,

ĉ(k)
1,u < ĉ(k−1)

1,u , č(k)
1,u > č(k−1)

1,u , â(k)
2,u < â(k−1)

2,u , ǎ(k)
2,u > ǎ(k−1)

2,u .

As before for 0 < εk < εk−1, there exists a T̃k > T̃k−1, such that

(
x1(t), v1(t), x2(t), v2(t)

) ∈ [
Bεk

(
ǎ(k)

1,l , â(k)

1,l

) × Bεk

(
ǎ(k)

2,l , â(k)

2,l

)] ∪ [
Bεk

(
č(k)

1,u, ĉ(k)
1,u

) × Bεk

(
ǎ(k)

2,u, â(k)
2,u

)]

for all t � T̃k , for those solutions in (5.5).
Recall that Smin

i (t) is nondecreasing and Smax
i (t) is nonincreasing in t . A review of the above

discussions shows that for t > Tk + T̃k + τk ,

(
x1(t), v1(t), x2(t), v2(t)

) ∈ [
Bεk

(
ǎ(k)

1,l , â(k)

1,l

) × Bεk

(
ǎ(k)

2,l , â(k)

2,l

)] ∪ [
Bεk

(
č(k)

1,u, ĉ(k)
1,u

) × Bεk

(
ǎ(k)

2,u, â(k)
2,u

)]

for all solutions (x1(t), v1(t), x2(t), v2(t)) evolved from Ω∗ except possibly those lying in

B2εk

(
b̌(k)

1,m, b̂(k)
1,m

) × Bεk

(
ǎ(k)

2,m, â(k)
2,m

)
,
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at t = Tk . We may clearly assume that Tk, T̃k → ∞ and εk → 0, as k → ∞. Note that, each sequence
{ǎ(k)

1,l }, {b̂(k)
1,m}, {č(k)

1,u}, {ǎ(k)
2,� } is increasing, and each sequence {â(k)

1,l }, {b̌(k)
1,m}, {ĉ(k)

1,u}, {â(k)
2,� } is decreasing,

� = l,m,u; in addition,

ǎ(k)

1,l < â(k)

1,l , č(k)

2,l < ĉ(k)

2,l , b̂(k)
1,m < b̌(k)

1,m,

ǎ(k)
2,� < â(k)

2,� , � = l,m,u,

for each k. Hence,

lim
k→∞

ǎ(k)

1,l = ǎ∗
1, lim

k→∞
â(k)

1,l = â∗
1, lim

k→∞
č(k)

1,r = č∗
1, lim

k→∞
ĉ(k)

1,r = ĉ∗
1,

lim
k→∞

b̌(k)
1,m = b̌∗

1, lim
k→∞

b̂(k)
1,m = b̂∗

1, lim
k→∞

ǎ(k)
2,� = ǎ∗

2,� , lim
k→∞

â(k)
2,� = â∗

2,� , � = l,m,u.

We shall later prove that

ǎ∗
1 = â∗

1 = a1, b̌∗
1 = b̂∗

1 = b1, č∗
1 = ĉ∗

1 = c1,

ǎ∗
2,� = â∗

2,� = a2,� , � = l,m,u. (5.6)

Assuming the validity of (5.6), it follows that

S1(t) → w l · a1 + wu · c1 + Ē1,

S2(t) → w l · a2,l + wu · a2,u + Ē2,

as t → ∞, for some nonnegative constants w l, wu � 0 with w l + wu = 1, where Ē i is defined in (4.11).
We summarize:

Theorem 5.1. Assume that conditions (3.19), (4.1), (B1) and either (Ma2), or (Mb2) hold. Then almost every
solution of (3.9)–(3.10) converges to either (a1,0,a2,l,0) or (c1,0,a2,u,0), as t → ∞.

Note that w l, wu represent the ratios of cells whose concentrations of protein and mRNA tend to
levels (a1,a2,l, τ1a1/ν1, τ2a2,l/ν2) and (c1,a2,u, τ1c1/ν1, τ2a2,u/ν2), respectively. We also observe that
the values a1,a2,l , c1,a2,u, and w l, wu satisfy the equations

−μ1τ1

ν1
a1 +

[
α1

an
1

kn
1 + an

1
+ σ1

w l · a1 + wu · c1 + Ē1

ρ1 + (w l · a1 + wu · c1 + Ē1)

]
· 1

1 + a2,l/γ2
+ β1 = 0, (5.7)

−μ1τ1

ν1
c1 +

[
α1

cn
1

kn
1 + cn

1
+ σ1

w l · a1 + wu · c1 + Ē1

ρ1 + (w l · a1 + wu · c1 + Ē1)

]
· 1

1 + a2,u/γ2
+ β1 = 0, (5.8)

−μ2τ2

ν2
a2,l +

[
α2

an
2,l

kn
2 + an

2,l

+ σ2
w l · a2,l + wu · a2,u + Ē2

ρ2 + (w l · a2,l + wu · a2,u + Ē2)

]

· 1

1 + a1/γ1
+ β2 = 0, (5.9)

−μ2τ2

ν2
a2,u +

[
α2

an
2,u

kn
2 + an

2,u
+ σ2

w l · a2,l + wu · a2,u + Ē2

ρ2 + (w l · a2,l + wu · a2,u + Ē2)

]

· 1

1 + c /γ
+ β2 = 0. (5.10)
1 1



5704 A. Friedman et al. / J. Differential Equations 252 (2012) 5679–5711
Notice that ā1, ā2,l , c̄1, ā2,u, w l , wu are not determined uniquely from Eqs. (5.7)–(5.10); these quanti-
ties depend also on the initial condition.

Corollary 5.2. Under the conditions of Theorem 5.1, the solution ψ of (2.8)–(2.13) satisfies

lim
t→∞ψ(t, x1, x2, y1, y2) = N0 w lδ(a1,a2,l,τ1a1/ν1,τ2a2,l/ν2)

+ N0 wuδ(c1,a2,u,τ1c1/ν1,τ2a2,u/ν2) (5.11)

in the sense of convergence in measure, where a1,a2,l , c1,a2,u and w l , wu satisfy Eqs. (5.7)–(5.10).

To prove the theorem, it remains to justify (5.6). Let

R1 := [
ǎ∗

1, â∗
1

] × [
ǎ∗

2,l, â∗
2,l

]
, R2 := [

b̂∗
1, b̌∗

1

] × [
ǎ∗

2,m, â∗
2,m

]
, R3 := [

č∗
1, ĉ∗

1

] × [
ǎ∗

2,u, â∗
2,u

]
.

If (5.6) does not hold, then each Ri is either a rectangle or a single point, and at least one Ri
is a rectangle. We denote by (ǎ∗

1, â∗
2,l) the upper-left vertex of R1 which is diagonally opposed to

(â∗
1, ǎ∗

2,l); if R1 is a single point then we take ǎ∗
1 = â∗

1, ǎ∗
2,l = â∗

2,l . Similarly we designate the vertices

(b̂∗
1, â∗

2,m), (b̌∗
1, ǎ∗

2,m) for R2, and (ĉ∗
1, ǎ∗

2,u), (č∗
1, â∗

2,u) for R3. Then the coordinates of these vertices sat-
isfy the following equations:

h1
(
ǎ∗

1, â∗
2,l, Š1

) = 0, h1
(
â∗

1, ǎ∗
2,l, Ŝ1

) = 0, (5.12)

h2
(
ǎ∗

1, â∗
2,l, Ŝ2

) = 0, h2
(
â∗

1, ǎ∗
2,l, Š2

) = 0,

h1
(
b̂∗

1, â∗
2,m, Š1

) = 0, h1
(
b̌∗

1, ǎ∗
2,m, Ŝ1

) = 0,

h2
(
b̂∗

1, â∗
2,m, Ŝ2

) = 0, h2
(
b̌∗

1, ǎ∗
2,m, Š2

) = 0,

h1
(
č∗

1, â∗
2,u, Š1

) = 0, h1
(
ĉ∗

1, ǎ∗
2,u, Ŝ1

) = 0,

h2
(
č∗

1, â∗
2,u, Ŝ2

) = 0, h2
(
ĉ∗

1, ǎ∗
2,u, Š2

) = 0, (5.13)

where Š i = limt→∞ Smin
i (t), Ŝ i = limt→∞ Smax

i (t), i = 1,2. Furthermore,

Ŝ1 �
[
ζ1â∗

1 + ζ2b̌∗
1 + ζ3ĉ∗

1

]
/ζ + Ē1, (5.14)

Š1 �
[
ζ1ǎ∗

1 + ζ2b̂∗
1 + ζ3č∗

1

]
/ζ + Ē1, (5.15)

Ŝ2 �
[
ζ1â∗

2,l + ζ2ǎ∗
2,m + ζ3â∗

2,u

]
/ζ + Ē2, (5.16)

Š2 �
[
ζ1ǎ∗

2,l + ζ2â∗
2,m + ζ3ǎ∗

2,u

]
/ζ + Ē2, (5.17)

where ζ1, ζ2, ζ3 are the areas of the regions R1, R2, R3, and ζ1 + ζ2 + ζ3 = ζ . Among the three
quantities

(
â∗

1 − ǎ∗
1

)
,

(
b̌∗

1 − b̂∗
1

)
,

(
ĉ∗

1 − č∗
1

)
,

we pick the largest one, say (â∗
1 − ǎ∗

1), and the corresponding two equations from (5.12),

h1
(
ǎ∗

1, â∗
2,l, Š1

) = 0, h1
(
â∗

1, ǎ∗
2,l, Ŝ1

) = 0. (5.18)
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Similarly, among the quantities

(
â∗

2,l − ǎ∗
2,l

)
,

(
â∗

2,m − ǎ∗
2,m

)
,

(
â∗

2,u − ǎ∗
2,u

)
,

we pick the largest one, say (â∗
2,u − ǎ∗

2,u), and the corresponding equations (5.13),

h2
(
č∗

1, â∗
2,u, Ŝ2

) = 0, h2
(
ĉ∗

1, ǎ∗
2,u, Š2

) = 0. (5.19)

From (5.14)–(5.17), we deduce that

Ŝ1 − Š1 �
[
ζ1

(
â∗

1 − ǎ∗
1

) + ζ2
(
b̌∗

1 − b̂∗
1

) + ζ3
(
ĉ∗

1 − č∗
1

)]
/ζ

� â∗
1 − ǎ∗

1, (5.20)

Ŝ2 − Š2 �
[
ζ1

(
â∗

2,u − ǎ∗
2,u

) + ζ2
(
â∗

2,m − ǎ∗
2,m

) + ζ3
(
â∗

2,u − ǎ∗
2,u

)]
/ζ

� â∗
2,u − ǎ∗

2,u. (5.21)

We use (5.18) and (5.20) to estimate |â∗
1 − ǎ∗

1| in terms of |â∗
2,l − ǎ∗

2,l|, as in the derivation of (4.12).
We next use (5.19) and (5.21) to estimate |â∗

2,u − ǎ∗
2,u| in terms of |ĉ∗

1 − č∗
1|. Finally, from the two

estimates on |â∗
1 − ǎ∗

1| and |â∗
2,u − ǎ∗

2,u| and the inequalities

∣∣â∗
2,l − ǎ∗

2,l

∣∣� ∣∣â∗
2,u − ǎ∗

2,u

∣∣, and
∣∣ĉ∗

1 − č∗
1

∣∣ � ∣∣â∗
1 − ǎ∗

1

∣∣, (5.22)

we derive the estimate (4.14) which is a contradiction to (4.1). The assertion of Theorem 5.1 is thus
established.

5.3. Four limit points

Theorem 5.3. Assume that (4.1), (3.19), (B1) and (B2) hold. Then almost every solution of (3.9)–(3.10) con-
verges to one of the four points: (a1,l,0,a2,l,0), (c1,l,0,a2,u,0), (a1,u,0, c2,l,0), (c1,u,0, c2,u,0), as t → ∞.

Corollary 5.4. Under the conditions of Theorem 5.3, the solution ψ of (2.8)–(2.13) satisfies

lim
t→∞ψ(t, x1, x2, y1, y2) = nll · δ(a1,l,a2,l,τ1a1,l/ν1,τ2a2,l/ν2) + nul · δ(c1,l,a2,u,τ1c1,l/ν1,τ2a2,u/ν2)

+ nlu · δ(a1,u,c2,l,τ1a1,u/ν1,τ2c2,l/ν2) + nuu · δ(c1,u,c2,u,τ1c1,u/ν1,τ2c2,u/ν2),

in the sense of convergence in measure, where nll + nlu + nul + nuu = N0 . Furthermore, the coordinates for
the limiting points a1,l,a2,l , c1,l,a2,u , a1,u, c2,l , c1,u, c2,u and the weights w ll = nll/N0 , w lu = nlu/N0 , wul =
nul/N0 , wuu = nuu/N0 satisfy the following equations for i = 1,2:

hi(a1,l,a2,l, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + Ē i) = 0,

hi(c1,u, c2,u, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + Ē i) = 0,

hi(c1,l,a2,u, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + Ē i) = 0,

hi(a1,u, c2,l, w ll · a1,l + wul · c1,l + w lu · a1,u + wuu · c1,u + Ē i) = 0.

The proof of Theorem 5.3 combines the considerations of Section 5.2 with the convergence scheme
which was described in [2]; the details are omitted.



5706 A. Friedman et al. / J. Differential Equations 252 (2012) 5679–5711
Fig. 6. ODE simulation (a) x1, x2, y1, y2 versus t , (b) the trajectories in (x1, x2)-plane, (c) the trajectories in (y1, y2)-plane.

Remark 5.1. Low-x1 and low-x2 represent a situation where both T-bet and GATA-3 have low concen-
trations; hence the T cells do not differentiate. On the other hand, if x1 is high (low) and x2 is low
(high), then the T cells will differentiate into Th1 (Th2). The case where both x1, x2 are high would
be biologically rather abnormal.

6. Numerical illustrations

In this section, we provide numerical simulations for the single cell model (2.1) and the population
model (2.3). The parameters used in some of the simulations do not satisfy the assumptions made in
the previous theorems.

The single cell model is a system of four ODEs which can be easily solved by the Runge–Kutta
method, using ode45 in MATLAB. The population model (2.3) is essentially an integro-differential
equation. The integrations in the Si(t) need to be carried out through quadrature rule (numerical
integration); we shall use midpoint rule which has second-order accuracy. The solution of Eq. (2.3) is
then obtained by using standard Lax–Friedrichs method [3,7]. Notice that the asymptotic solution of
the population model becomes singular for large time.

6.1. The single cell model

In Fig. 6, we first show the dynamics of ODE system which exhibit single limit point, with param-
eters

n = 6, α1 = α2 = 5, k1 = k2 = 5, ρ1 = ρ2 = 1, β1 = β2 = 0.05,

σ1 = σ2 = 5, μ1 = μ2 = 5, γ1 = γ2 = 1, ν1 = ν2 = 10, τ1 = τ2 = 5. (6.1)

All the parameters are as in [10] except for ki (the level of T-bet or GATA-3 at which the rate of auto-
stimulation is half-maximum) which is altered from 1 to 5 to make sure that the conditions in (3.18)
are satisfied. We choose six different initial points

(
x1(0), x2(0), y1(0), y2(0)

) =
(

i

5
B1,

(5 − i)

5
B2,

i

5
A1,

(5 − i)

5
A2

)
,

for integer i from 0 to 5. This means that there are six cells with different initial levels of transcription
factors and mRNA. The polarizing cytokines are S1 = B1/2 and S2 = B2/2. (The same choice is used
in the ODEs’ simulations unless otherwise mentioned.) It is clear that all the points from different
initial locations converge to a single limit point which has low concentration of T-bet (x1) and low
concentration of GATA-3 (x2). Thus all six cells do not differentiate. The plot of (x1, x2, y1, y2) versus
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Fig. 7. ODE simulation (a) x1, x2, y1, y2 versus t , (b) the trajectories in (x1, x2)-plane, (c) the trajectories in (y1, y2)-plane. (For
interpretation of the references to color, the reader is referred to the web version of this article.)

time is shown in Fig. 6(a). The trajectories in (x1, x2)-plane and (y1, y2)-plane are shown in Figs. 6(b)
and 6(c) respectively. The trajectories may cross each other on these projection planes. However, they
do not cross each other in the four-dimensional space.

In Fig. 7, we illustrate the case of two limit points with parameters

n = 6, α1 = α2 = 5, k1 = 0.9, k2 = 0.6, ρ1 = ρ2 = 1, β1 = β2 = 0.05,

σ1 = σ2 = 2, μ1 = μ2 = 5, γ1 = γ2 = 30, ν1 = ν2 = 5, τ1 = τ2 = 5.

The corresponding time evolution and projection on (x1, x2)-plane and (y1, y2)-plane are given in
Figs. 7(a), 7(b), and 7(c) for 16 different initial conditions. This case demonstrates that there are two
stable limit points (blue dot and green dot). The trajectories which converge to blue (green) limit point
are colored as blue (green). In this parameter setting, the green point has larger attracting basin. Thus
there are more cells with low concentrations of T-bet (x1) and high concentrations of GATA-3 (x2) and
they differentiate into Th2 cells.

In order to generate quadstable phase, we choose the parameters as

n = 6, α1 = α2 = 5, k1 = k2 = 0.6, ρ1 = ρ2 = 1, β1 = β2 = 0.05,

σ1 = σ2 = 2, μ1 = μ2 = 5, γ1 = γ2 = 30, ν1 = ν2 = 5, τ1 = τ2 = 5.

We can see that the system is quadstable, as illustrated in Fig. 8. The corresponding time evolution
and projection on (x1, x2)-plane and (y1, y2)-plane are given in Figs. 8(a), 8(b), and 8(c). We start
with 81 different initial conditions; the trajectories converge to one of the four stable limit points.
For example, there are nine different trajectories emitting from the center point (0.705,0.705) on
(x1, x2)-plane because their initial locations on (y1, y2)-plane are different. One, two, two, and four
trajectories tend to blue, red, green, and cyan limit points, respectively, which indicate no differenti-
ation (low-x1, low-x2), Th1 (high-x1, low-x2) differentiation, Th2 (low-x1, high-x2) differentiation and
undetermined (abnormal). It is hard to distinguish two of the trajectories (colored as mixed cyan and
blue) because they overlap each other.

In Fig. 9, we use the same parameters as in [10]:

n = 6, α1 = α2 = 5, k1 = k2 = 1, ρ1 = ρ2 = 1, β1 = β2 = 0.05,

σ1 = σ2 = 5, μ1 = μ2 = 5, γ1 = 1, γ2 = 0.5, ν1 = ν2 = 10, τ1 = τ2 = 5.

The parameters do not satisfy the conditions (Ma1), (Ma2), (B1) and (B2). The number of limit points
vary with respect to the polarizing cytokines S1 and S2. When S1 = 0.05, S2 = 0.025, the trajectories
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Fig. 8. ODE simulation (a) x1, x2, y1, y2 versus t , (b) the trajectories in (x1, x2)-plane, (c) the trajectories in (y1, y2)-plane. (For
interpretation of the references to color, the reader is referred to the web version of this article.)

approach to a low–low single limit point (no differentiation). When S1 = 0.15, S2 = 1.0, the trajec-
tories approach two limit points. If we further increase S2 to 1.7, it becomes one single limit point
again. However, the limit point is at a low–high level which indicates the differentiation toward Th2.

6.2. The population model

The main difference between single cell model and population model is the coupling dynamics
generated from the total signals S1 and S2 defined in (2.2) for population model. Since S1 and S2 are
not constants, their evolutions depend on both the initial population of cells and the external signals
E1(t), E2(t). In [2], we have demonstrated, for the model (1.6), an interesting behavior, namely, the
system may switch from one-peak to two-peak profile at intermediate times. Here we will focus on
the singular behaviors which demonstrate one-, two- and four-peak solutions by choosing specific
parameters.

In the subsequent numerical simulations we assume that g = 0, ψ0 = φ0 = 0 on ∂Ω , and Ei(t) = 0.
We take A1, A2, B1, B2 as in (2.6), (2.7) and choose the initial condition

ψ0(x1, x2, y1, y2) = constant = 1

A1 A2 B1 B2
(6.2)

so that N0 = 1. Even though the discretization method is the same as the one used in [2], the com-
putations for the present four-dimensional model are much more intensive.

6.2.1. Asymptotic one-peak solution
In Fig. 10, we show numerical results under conditions (Ma1) and (Ma2) which guarantee a sin-

gle attracting point. The choice of parameters is as (6.1). In Figs. 10(a), 10(b), and 10(c), we plot∫
ψ dy1 dy2, at times t = 0.5,1,5 respectively, because it is hard to visualize the original four-

dimensional density function. Since (Ma1) and (Ma2) are satisfied no matter what S1 and S2 are,
there is only one stable equilibrium point. The normalized population density gets more and more
concentrated at an attracting point with low-x1 and low-x2 so there is no polarization toward differ-
entiation into Th1 or Th2.

6.2.2. Asymptotic two-peak solution
Fig. 11 displays the bistable case (two-peak solution). We choose parameters

n = 6, α1 = α2 = 5, k1 = 0.9, k2 = 0.6, ρ1 = ρ2 = 1, β1 = β2 = 0.05,

σ1 = σ2 = 2, μ1 = μ2 = 5, γ1 = γ2 = 30, ν1 = ν2 = 5, τ1 = τ2 = 5.
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Fig. 9. The trajectories in (x1, x2)-plane and (y1, y2)-plane for (a) S1 = 0.05, S2 = 0.025, (b) S1 = 0.15, S2 = 1.0, and (c) S1 =
0.15, S2 = 1.7.

Fig. 10. Monostable:
∫

ψ dy1 dy2 at (a) t = 0.5, (b) t = 1, (c) t = 5.
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Fig. 11. Bistable (BS-ll,lh):
∫

ψ dy1 dy2 at (a) t = 0.5, (b) t = 1, (c) t = 5.

Fig. 12. Quadstable:
∫

ψ dy1 dy2 at (a) t = 0.5, (b) t = 1, (c) t = 5.

We see that integration of the population density with respect to y1 and y2 starts to accumulate at
two attracting points and the population density is higher in low-x1 high-x2 state as time evolves.
Thus a large portion of cells differentiates into Th2 while others do not differentiate. The weights w1
and w2 in the asymptotic solution depend on the initial population density and the parameters. If
most of the initial population is distributed in the attraction basin of low-x1 low-x2 state, then the
weight for the Dirac function with center at low-x1 low-x2 state would be higher (not shown here).

6.2.3. Asymptotic four-peak solution
In Fig. 12, the population density becomes highly concentrated at four attracting points as expected

from Theorem 5.3. In this example, the parameters are chosen as

n = 6, α1 = α2 = 5, k1 = k2 = 0.6, ρ1 = ρ2 = 1, β1 = β2 = 0.05,

σ1 = σ2 = 2, μ1 = μ2 = 5, γ1 = γ2 = 30, ν1 = ν2 = 5, τ1 = τ2 = 5.

The weights w ll, wul, w lu and wuu depend on the parameters of the system as well as on the ini-
tial population density. In this case, the population density is higher in high-x1 high-x2 state as time
evolves. Even though the population densities at the other three points are small and hardly notice-
able, there is indeed some population. The parameters chosen satisfy conditions (B1) and (B2). Note
that the mutual inhibition is small (i.e., γ1 and γ2 are large), in this case.
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