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The guiding center drift induced by the homogenization of the Lorentz forces is stud-
ied. It generates memory effects. The memory (or nonlocal) kernel is described by the
Volterra integral equation. The memory kernel can be characterized explicitly in terms
of a Radon measure. It describes the extra velocity drift. By way of velocity drift, we
view the Gauss’s law with polarization charges.
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1. Introduction

In many cases of practical interest, the motion in a magnetic field of an electrically
charged particle (such as an electron or ion in a plasma) can be treated as the super-
position of a relatively fast circular motion around a point called the guiding center
and a relatively slow drift of this point. The drift speeds may differ from various
species depending on their charge states, masses, or temperatures, possibly result-
ing in electric currents or chemical separation. The rare plasma theory of a single
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charged particle tells us about when the particle moving in a perturbation magnetic
field can be separated into a fast, oscillatory component — the gyromotion — and
a slow component obtained by averaging out the gyromotion (see Refs. 8, 18 and
24 for physical background and references therein). Therefore it is interesting to
study the guiding center motion from the point of view of homogenization.

Let Ω be a bounded open set in R
3 and δ denote the small parameter, 0 < δ � 1.

Let U δ(x, t) = (uδ
1(x, t), u

δ
2(x, t), u

δ
3(x, t))

t ∈ R
3 be the velocity of the particles and

m the mass; then the equation of motion for a particle with charged particle q in
electromagnetic fields E(x, t) ∈ L∞(0, T ;L2(Ω)) and Bδ(x, t) is modeled by

m
d

dt
U δ(x(t), t) = q

(
E(x, t) + U δ(x, t) ×

(
Bδ(x, t) +

M

δ

))
, (1.1)

where (x, t) ∈ Ω × (0, T ) and M(x) = (M1(x),M2(x),M3(x))t ∈ L∞(Ω) is a mag-
netic field. The initial data is complemented by

U δ(x, 0) = U0(x) = (u1(x, 0), u2(x, 0), u3(x, 0))t ∈ L2(Ω). (1.2)

For simplicity we will assume the magnetic field Bδ propagates in the fixed direction
b with magnitude wδ , i.e.

Bδ(x, t) = wδ(x, t)b = wδ(x, t)(b1, b2, b3)t, |b| = 1, (1.3)

where the sequence of scalar measurable functions {wδ}δ satisfies the bounds

a− ≤ wδ(x, t) ≤ a+, a.e. in Ω × (0, T ). (1.4)

The function wδ is used to describe the microscopic nonhomogeneous media and
varying local characteristics. It follows from (1.4) that the sequence of measurable
function {wδ}δ is uniformly bounded in L∞(Ω × (0, T )), so that according to the
Banach–Alaoglu–Bourbaki theorem, we may extract a subsequence still denoted by
{wδ}δ with

wδ w
⇀ w weakly∗ in L∞(Ω × (0, T )).

Thus the homogenization theory studies the behavior of the associated solution
sequence {U δ}δ as δ → 0 and asks whether average behavior can be discerned
from (1.1). To obtain a more accurate description of the limiting behavior of
(1.1), it is more efficient to apply the two-scale convergence method introduced
by Nguetseng22,23 and Allaire.3 The basic idea is to consider the behavior of the
homogenization process not only from the macroscopic point of view, but also from
the microscopic one, introducing an additional microscopic variable. To this end,
we will look for a formal asymptotic expansion of U δ. The aim is serving as a
function of δ for δ → 0 and the heuristic device is to consider that U δ and wδ in
Eq. (1.1) having two-scale expansions given respectively by (see Refs. 9 and 25 and
references therein)

U δ(x, t) = U0(x, t, τ) + δU1(x, t, τ) + δ2U2(x, t, τ) + · · · (1.5)
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and

wδ(x, t) = w0(x, t, τ) + δw1(x, t, τ) + δ2w2(x, t, τ) + · · · , (1.6)

where Ui and wi, i = 0, 1, 2, . . . , are T -periodic functions of the fast variable τ = t
δ .

Furthermore, we also assume the zero mean conditions

〈Ui〉 = 〈wi〉 = 0, i = 1, 2, 3, . . . ,

where 〈f〉 denotes the average value of f over one period T :

〈f〉 ≡ 1
T

∫
T
f(τ)dτ.

We then substitute the expansion in (1.5)–(1.6) into (1.1) and employ the corre-
sponding chain rule

d

dt
→ d

dt
+

1
δ

∂

∂τ
(1.7)

to obtain

m

(
d

dt
+

1
δ

∂

∂τ

)
(U0(x, t, τ) + δU1(x, t, τ) + δ2U2(x, t, τ) + · · ·)

= q

[
E + (U0(x, t, τ) + δU1(x, t, τ) + δ2U2(x, t, τ) + · · ·)

· (w0(x, t, τ) + δw1(x, t, τ) + δ2w2(x, t, τ) + · · ·)b +
M

δ

]
, (1.8)

then equate power of O(δ−1) and O(1) respectively in (1.8) to derive the constraint
microscopic equation

m
∂

∂τ
U0(x, t, τ) = U0(x, t, τ) ×M, (1.9)

and

m
d

dt
U0(x, t, τ) +m

∂

∂τ
U1(x, t, τ)

= q(E(x, t) + U0(x, t, τ) × w0(x, t, τ)b + U1(x, t, τ) ×M). (1.10)

The macroscopic equation is derived by averaging Eq. (1.10) over the fast
variable τ

m
d

dt
〈U0(x, t, τ)〉 = q(E(x, t) + 〈U0(x, t, τ) × w0(x, t, τ)〉b), (1.11)

where the third term on the right-hand side of (1.10) vanishes because of the zero
mean condition.

Let us remark that the constraint microscopic equation (1.9) shows the evolution
of velocity in microscopic variable τ under the fast gyromotion along the external
magnetic field M , through the average on a period T , and affects the average
behavior of the velocity. Equation (1.11) describes the effects after averaging the
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gyromotion. The second term on the right-hand side of (1.10) shows the contribution
of the fast gyromotion.

To give a rigorous mathematical analysis of the above asymptotic expansion,
it is interesting to study the motion of the guiding center (gyromotion center)
connecting with Eq. (1.1) by homogenization. Indeed, as we will show in this paper,
the memory effect induced by homogenization occurs because of the nonuniform
magnetic field. The memory term describing by an integral operator shows the extra
drift velocity which is perpendicular to the magnetic field relative to the guiding
center.

When the external field M = 0, the homogenization of the Lorentz equation
was studied by Amirat, Hamdache and Ziani in Ref. 4 for time-independent case
(see Ref. 16 for the time-dependent case). The guiding center motion is formulated
by the kinetic equation, in particular the Vlasov equation for collisionless case. This
makes the research of the homogenization of Vlasov and Vlasov–Poisson equations
interesting and challenge. The homogenization problem about Vlasov–Poisson sys-
tem with strong magnetic field is studied by Frénod and Sonnendrücker in Ref. 12.
They introduce a new rapid time scale induced by the strong magnetic field and
perform the method of time-periodic homogenization, to deduce the local problem
satisfied by the profile associated to the solution; then, by taking the time mean
value of that problem to deduce the effective equation. The homogenization of the
Vlasov (or Vlasov–Poisson) equation they obtained gives a good mathematical proof
of the guiding center approximation in plasma physics and it shows that in a cloud
of particles the mutual influence of particles can be expressed in term of their appar-
ent motion without any additional term. When a strong electric field, orthogonal to
the strong magnetic field, is added in the Vlasov equation, they showed that a drift
velocity will be induced by homogenization. However, the memory effect does not
appear in this situation. The various asymptotic limits of solutions to the Vlasov–
Poisson equation in the presence of a strong external magnetic field is discussed in
Ref. 13 by Golse and Saint-Raymont (see Ref. 1, 11 and 21).

The organization of the paper is as follows. In Sec. 2, we prove the main
result concerning the homogenization of the Lorentz equation with oscillating
magnetic field. We show that the limiting equation (homogenized equation) is
an integro-differential equation. The memory kernel is described by the Volterra
equation. Section 3 is devoted to the characterization of the memory kernel.
We consider the special structures of {wδ}δ and represent the weak limits and
the memory kernels explicitly in terms of a Radon measure. In Sec. 4, we con-
sider the guiding center motion which can be separated into the component
parallel to the magnetic field and the component perpendicular to magnetic
field. The motion of the component perpendicular to magnetic field represents
a drift motion concerned with respect to the guiding center (gyromotion cen-
ter). From the polarization drift, we deduce Gauss’s law with the polarization
charges.
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2. Homogenization and Memory Effect

As mentioned in Sec. 1, the two-scale convergence was introduced by Nguetseng22,23

and Allaire3 as an efficient tool to study the homogenization problem. It is an
alternative approach of the energy method introduced by Tartar to treat the
homogenization problem. Allaire also developed the theory further by studying
some general properties of two-scale convergence. Moreover he used two-scale con-
vergence to analyze several homogenization problems, both linear and nonlinear.
The two-scale convergence is intermediary between strong and weak convergences.
It means that in practical applications there are homogenization problems where
the solutions do not have classical limit and the weak limit is not a satisfactory
approximation of the solution, the asymptotic behavior of the solution can be char-
acterized by so-called two-scale limit (see Refs. 10, 13, 20, 22, 23 and 29 for the
detail and applications).

We denote by C∞
# (Y ) the space of infinitely differentiable functions defined on

Y = [0, 1]3 and extended to R
3 by Y -periodicity. For p > 1 and an open subset

Ω ⊂ R
3, Lp(Ω;C∞

# (Y )) is the space of functions of Lp(Ω) with value in C∞
# (Y ). A

bounded sequence {uδ}δ of Lp(Ω) is said (weakly) two-scale converge to u(x, y) ∈
Lp(Ω × Y ) if and only if

lim
δ→0

∫
Ω

uδ(x)ψ
(
x,
x

δ

)
dx =

∫
Ω

∫
Y

u(x, y)ψ(x, y)dydx, (2.1)

for any function ψ(x, y) ∈ D(Ω;C∞
# (Y )) that is Y -periodic with respect to the

second argument. This definition is justified by the following compactness the-
orem which was first proved by Nguetseng22 and then further developed by
Allaire in Ref. 3.

Theorem 2.1. Let ψ(x, x/δ) be measurable in Ω and ψ(x, y) ∈ Lp(Ω;C∞
# (Y )),

1 < p <∞. Then for δ > 0 we have

∥∥∥ψ (
x,
x

δ

)∥∥∥
Lp(Ω)

≤ ‖ψ(x, y)‖Lp(Ω;C∞
# (Y )) ≡

[∫
Ω

sup
y∈Y

|ψ(x, y)|pdx
] 1

p

. (2.2)

Moreover, if ψ(x, y) ∈ Lp(Ω;C∞
# (Y )) then

lim
δ→0

∫
Ω

ψp
(
x,
x

δ

)
dx =

∫
Ω

∫
Y

ψp(x, y)dydx (2.3)

and ψ(x, x
δ ) two-scale converges to ψ(x, y).

Theorem 2.2. Let {uδ}δ be a bounded sequence in Lp(Ω), 1 < p ≤ ∞. Then, there
exist a subsequence still denoted by {uδ}δ and a function u(x, y) ∈ Lp(Ω× Y ) such
that uδ two-scale converges to u(x, y).

The proof is similar to the L2 case as given by Allaire in Ref. 3 with modification
(see also Refs. 19 and 29). Therefore, the proof is omitted. We now focus our
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attention to derive the prior estimates that are available for the Lorentz equation.
First of all, we notice that its solution U δ(x, t) satisfies the following estimate.

Lemma 2.1. Let E ∈ L∞(0, T ;L2(Ω)). Under assumptions (1.1)–(1.4), there
exists a constant C independent of δ such that the solution U δ of the Lorentz
equation (1.1) satisfies

‖U δ‖L∞(0,T ;L2(Ω)) ≤ C, (2.4)

and therefore {U δ}δ is bounded in L2(Ω × (0, T )). Thus, by Theorem 2.2, we have
the two-scale limit (after passing to subsequence)

U δ(x, t) → Ū(x, t, τ) (2.5)

in L2(Ω × (0, T ) × T ), where T = (0, 1).

Proof. We will apply the standard energy method to prove that {U δ}δ is a
bounded sequence in L∞(0, T ;L2(Ω)). We multiply the Lorentz equation (1.1) by
U δ and apply the Cauchy–Schwarz inequality to obtain

d

dt
‖U δ(·, t)‖2

L2 ≤ 2q
m

‖E(·, t)‖L2‖U δ(·, t)‖L2 . (2.6)

Then integrating over the time variable t and using initial condition, we obtain the
Gronwall-type inequality

‖U δ(·, t)‖L2 ≤ ‖U0‖L2 +
2q
m

∫ t

0

‖E(·, s)‖L2ds. (2.7)

Thus {U δ}δ is bounded in L∞(0, T ;L2(Ω)), hence bounded in L2(Ω × (0, T )) for
bounded measure Ω. Therefore the two-scale limit (2.5) follows immediately from
Theorem 2.2.

The following lemma follows immediately from the fact that U δ(x, t) converges
to Ū(x, t, τ) in the sense of two-scale limit. In other words, the two-scale method
justifies mathematically the formal asymptotic expansion as mentioned in Sec. 1.

Lemma 2.2. Assume the hypothesis of Lemma 2.1. Let Ū0(x, τ) ∈ L2(Ω × T ).
Then, there exist subsequences still denoted by {U δ(x, t)}δ, {Bδ(x, t)}δ and func-
tions Ū ∈ L2(Ω × (0, T ) × T ) and B̄ ∈ L∞(Ω × (0, T ) × T ) such that U δ(x, t) and
Bδ(x, t) two-scale converge to Ū(x, t, τ) and B̄(x, t, τ), respectively. Furthermore,
Ū(x, t, τ) and B̄(x, t, τ) satisfy the two-scale limit system

m
∂

∂τ
Ū(x, t, τ) = qŪ(x, t, τ) ×M, (2.8)

m
d

dt
Ū(x, t, τ) = q(E(x, t) + Ū(x, t, τ) × B̄(x, t, τ)).

Ū(x, 0, τ) = Ū0(x, τ). (2.9)
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Proof. The two-scale convergence of Bδ = ωδ(x, t)b to B̄ = ω̄(x, t, τ)b follows
from the two-scale of convergence ωδ(x, t) → ω̄(x, t, τ). The weak formulation of
the Lorentz equation (1.1) is obtained by multiplying the admissible test function
φ(x, t, t

δ ) = φ(x, t, τ) ∈ D(Ω × (0, T );C∞
� (T )) and then integrating over the space-

time domain O = Ω × (0, T ):

∫
O
m
d

dt
U δ(x, t)φ

(
x, t,

t

δ

)
dxdt

=
∫
O
qE(x, t)φ

(
x, t,

t

δ

)
dxdt+

∫
O
qU δ(x, t)

·
(
Bδ(x, t) +

M

δ

)
φ

(
x, t,

t

δ

)
dxdt. (2.10)

Then integrating by parts, Eq. (2.10) becomes

−
∫
O
mU δ(x, t)

[
d

dt
φ

(
x, t,

t

δ

)
+

1
δ

∂

∂τ
φ

(
x, t,

t

δ

)]
dxdt

=
∫
O
qE(x, t)φ

(
x, t,

t

δ

)
dxdt

+
∫
O
qU δ(x, t) ×

(
Bδ(x, t) +

M

δ

)
φ

(
x, t,

t

δ

)
dxdt. (2.11)

To discuss the two-scale limit, we rewrite Eq. (2.11) as

−
∫
O
δmU δ(x, t)

d

dt
φ

(
x, t,

t

δ

)
dxdt −

∫
O
mU δ(x, t)

∂

∂τ
φ

(
x, t,

t

δ

)
dxdt

=
∫
O
δqE(x, t)φ

(
x, t,

t

δ

)
dxdt+

∫
O
δqU δ(x, t) ×Bδ(x, t)φ

(
x, t,

t

δ

)
dxdt

+
∫
O
qU δ(x, t) ×Mφ

(
x, t,

t

δ

)
dxdt. (2.12)

Since U δ is bounded in L∞(0, T ;L2(Ω)) and Bδ is bounded in L∞(Ω × (0, T )),
we see that the first, third and fourth terms of (2.12) converge to 0. There-
fore employing Lemma 2.1 and passing to the two-scale limit of Eq. (2.12)
yields

−
∫
S
mŪ(x, t, τ)

∂

∂τ
φ(x, t, τ)dxdtdτ =

∫
S
qŪ(x, t, τ) ×Mφ(x, t, τ)dxdtdτ, (2.13)
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then integrating by parts we obtain∫
S
m
∂

∂τ
Ū(x, t, τ)φ(x, t, τ)dxdtdτ =

∫
S
qŪ(x, t, τ) ×Mφ(x, t, τ)dxdtdτ, (2.14)

where S = O × T . This shows that Ū is a weak solution of the microscopic
constraint in Eq. (2.8).

Since Ū solves Eq. (2.8), the two-scale limit of (2.11) is given by

−m
∫
S
Ū(x, t, τ)

d

dt
φ(x, t, τ)dxdtdτ

=
∫
S
qE(x, t)φ(x, t, τ)dxdtdτ +

∫
S
qŪ(x, t, τ) × B̄(x, t, τ)φ(x, t, τ)dxdtdτ,

(2.15)

or (after integrating by parts)

m

∫
S

d

dt
Ū(x, t, τ)φ(x, t, τ)dxdtdτ

=
∫
S
qE(x, t)φ(x, t, τ)dxdtdτ +

∫
S
qŪ(x, t, τ) × B̄(x, t, τ)φ(x, t, τ)dxdtdτ.

(2.16)

Thus Ū solves (2.9) and this ends the proof of Lemma 2.2.

Remark. Since E ∈ L∞(0, T ;L2(Ω)), the local existence and uniqueness for Ū ∈
L2(Ω×(0, T )×T ) of the two-scale limit system (2.8)–(2.9) follows from the standard
energy estimate, Gronwall inequality and the fixed-point argument. The proof is
standard and therefore is omitted.

Equation (2.9) means that the two-scale limit of the Lorentz equation has the
same form as the original one, which satisfies the constraint equation (2.8). We note
that Eq. (2.8) has a solution that can be represented by

Ū(x, t, τ) = e−
q
m Nτ V̄ (x, t), (2.17)

where V̄ (x, t) = Ū(x, t, 0) and

N =




0 M3(x) −M2(x)

−M3(x) 0 M1(x)

M2(x) −M1(x) 0


 .

In order to realize Eq. (2.17), it needs to analyze e−
q
mNτ . By straightforward com-

putation we have the recursive relation

N3 = −‖M‖2N, N4 = −‖M‖2N2, N5 = ‖M‖4N, N6 = ‖M‖4N2, . . .
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and so on where ‖M‖ is the norm of the magnetic field M = (M1,M2,M3). There-
fore we have obtained the Rodrigues’ rotation formula (n = 1, 2, . . .)

eN = I +
[
I − ‖M‖2

3!
+

‖M‖4

5!
− · · · + (−1)n−1 ‖M‖2n−2

(2n− 1)!
+ · · ·

]
N

+
[

1
2!

− ‖M‖2

4!
+

‖M‖4

6!
− · · · + (−1)n−1 ‖M‖2n−2

(2n)!
+ · · ·

]
N2

= I +
sin ‖M‖
‖M‖ N +

1 − cos ‖M‖
‖M‖2

N2.

This formula provides an algorithm to compute the exponential map without com-
puting the full matrix exponent. Then simple change of variable yields

e−
q
mNτ = I −

sin(‖M‖ q
mτ)

‖M‖ N +
1 − cos(‖M‖ q

mτ)
‖M‖2

N2,

and the expression in terms of the trigonometric functions also shows that e−
q
mNτ is

a periodic function of τ which is essential for Lemma 2.2. In our setting the functions
defined are always of period one in τ -variable. Thus without loss of generality, we
may assume M is a unit vector ‖M‖ = 1 and q

m = 2π by proper rescaling. Thus
we have the right periodicity for e−

q
mNτ . For the remainder here as well as for the

rest of this paper, we always assume e−
q
mNτ is one-periodic in τ . However, without

further confusion we prefer to keep the term q
m and write e−

q
mNτ as

e−
q
mNτ = I − sin(qτ/m)N + (1 − cos(qτ/m))N2. (2.18)

As N is skew-symmetric, the operator e−
q
mNτ is unitary for all τ . By way of (2.17),

we can rewrite Eq. (2.9) as

m
d

dt
V̄ (x, t) = qe

q
mNτE(x, t) + qe

q
mNτ [e−

q
mNτV̄ (x, t) × B̄(x, t, τ)]. (2.19)

To obtain the homogenized equation, we rewrite (e−
q
mNτV̄ ) × B̄ as

e−
q
mNτV̄ (x, t) × B̄(x, t, τ) = −w̄(x, t, τ)J(x, t)e−

q
mNτV̄ (x, t), (2.20)

where the skew-symmetric matrix function J(x, t) is given by

J(x, t) =


 0 b3(x, t) −b2(x, t)
−b3(x, t) 0 b1(x, t)
b2(x, t) −b1(x, t) 0


 .

Therefore, the two-scale limit equation (2.19) becomes

∂

∂t
V̄ (x, t) − Ā(x, t, τ)V̄ (x, t) =

q

m
e

q
mNτE(x, t) (2.21)
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for (x, t, τ) ∈ Ω × (0, T )× T and the matrix function Ā is given by

Ā(x, t, τ) = − q

m
w̄(x, t, τ)e

q
mNτJ(x, t)e−

q
mNτ . (2.22)

Without loss of generality, we assume the trivial initial condition, then by Duhamel
principle the solution V̄ (x, t) of (2.21) is represented as

V̄ (x, t) = (L̄)−1g ≡
∫ t

0

Ḡ(x, s, t, τ)e
q
mNτ q

m
E(x, s)ds, (2.23)

where

Ḡ(x, s, t, τ) ≡ Φ(x(t), t, τ)Φ(x(s), s, τ)−1 (2.24)

is the Green’s function associated with the initial value problem of the first-order
linear differential operator L̄ defined by (2.21), i.e.

L̄V̄ (x, t) :=
∂

∂t
V̄ (x, t) − Ā(x, t, τ)V̄ (x, t).

Here Φ is the unique solution of the matrix differential equation

d

dt
Φ(x, t, τ) − Ā(x, t, τ)Φ(x, t, τ) = 0, Φ(x, 0, τ) = I, (2.25)

where I is the 3 × 3 identity matrix. The matrix function Φ(x, t, τ) so defined is
called the matrizant of the system (2.25).

We can rewrite Eq. (2.21) as the differential integral equation:

d

dt
V̄ (x, t) =

q

m

∫ t

0

Ā(x, t, τ)Ḡ(x, s, t, τ)e
q
mNτE(x, s)ds+

q

m
e

q
mNτE(x, t). (2.26)

For simplicity we define the two-scale correction matrix function C̄ by

C̄(x, s, t, τ) = Ā(x, t, τ)Ḡ(x, s, t, τ)e
q
mNτ − Ã(x, t, τ)G(x, s, t), (2.27)

where

G(x, s, t) =
∫
T
Ḡ(x, s, t, τ)e

q
mNτdτ (2.28)

and

Ã(x, t, τ) = − q

m
w(x, t)e

q
mNτJ(x, t)γ, γ =

∫
T
e−

q
mNτdτ. (2.29)

Here γ denotes the average correction function. Substituting (2.27)–(2.29) into
(2.26), we obtain

d

dt
V̄ (x, t) = Ã(x, t)V̄ (x, t) +

q

m
e

q
mNτE(x, t) +

q

m

∫ t

0

C̄(x, s, t, τ)E(x, s)ds. (2.30)
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The averaging equation can be obtained by multiplying e−
q
mNτ and integrating the

variable τ on Eq. (2.30), we have the homogenized equation for U(x, t)

m
d

dt
U(x, t) = −qw(x, t)J(x, t)U(x, t) + qE(x, t)

+
∫ t

0

C(x, s, t)qE(x, s)ds, (2.31)

where

C(x, s, t) =
∫
T
e−

q
mNτ C̄(x, s, t, τ)dτ.

Next, we introduce the kernel D(x, s, t), the solution of the resolvent (or Volterra–
Green) equation, given by

D(x, s, t) = C(x, s, t) −
∫ t

s

C(x, s, σ)D(x, σ, t)dσ. (2.32)

Then integrating by parts and using the condition D(x, s, s) = 0, we deduce
from (2.32) that

m
d

dt
U(x, t) = −qw(x, t)J(x, t)U(x, t) + qE(x, t)

−
∫ t

0

K(x, s, t)U(x, s)ds (2.33)

or

m
d

dt
U(x, t) = q(E(x, t) + U(x, t) ×B) −

∫ t

0

K(x, s, t)U(x, s)ds, (2.34)

where the kernel K is given by

K(x, s, t) = m
d

ds
D(x, s, t) − qw(x, s)D(x, s, t)J(x, t), (2.35)

with (x, s, t) ∈ Ω × (0, T )× (0, T ). We thus have proved the following theorem.

Theorem 2.3. Under the hypotheses (1.1)–(1.3), there exist a subsequence of {wδ}δ

and a kernel K defined on Ω× (0, T )× (0, T ), measurable in x and t, such that U δ

converges weakly in L2(Ω× (0, T )) to U solution of (2.34) with resolvent D defined
in Ω × (0, T ) × (0, T ) solving (2.32) and the kernel K is given by (2.35).

This theorem also answers the typical question of the homogenization theory. If
the solutions U δ of the problems LδU δ = g converge weakly to U, here

LδU δ = m
d

dt
U δ(x, t) + qwδ(x, t)J(x, t)U δ(x, t), (2.36)

can an operator L be found such that U is a solution of the problem LU = g, and
is L of the same type as Lδ? The answer is negative. Indeed, it is given by

LU ≡ m
d

dt
U(x, t) + qw(x, t)J(x, t)U(x, t) +

∫ t

0

K(x, s, t)U(x, s)ds (2.37)
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which is an integro-differential operator, i.e. the homogenization process gen-
erates memory or nonlocal effects described by integro-differential equations
(see Refs. 2, 4–7, 14, 15, 17, 26–28).

Remark 1. The above argument is still held for the nontrivial initial data
U0(x) �= 0. In this situation the homogenization equation (2.34) becomes

m
d

dt
U(x, t) = q(E(x, t) + U(x, t) ×B) −

∫ t

0

K(x, s, t)U(x, s)ds+ Ψ(x, t)U0(x),

(2.38)

where

Ψ(x, t) =
∫ t

0

D(x, s, t)χ(x, s)ds + χ(x, t), (2.39)

and

χ(x, t) =
∫

T

me−
q
mNτĀ(x, t, τ)Ā1(x, τ)γ−1dτ, Ā1(x, τ) =

∫ t

0

Ā(x, s, τ)ds.

Remark 2. Taking the average of Eq. (2.17) in τ (over T ), we have

U(x, t) =
〈 q

m
e−

q
mNτ

〉
V̄ (x, t) ≡

(∫
T
e−

q
mNτdτ

)
V̄ (x, t).

Then applying Rodrigues’ rotation formula (2.18) yields∫
T
e−

q
mNτdτ = I − C1N + C2N

2

for some constants C1 and C2. Thus we derive the representation for U :

U(x, t) = (I − C1N + C2N
2)V̄ (x, t). (2.40)

It is therefore enough to find the equation satisfied by V̄ (x, t). We note that V̄ (x, t)
does not oscillate, and we can average directly on (2.21) to get

∂

∂t
V̄ (x, t) − 〈Ā〉(x, t)V̄ (x, t) =

〈 q

m
e

q
mNτ

〉
E(x, t). (2.41)

However, (2.41) is not the equation looking for since the coefficient 〈Ā〉(x, t) is not
the weak limit. To proceed, we have to rewrite (2.41) as

∂

∂t
V̄ (x, t) −A(x, t)V̄ (x, t) − (〈Ā〉(x, t) −A(x, t))V̄ (x, t)

=
q

m
〈e

q
mNτ 〉E(x, t), (2.42)

where A(x, t) is the average of Ã(x, t, τ) on T . Analogous to the defect measure,
the third term of (2.42) is to characterize failure of strong convergence. Indeed,
following the same procedure as (2.21)–(2.36) we can represent the correction term
by an integral. Thus the memory effect does occur in this situation. The memory
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term can be explained the interactions or resonance effects between electron and
the fields, and part of energy is absorbed and given back later. For this reason, the
effective equation, the homogenized equation, must be like an equation with added
integral term used for memory effects.

3. Characterization of the Memory Kernel

In this section we will use the Radon measure to characterize the memory kernel
K. We assume that {wδ}δ is a sequence of measurable functions that satisfies the
bounds

a− ≤ wε

(
t

δ

)
≤ a+, a.e. in Ω (3.1)

and

Bδ = wδ

(
t

δ

)
b, b = (b1, b2, b3)t. (3.2)

Here we also assume b = (M1,M2,M3)t is a constant vector, and therefore

J = N =


 0 b3 −b2
−b3 0 b1
b2 −b1 0


.

One should notice that in this section the spatial domain Ω need not be an open
set of R

3 and may be any measure space endowed with measure having no atoms.
It follows from (3.1) that there exists a two-scale limit w̄(τ) of wδ such that, after
extracting a subsequence,

wδ 2
⇀ w̄(τ) in L∞(T ) (3.3)

and the weak limit w of {wδ}δ given by

w =
∫
T
w̄(τ)dτ. (3.4)

Note that from (2.22) we also have

Ā = − q

m
w̄(τ)J. (3.5)

For convenience, we will assume b = (b1, b2, b3)t is a unit vector |b| = 1 then direct
calculation shows

J2 = b ⊗ b− I, J3 + J = 0. (3.6)

The minimal polynomial of J has three simple roots 0, i,−i and by Lagrange inter-
polation formula for etJ it will take the form 1 + sin tx + (1 − cos t)x2. Therefore
the matrizant of the system (2.25) can be represented as

Φ(t, τ) = exp
(
−t q
m
w̄(τ)J

)
= I − sin t

q

m
w̄(τ)J +

(
1 − cos t

q

m
w̄(τ)

)
J2, (3.7)
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hence

Ḡ(s, t, τ) = Φ(t, τ)Φ(s, τ)−1

= Φ(t− s, τ) = exp
(
−(t− s)

q

m
w̄(τ)J

)
(3.8)

and

C̄(s, t, τ) = Ā(τ)Ḡ(s, t, τ)e
q
m Jτ − Ã(τ)G(s, t). (3.9)

The fluctuation part is therefore given by

C =
∫
T
e−

q
mNτ C̄(s, t, τ)dτ

=
∫
T
− q

m
(w̄(τ)e−

q
m Jτ − wγ)Je−(t−s) q

m w̄(τ)Je
q
m Jτdτ. (3.10)

To derive the explicit form of the memory kernel K we have to obtain the resolvent
kernel D of (2.32) first. As mentioned in Sec. 2, the key step in deriving the kernel
K is of the same type as the function C with respect to a Radon measure due to
the resolvent equation. This representation is very important because it tells how
the memory effect, produced in the macroscopic equation, depends on the way the
sequence {wδ} oscillates. We now prove the representation lemma directly related
to the resolvent equation (2.32).

Lemma 3.1. There exists a Radon measure µ defined on T such that the solution
D(s, t) of the resolvent equation (2.32) is given explicitly by

D(s, t) = −
∫
T

q

m
(w̄(τ)e−

q
m Jτ − wγ)Je−(t−s) q

m w̄(τ)Je
q
m Jτdµ(τ). (3.11)

Proof. For fixed s, t ∈ [0, T ], we denote by H as the set

H ≡ {〈φs̄,t̄u, v〉 : Λ → R|s̄, t̄ ∈ [0, T ];u, v ∈ R
3} ≡ {φs̄,t̄},

where φ ∈ C([0, T ] × [0, T ] × T ;M3×3). Let V be the vector space generated by
H; then it is obvious that V is the subspace of the space C(T ). We define a linear
operator T : V → R by

〈T, 〈φs̄,t̄u, v〉〉 =
∫

cal T

〈φs̄,t̄(τ)u, v〉dτ

+
∫ T

0

χ[s̄,t̄ ](σ̄)
〈∫

T
φσ̄,t̄(τ)dτD(s̄, σ̄)u, v

〉
dσ̄. (3.12)

From the definition (3.12), it is easy to see that

|〈T, φs̄,t̄u, v〉| ≤ C‖〈φs̄,t̄u, v〉‖C(T ),

where C is a constant. This shows that {T } are bounded functionals on V. It follows
from Hahn–Banach theorem, there exists a bounded functional {L} on C(T ) such
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that L|V = T ; therefore applying the Riesz representation theorem we deduce that
there exists a Radon measure {µ} on T such that

〈L, ψ〉 =
∫
T
ψ(τ)dµ(τ) ∀ψ ∈ C(T ). (3.13)

Choosing ψ(τ) = 〈φs,t(τ)u, v〉, then from (3.12)–(3.13) we obtain∫
T
〈φs,t(τ)u, v〉dµ(τ) = 〈L, 〈φs,t(τ)u, v〉〉

=
∫
T
〈φs,t(τ)u, v〉dτ +

∫ T

0

〈∫
T
φσ,t(τ)dydτD(s, σ)u, v

〉
dσ

for any u, v ∈ R
3, thus we have∫

T
φs,t(τ)dµ(τ) = 〈L, φs,t(τ)〉

=
∫
T
φs,t(τ)dydτ +

∫ T

0

[∫
T
φσ,t(τ)dτ

]
D(s, σ)dσ. (3.14)

In particular, let

φs,t(τ) = − q

m
(w̄(τ)e−

q
m Jτ − wγ)Je−(t−s) q

m w̄(τ)Je
q
m Jτ

and use Eqs. (2.32) and (3.14), we derive the relation

D(s, t) =
∫
T
φs,t(τ)dµ(τ)

=
∫
T
φs,t(τ)dydτ +

∫ T

0

[∫
T
φσ,t(τ)dτ

]
D(s, σ)dσ

or equivalently

D(s, t) = −
∫
T

q

m
(w̄(τ)e−

q
m Jτ − wγ)Je−(t−s) q

m w̄(τ)Je
q
m Jτdµ(τ). (3.15)

This completes the proof of Lemma 3.1.

By way of the Lemma 3.1, we can derive the memory kernel K(s, t) directly

K(s, t) = K(t− s) = m
dD

ds
− qωDJ

= −
∫
T

q2

m
(w̄(τ)e−

q
m Jτ − wγ)(w̄(τ) − w)

· J2e−
q
m (t−s)w̄(τ)Je

q
m Jτdµ(τ). (3.16)

Theorem 3.1. Let the sequence of scalar functions {wδ}δ satisfy (3.1). Then, up
to a subsequence of δ → 0, there exists a kernel K associated with {wδ}δ and
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defined on Ω × (0, T ) such that the sequence {U δ}, solutions to (1.1), converges in
L2(Ω × (0, T )) weakly to U, a solution of integral differential equation

m
d

dt
U(x, t) = q(E(x, t) + U(x, t) ×B)

−
∫ t

0

K(t− s)U(x, s) ds+ Ψ(x, t)U0(x),

U(x, 0) = U0(x),

(3.17)

where w is the weak∗ limit of wδ and the memory kernel K is measurable in x ∈ Ω
and admits the integral representation (3.16) with a family of positive parametrized
measures {µ} defined on T and Ψ(x, t) is defined by Eq. (2.39).

Remark. As mentioned in Remark 2 after Theorem 2.3, the memory effect does
also occur in this case and the integral is of convolution type because of time
translation invariant.

4. Drifts and Polarization Induced by Homogenization

In this section, we analyze the motion of charged particles from the point of
view of homogenization. In order to meaningfully describe some physical quan-
tities, we will assume the trivial initial condition U δ(x, 0) = U0(x) = 0. First we
rewrite Eq. (3.17) as

m
d

dt
U(x, t) = q(E(x, t) + U(x, t) ×B) − ω2J2

∫ t

0

K(t− s)U(x, s)ds

or, using the property of the matrix J ,

m
d

dt
U(x, t) = q(E(x, t) + U(x, t) ×B) −

∫ t

0

K(t− s)U(x, s)ds ×B ×B, (4.1)

where

K(t− s) ≡
∫
T

q2(w̄(τ)e−
q
m Jτ − wγ)(w̄(τ) − w)

mω2
e−

q
m (t−s)w̄(τ)Je

q
m Jτdµ(τ). (4.2)

Therefore the homogenized equation can be written as

m
d

dt
U(x, t) = q(E(x, t) + U(x, t) ×B) − (W⊥(x, t) ×B) ×B, (4.3)

where

W⊥(x, t) =
∫ t

0

K(t− s)U(x, s)ds. (4.4)

To proceed, we decompose U as follows:

U(x, t) = U‖(x, t) + Ũ⊥(x, t), (4.5)
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where U‖ is parallel to the magnetic field B and Ũ⊥ is perpendicular to B. Obviously
U‖ satisfied the first-order differential equation

m
d

dt
U‖(x, t) = qE‖(x, t), (4.6)

by taking the parallel part of (4.3). Let Ωc = q|B|
m denote the Larmor frequency

(see Ref. 8 for the physical explanation); then the perpendicular part Ũ⊥ can be
further decomposed into

Ũ⊥(x, t) = U⊥(x, t) + UE(x, t) + UP (x, t), (4.7)

where UE(x, t) and UP (x, t) are given, respectively, by

UE(x, t) =
E⊥ ×B

|B|2 +
W⊥ ×B

q
(4.8)

and

UP (x, t) =
m

q|B|2
∂E⊥
∂t

+
m

q2
∂W⊥
∂t

=
1

Ωc|B|
∂E⊥
∂t

+
|B|
qΩc

∂W⊥
∂t

. (4.9)

It is straightforward to show that U⊥ satisfies

m
d

dt
U⊥(x, t) +m

d

dt
UP (x, t) = qU⊥(x, t) ×B. (4.10)

Assuming W⊥ and E⊥ have a harmonic time dependence, that is W⊥ and E⊥ ∼
e−iωt, with a characteristic angular frequency ω, then we have

|mdUP

dt |
|qU⊥ ×B| =

| m2

q|B|2
∂2E⊥
∂t2 + m2

q2
∂2W⊥

∂t2 |
q|U⊥||B|

≤ |UE |
|B||U⊥|

(
ω

Ωc

)2

+
|B||W⊥|
q|U⊥|

(
ω

Ωc

)2

. (4.11)

If the characteristic angular frequency is much smaller than the cyclotron frequency,
ω � Ωc, with |W⊥|

|U⊥| and |UE |
|U⊥| are also small, then we have∣∣∣∣ ddtUP

∣∣∣∣ � |qU⊥(x, t) ×B|. (4.12)

Thus it is sufficient to approximate (4.10) by

m
d

dt
U⊥(x, t) = qU⊥(x, t) ×B. (4.13)

Therefore, U⊥ is concerned with the usual circular motion of the charged particle
about the magnetic field, and is independent of the variations of the electric field.
Superposed upon this circular motion velocity are the drift velocities, the equations
(4.8) and (4.9). We note that Eq. (4.8) describes the electric drift velocity, and
Eq. (4.9) shows the effect of polarization drift velocity.
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In the following we deduce the polarization for many particles (electrons or ions)
by way of the above single particle homogenized equation. We note that for many
physical situations in rare plasma, without loss of the physical meanings, we can
omit the interactions of the electrons or ions with each other. And therefore the
behavior of the many particles can be served as the sum of the individual particles.
To do this, for small volume δV , the polarization current density Jp is the rate of
flow positive and negative charges across unit area, and is given by

Jp =
1
δV

∑
i

qiUPi =
1
δV

∑
i

(
mi

|B|2
∂E⊥
∂t

+
mi

qi

∂Wi⊥
∂t

)

≡ ρm

(
1

|B|2
∂E⊥
∂t

+
∂W⊥
∂t

)
, (4.14)

where ∂W⊥
∂t = 1

δV

∑
i

mi

ρmqi

∂Wi⊥
∂t and the summation is taking over all positive

and negative charges contained in δV , and ρm is the mass density of the plasma.
Equation (4.14) means that the polarization effect in a plasma is due to the time
variation of the electric field. The contribution of a steady electric field does not
result in a polarization field, since the ions and electrons can move around to pre-
serve quasineutrality. Because the plasma behaves like a dielectric, the polarization
current density Jp can be introduced by way of the dielectric coefficients of the
plasma. For this purpose, we separate the total current density JT into the polar-
ization current density Jp and the current density J0, the effect of other sources,

JT = Jp + J0. (4.15)

Combining the polarization current density Jp and ε0 ∂E⊥
∂t , we obtain

ε0
∂E⊥
∂t

+ ρm

(
1

|B|2
∂E⊥
∂t

+
∂W⊥
∂t

)
= ε0

(
1 +

ρm

ε0|B|2

)
∂E⊥
∂t

+ ρm
∂W⊥
∂t

≡ ε
∂E⊥
∂t

+ ρm
∂W⊥
∂t

, (4.16)

where

ε = ε0

(
1 +

ρm

ε0|B|2

)
(4.17)

is the effective electric permittivity perpendicular to the magnetic, and the term
ρm

∂W⊥
∂t is the extra homogenized polarization electric. From another viewpoint, the

resulting polarization charge density ρp and polarization current density Jp satisfy
the charge continuity equation. The polarization charge density ρp can be viewed as

ρp = − ρm

|B|2 (∇ · E⊥) − ρm(∇ ·W⊥). (4.18)

From Eq. (4.14), the flux of polarization current density Jp is given by

∇ · Jp =
ρm

|B|2
∂

∂t
(∇ · E⊥) + ρm

∂

∂t
(∇ ·W⊥), (4.19)
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and therefore Eqs. (4.18) and (4.19) make clear that the charge continuity equation
is satisfied

∂ρp

∂t
+ ∇ · Jp = 0. (4.20)

The total charge can be separated as

ρ = ρ0 + ρp, (4.21)

where the charge ρ0 is associated with the current J0 through the charge continuity
equation

∂ρ0

∂t
+ ∇ · J0 = 0. (4.22)

When the parallel component of the electric field vanishes, the electric flux satisfies

ε0∇ · E = ρ = ρ0 + ρp

= ρ0 −
ρm

|B|2 (∇ · E⊥) − ρm(∇ ·W⊥)

= ρ0 − ε0

[
ρm

ε0|B|2 (∇ ·E⊥) +
ρm

ε0
(∇ ·W⊥)

]
≡ ρ0 − ε0∇ · P ,

(4.23)

where

∇ · P ≡
(

ρm

ε0|B|2 +
ρm

ε0

)
∇ · (E⊥ + W⊥)

is the polarization field. Let D = E + P then the Gauss’s law becomes

∇ ·D =
ρ0

ε0
. (4.24)
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