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Nonuniversality of the intrinsic inverse spin-Hall effect in diffusive systems
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We studied the electric current induced in a two-dimensional electron gas by the spin current, in the presence
of Rashba and cubic Dresselhaus spin-orbit interactions. We found out that the factor relating the electric and
spin currents is not universal, but rather depends on the origin of the spin current. Drastic distinction has been
found between two cases: the spin current created by diffusion of an inhomogeneous spin density, and the pure
homogeneous spin current. We found that in the former case the inverse spin-Hall effect electric current is finite,
while it turns to zero in the latter case, if the spin-orbit coupling is represented by Rashba interaction.
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I. INTRODUCTION

The spin-Hall effect (SHE) and the inverse spin-Hall effect
(ISHE) can be observed in two- and three-dimensional electron
systems with a strong enough spin-orbit interaction (SOI).1,2

Via this interaction the electric current induces a flux of spin
polarization flowing in the perpendicular direction and vice
versa. These effects take place in metals and semiconductors,
where the spin-orbit interaction arises from impurity scat-
tering, or band structure effects. Nowadays they are being
intensively studied theoretically (for a review see Ref. 3) and
experimentally.4,5 These phenomena establish an important
connection between spin and charge degrees of freedom that
can be employed in spintronic applications.

Here we will focus on ISHE. This effect is driven by
the spin current which can be produced in different ways.
It can be created by diffusion of an inhomogeneous spin
polarization, or it can be induced directly by a motive force of
various natures.6,7 In experimental studies the former method
was used in Refs. 5,8, while the latter was employed in
Refs. 9,10. From the theoretical point of view there are two
quite distinct mechanisms of ISHE, depending on the extrinsic
or intrinsic nature of SOI in an electron system. The extrinsic
effect is promoted by the spin-orbit scattering of electrons
from impurities.2 The intrinsic effect is associated with the
spin-orbit splitting of electron energy bands. This effect has
been studied in Ref. 11 together with the extrinsic mechanism.
A surprising result of this study is that the finite inverse SHE
takes place even in the case of a pure intrinsic Rashba12

SOI, while the direct effect has been shown to vanish in
the considered case of a diffusive system.13 A reasonable
explanation is that the Onsager relation between direct (SHE)
and reciprocal (ISHE) effects should not be satisfied, because
the spin-current is not conserving. This argument also means
that for the ISHE effect the coefficient in the local linear
dependence Ic = CIs of the charge current density Ic from the
spin current density Is can depend on the source that originally
excites Is . In this sense ISHE is not universal. At the same time,
SHE is a universal effect, because the coefficient relating Is

to Ic does not depend on how the electric current is produced.
It can be created, for example, by electron diffusion, as well
as by an external electric field. The result will be the same.
It follows from the gage invariance of the electromagnetic

field. Formally, one obtains the same spin current, independent
of whether it is induced by the scalar electric potential or
time-dependent vector potential.

In order to demonstrate the nonuniversality of ISHE we
will consider two kinds of spin-current sources. In the first
case, an inhomogeneous spin polarization parallel to the z axis
creates the spin flux due to spin diffusion. In the second case,
the spin current is driven by a spatially uniform “electric”
field, such that the fields acting on up and down spins have
opposite signs. The latter situation corresponds to spin current
generation mechanisms suggested in Refs. 6,7. Our goal is to
show that the factors C are different in these two situations.
Since our analysis has shown that in the case of the Rashba
spin-orbit interaction C = 0 for the source of the second kind,
we will consider the cubic Dresselhaus interaction, as well,
and demonstrate that the Onsager relation holds in this case.

The outline of the paper is as follows. In Sec. II the
linear response equations relating the spin and charge currents
to the auxiliary fields will be written for a disordered
two-dimensional degenerate electron gas (2DEG). From this
pair of equations the auxiliary fields can be excluded and
linear relations between the electric and spin currents can be
established. In Sec. III this theory will be applied to the cases
with Rashba (Sec. III A) and Dresselhaus (Sec. III B) spin-
orbit couplings. The discussion of results will be presented
in Sec. IV.

II. LINEAR RESPONSE THEORY

The Hamiltonian of the electron system has the form

H = H0 + V, (1)

where H0 is the unperturbed Hamiltonian of the 2DEG, which
includes the electrons’ spin-orbit coupling and their scattering
on randomly distributed spin-independent elastic scatterers.
The spin-orbit coupling has the general form

Hso = hk · σ , (2)

where the effective magnetic field hk is a function of the
electron momentum k and σ = (σx,σy,σz) is the vector of Pauli
matrices. In general, hk can be generated by the bulk-inversion
asymmetry in the bulk and structure-inversion asymmetry in
a quantum well (QW).14 The perturbation term V = V1 + V2
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represents interactions of electrons with the auxiliary fields.
We will consider two types of fields. The first one is a slowly
varying in time nonuniform Zeeman field B which is directed
perpendicular to the 2DEG (z direction). The corresponding
interaction Hamiltonian is

V1 = σzB. (3)

Another interaction is

V2 = σzk · A. (4)

This Hamiltonian contains the uniform spin-dependent field
σzA, where A slowly varies in time. Such a field induces
the spin current by driving in opposite directions electrons
having opposite spins. It can be created, for example, by

applying a time-dependent strain to a noncentrosymmetric
semiconductor. Indeed, as known15 the strain field uxz gives
rise to the spin-orbit interaction ασzuxzkx . Hence, in this case
Ax = αuxz. Other mechanisms6,7 of creating homogeneous
spin currents can also be presented in a form of a spin-
dependent vector potential that is able to drive spins.

Within the linear response theory the spin I s and charge I c

currents of noninteracting electrons can be written in terms
of retarded Gr

k,k′ (ω) and advanced Ga
k,k′(ω) single-particle

Green’s functions. Due to impurity scattering these functions
are nondiagonal with respect to the wave vectors k and k′.
The linear response expressions for the currents, as functions
of the frequency � and wave vector q, at � → 0 are given
by

Is/c(�,q) = −i
∑
k,k′

∫
dω

2π

〈
Tr

{[
Gr

k,k′(ω) − Ga
k,k′ (ω)

]
js/cGa

k′+q,k+q(ω + �)V (�,q)nF (ω)

+Gr
k,k′ (ω)js/c

[
Gr

k′+q,k+q(ω + �) − Ga
k′+q,k+q(ω + �)

]
V (�,q)nF (ω + �)

}〉

+ 1

2

∑
k

nF (Ek)Tr

[
τs/c,

∂V (�,q)

∂k

]
+
, (5)

where the spin-current and charge-current operators have the
conventional form16 js/c = (1/2)[τs/c,v]+, with v = k/m∗ +
∂(hk · σ )/∂k and τs = σz, τc = e; nF (ω) is the Fermi dis-
tribution. In the following the low-temperature case will be
assumed, so that nF (ω + �) � nF (ω) − �δ(ω). The angular
brackets denote averaging over disorder. This averaging will
be performed within the semiclassic approximation, according
to the standard procedure,17 where we will neglect the
weak-localization corrections. We will assume that the spatial
variations of the external field are slow within the electron
mean-free path l, so that lq � 1. This case corresponds to the
diffusion approximation, implying the expansion of Eq. (5) in
powers of q. Also the SOI field will be assumed weak enough
that hkF

� 1/τ , where τ is the mean electron scattering time.

III. INVERSE SPIN-HALL EFFECT

A. Rashba SOI

Let us first consider ISHE in the case of Rashba spin-orbit
interaction, where the spin-orbit field is linear in k and has the
form hk ≡ hR

k = αk × ẑ. If the auxiliary field is V1, given by
Eq. (3), it creates a nonequilibrium and nonuniform in space
spin polarization Sz. This distribution of electron spins relaxes
to the uniform state via diffusion that is accompanied by a
pure spin current. When V (�,q) in Eq. (5) is represented by
V1(�,q), the last term in this expression vanishes. Also, the
terms containing the products GrGr and GaGa can be shown
to vanish, at least up to linear in q terms. Since in the following
the higher-order terms starting from q2 will be ignored, only
the products of the form GrGa will be retained in Eq. (5).
We assume that B in Eq. (3) varies in the x direction, so
that I c is expected to flow in the y direction. In Fig. 1 the
Feynman diagrams contributing to Eq. (5), where V = V1,

are shown. The upper (lower) arms in the diagrams denote
the impurity averaged functions G

r(a)
k (ω) = (ω − Ek − hk ·

σ ± i
)−1 and the dashed lines depict the random scattering
potential correlator 〈|Uk|2〉. For simplicity this correlator will
be assumed short-ranged, i.e., independent of k, so that 
 =
πNF 〈|Uk|2〉 ≡ πNF |U |2 = 1/2τ is simply a constant. The
multiple scattering blocks in the diagrams shown in Figs. 1(b)
and 1(d) represent processes where the initial electron spin
density Sz evolves in the diffusion process to Si . Since this
process is accompanied by the spin precession due to Rashba
SOI, i can be either z or x, as follows from the spin diffusion
equation18 for the spin polarization varying in space along the
x coordinate. In general such a diffusion-precession dynamics

FIG. 1. The Feynman diagrams for the charge current generated
by the intrinsic spin-Hall effect. The auxiliary field V can be either V1

or V2, where V1 and V2 are defined by Eq. (3) and Eq. (4), respectively.
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is represented by the diffusion propagator Dij (q). In the matrix
form it can be represented as

Dij = [(1 − |U |2�/2)−1]ij , (6)

�ij =
∑

k

Tr
[
σiG

r
k+q(ω)σjG

a
k(ω)

]
. (7)

Using the above definition, the contribution of all four types
of diagrams in Fig. 1 can be written as

I c
y = i

�

2π
B

(
KyzDzz + KyxDxz + α

2πNF



Dxz

)
, (8)

where

Kij =
∑

k

ki

m∗ Tr
[
Gr

k+q(ω)σjG
a
k(ω)

]
. (9)

It is easy to see that the diagonal components of D are finite at
q → 0, while the nondiagonal ones vanish as the first power
of q. Therefore, in the leading approximation the correlator K

in the second term of Eq. (8) must be calculated at q = 0. Up
to the small semiclassic corrections of the order of (αkF /EF )3

this correlator is Kyx = −2παNF /
, and the last two terms
cancel each other. At the same time, it is easy to see that Kyy

is 0 at q = 0. Therefore, we did not include the corresponding
term KyyDyz into Eq. (8). Further, as follows from Eq. (9), the
correlator Kyz is proportional to hk × hk+q. Therefore, it turns
to 0 at q = 0. In the leading approximation one finds from
Eqs. (8) and (9) that Kyz = −iπqα2NF k2

F /2m∗
3 and

I c
y = �

2π
qBDzz

α2k2
F

4
3
. (10)

Our goal is to get an expression of the charge current
through the spin current I s

x . Therefore, the next step is to
calculate the spin current induced by the perturbation Bσz.
This current can be written in the form

I s
x = i

�

2π
B

(
Rx

zxDxz + Dzz

∑
k

kx

m∗ Tr
[
σzG

r
k+q(ω)σzG

a
k(ω)

])
,

(11)

where

Ri
jk =

∑
k

ki

m∗ Tr
[
σjG

r
k+q(ω)σkG

a
k(ω)

]
. (12)

The second term in the large parentheses of Eq. (11) is equal
to −iπNF qv2

F Dzz/2
2. This term represents the diffusion
spin current. In its turn the first term is associated with spin
precession caused by the Rashba field. It takes a simple form in
the case when q � αm∗, that is, when spatial variations of the
Zeeman field are slower than spin-density variations caused
by spin precession in the SOI field. In this case it follows
from Eq. (6) that Dxz = |U |2�xzDxxDzz/2. A straightforward
calculation using Eqs. (6), (7), and (12) gives for the first
term in the large parentheses of Eq. (11) the expression
iπNF qv2

F Dzz/
2, which is twice larger and has opposite sign
with respect to the second term. Finally, from Eqs. (10) and
(11) the charge current becomes

I c
y = −e

α2m∗



Is
x . (13)

This result coincides with Ref. 11, taking into account that
2
 = 1/τ and that the definition of I s

x in Ref. 11 differs by the
factor 1/2.

The next example is the charge current induced in the y

direction by the external perturbation given by Eq. (4), where
A is parallel to the x axis. In this case the last term in Eq. (5)
turns to zero, along with the terms containing the products
GrGr and GaGa . Further, a simple inspection of diagram (a)
in Fig. 1 shows that it is zero at q = 0. The contribution of
other diagrams to I c

y can be expressed as

I c
y = i

�

2π
A

∑
i

( |U |2
2

Kyi + ∂hi
k

∂ky

)
DiiR

x
iz, (14)

where the first term corresponds to Fig. 1(b), while the second
one is given by Figs. 1(c) and 1(d). Since q = 0, only diagonal
components of D enter in Eq. (14). Also, at q = 0 only i = x

must be retained in the sum. As a result, after calculation of
Kyx , one can see that the sum in the large parentheses turns
into zero, up to the small semiclassic corrections of the order of
(αkF /EF )3. Therefore, within the semiclassic approximation
the homogeneous pure spin current cannot induce ISHE. At
the same time the spin current created by this source is finite
and is given by the Drude formula

I s
x = im∗�A

v2
F NF

2

. (15)

This expression does not depend on the spin-orbit coupling.
The latter enters as a small correction ∼ h2

kτ
2.

Our calculations in this subsection show that ISHE is not
universal. The electric current induced by this effect is finite,
or zero, depending on whether the spin-current is produced
by diffusion of an inhomogeneous spin polarization or is a
pure uniform spin flux created by an external force of the
form Eq. (4). The driving force of this sort could be taken
into account within the formalism employed in Ref. 19. We,
however, cannot directly see whether their expressions for
spin and charge currents give, as we expect, vanishing ISHE,
because these equations are presented in a rather general form.

B. Dresselhaus SOI

Although at V = V2 and for SOI given by the Rasha
interaction the electric current is zero, we do not expect that
the same takes place for a Dresselhaus SOI that is cubic in
k. The reason is that the spin-Hall effect does not vanish in
the latter case.20 The Dresselhaus SOI field in a quantum well
grown along the [001] direction is given by21

hx
k = βkx

(
k2
y − κ2

z

)
, h

y

k = βky

(
κ2

z − k2
x

)
, (16)

where κ2
z denotes the operator −(∂/∂z)2 averaged over the

lowest subband wave function. Since hi
k is a nonlinear function

of k, ∇kh
i
k entering into Eq. (14) is not a constant. Therefore

Eq. (14) has to be modified. Denoting by a bar the average

∇kh
i
k over the Fermi surface, the modified expression for the
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current can be written in the form

I c
y = i

�

2π
A

[ ∑
i

( |U |2
2

Kyi + ∂hi
k

∂ky

)
DiiR

x
iz

+ |U |2
2

∑
i

�iDiiR
x
iz + �

]
, (17)

where

�i =
∑
jk

(
∂h

j

k

∂ky

− ∂h
j

k

∂ky

)
Tr

[
σjG

r
k(ω)σiG

a
k(ω)

]
(18)

and

� =
∑
ijk

kx

(
∂hi

k

∂ky

− ∂hi
k

∂ky

)
Tr

[
σjG

r
k(ω)σzG

a
k(ω)

]
. (19)

It is easy to see that the first term in Eq. (17) turns to zero,
similar to Eq. (14) in the Rashba case. However, other two
terms are finite, while they vanish for Rashba SOI, as well as
for any other SOI which depends linearly on k. Taking SOI
in the form of Eq. (16), from definitions (18), (19), (12), and
(6)–(7) one obtains at q = 0

Rx
yz = −2π

NF


2
hx

kkx, Rx
xz = 0,

� = −2π
NF


2

(
∂h

y

k

∂ky

hx
kkx − ∂hx

k

∂ky

h
y

kkx − ∂h
y

k

∂ky

hx
kkx

)
,

(20)

�xx = �yy = 2πNF



− πNF


3
h2

k,

Dxx = Dyy = 2
2

h2
k

.

Since only Rx
yz is finite in Eq. (17), one has to calculate �y .

From Eq. (18) it can be expressed as

�y = π
NF


3

(
2
∂hx

k

∂ky

hx
kh

y

k − 2
∂h

y

k

∂ky

hx2
k + ∂h

y

k

∂ky

h2
k

)
. (21)

Collecting all together one obtains from Eq. (17)

I c
y = ieA�

NF


2

[
2
hx

kkx

h2
k

(
∂h

y

k

∂ky

hx2
k − ∂hx

k

∂ky

hx
kh

y

k

)

+ ∂hx
k

∂ky

h
y

kkx − ∂h
y

k

∂ky

hx
kkx

]
. (22)

This electric current can now be expressed through the spin
current. The latter is induced by the time-dependent “vector
potential” A in (4) and is given by (15). Denoting by Q the
expression in the square brackets of Eq. (22), one obtains

I c
y = 2eQ


m∗v2
F

I s
x . (23)

Taking into account that Q ∝ h2
k it easy to see that the charge-

to-spin current ratio is of the same order of magnitude as
in the case considered in Sec. III A, Eq. (13), provided that
the Rashba and Dresselhaus interactions are comparable in
their strengths. One more useful relation can be obtained by
using the expression for the spin-Hall conductivity derived
in Refs. 20,22. This conductivity can be written as σSH =
eNF Q/
2. Expressing Q in Eq. (23) through σSH , and writing
the electric conductivity in the form of the Einstein relation
σ = 2NF D, we find

I c
y = σSH

σ
I s
x . (24)

On the other hand, the spin current induced by the spin-Hall
effect is given by I s

x = σSH E, where E is the electric field
in the y direction. Writing it as E = I

y
c /σ we arrive at I s

x =
σSH I c

y /σ . This equation, together with Eq. (24), establishes
Onsager relations between spin and charge currents.

IV. CONCLUSIONS

Our analysis shows that the proportionality coefficient in the
linear relation between the electric and spin current densities
in the inverse spin-Hall effect depends on the origin of the spin
current. Therefore, it is not possible to introduce a universal
parameter that determines a charge to spin current response.
This nonuniversality is most clearly seen in the case of Rashba
SOI, where a pure spin current produced by diffusion of an
inhomogeneous spin polarization gives rise to the finite electric
current, while the latter is zero when the spin current is induced
by a force that is uniform in space. In this situation, however,
the ISHE produces a finite charge current, if SOI is represented
by a Dresselhaus SOI that is nonlinear in k. It is important
that in such a case the spin-Hall effect and ISHE obey the
Onsager relation for coefficients relating the spin and charge
currents.

It should be noted that the expressions for the spin and
charge currents calculated above are related to local current
densities, while what is experimentally measured are total
electric currents, or electric potentials that are responses not
to local spin currents, but rather to currents that are integrated
over some distance (in 2D transport). For example, due to SOI
the spin-current density created by spin diffusion oscillates
and decays when the distance x from the spin-injection source
is increasing. One has to integrate this current over x to obtain
the total electric current induced by ISHE. Since the relation
Eq. (13) has the local form it will be preserved after such an
integration.
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