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In this paper, we propose a perceptual-based distributed video coding (DVC) technique. Unlike traditional
video codecs, DVC applies video prediction process at the decoder side using previously received frames.
The predicted video frames (i.e., side information) contain prediction errors. The encoder then transmits
error-correcting parity bits to the decoder to reconstruct the video frames from side information. How-
ever, channel codes based on i.i.d. noise models are not always efficient in correcting video prediction
errors. In addition, some of the prediction errors do not cause perceptible visual distortions. From percep-
tual coding point of view, there is no need to correct such errors. This paper proposes a scheme for the
decoder to perform perceptual quality analysis on the predicted side information. The decoder only
requests parity bits to correct visually sensitive errors. More importantly, with the proposed technique,
key frames can be encoded at higher rates while still maintaining consistent visual quality across the
video sequence. As a result, even the objective PSNR measure of the decoded video sequence will increase
too. Experimental results show that the proposed technique improves the R-D performance of a trans-
form domain DVC codec both subjectively and objectively. Comparisons with a well-known DVC codec
show that the proposed perceptual-based DVC coding scheme is very promising for distributed video
coding framework.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Distributed video coding (DVC) [1] has received much attention
for the past decade because, theoretically, DVC allows flexible dis-
tribution of coding complexity between the encoder and the deco-
der without losing compression efficiency [2,3]. This property
makes DVC a potential solution for emerging applications such as
surveillance systems, sensor networks, and Mobile 2.0 (e.g.,
uploading live videos to social networks using mobile phones)
where encoders have limited computation capability due to power
consumption issues [4]. A practical approach to shift coding com-
plexity is achieved by performing motion prediction only at the de-
coder side. In many DVC implementations [1,5–8], a video
sequence is divided into two interleaving sub-sequences: key
frames and Wyner–Ziv (WZ) frames. The encoder uses intra-coding
to encode the key frames while the decoder uses the reconstructed
key frames to predict the WZ frames. The predictors of WZ frames
are called side information (SI). SI prediction errors are then cor-
rected by channel codes [9] to reconstruct the WZ frames. SI pre-
diction, Slepian-Wolf codecs, and WZ reconstruction are the most
critical components in a DVC codec.

Motion-compensated frame interpolation methods are often
adopted for SI prediction [10,11]. To improve the quality of motion
ll rights reserved.
vector estimates, error surface of motion estimation is integrated
into WZ decoding iteration to find a MAP solution of the motion
field in [12]. A multi-hypothesis overlapped frame interpolation
technique is proposed in [13] to increase the quality of the SI pre-
dictions. For WZ reconstruction, different channel codes are used
to correct the prediction errors of SI frames [9,14]. The correction
efficiency of a channel code is highly dependent on the error statis-
tics of SI. In [15] the correlation model between the source and the
side information (with single or multiple hypotheses) is explored
for optimal reconstruction of quantized samples. In [16], the SI er-
ror model is studied, and then a MAP-based decoding method is
proposed for better WZ reconstruction.

Even with the progresses in SI prediction, channel codes, and WZ
reconstruction techniques, there are many areas in video sequences
that simply cannot be efficiently coded using DVC tools. To improve
coding performance, some researchers propose to adopt intra
coding or skip modes in WZ frames when the SI areas have certain
error characteristics. However, in DVC, it is not trivial to get error
statistics of SI at the encoder side since SI is only available in the
decoder while original video data is available only to the encoder.
For encoder-side mode decision methods, [17–19] proposes mode
decision scheme based on co-located SAD (i.e., zero-motion SAD).
If the SAD between a WZ macrolbock and its co-located previous
key frame is small, the WZ macrolbock is excluded from WZ
reconstruction. In [20], a mode decision method based on low-com-
plexity motion estimation technology is proposed. However, the
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performance of these encoder-side decision methods is constrained
by encoder complexity. Therefore, in recent years, the possibility of
decoder-side mode decision is investigated. A decoder-side skip
mode decision policy is derived in [21] based on the error correla-
tion model proposed in [22]. However, all the mode decision poli-
cies (either encoder-side or decoder-side) are based on estimates
of SI errors of the WZ frames. Unfortunately, the true SI is missing
on the encoder side, while the original frame is missing on the de-
coder side. As a results, it is difficult to estimate true SI errors.

In this paper, we propose a very different approach of percep-
tual-based decoder-side skip mode strategy. The proposed tech-
nique comes from the key observation that SI frames predicted
using motion–projection algorithms often contain image areas
with large prediction errors (in MSE sense) but small visual distor-
tions. One such example is a video sequence of a low-motion scene
taken by a shaky camera. If we remove every other frame and
interpolate the missing frames with motion–projection algorithms,
the resulting video may become smoother without major visual
distortions except at image boundaries. However, to reconstruct
the original shaky video from the interpolated frames using chan-
nel codes requires significant amount of parity bits, which is not
worthwhile from perceptual rate-distortion perspective.

In short, the proposed technique performs perceptual-based
analysis to determine the SI regions where visual distortions are
(a) Original frames 37, 38, and 39 (from left to

(b) The SI frame (middle) and the two key fram

(c) The error image of SI and the projected motion

Fig. 1. An example of SI with good perceptual quality but low PSNR. The PSNR of the S
frames (around 30 dB).

    (a) SI frame               (b) Full correction          (c) Error o

Fig. 2. Perceptual-based reconstruction of SI prediction errors. The reconstructed WZ fram
of LDPCA codes. The reconstructed WZ frame in (d) only corrects a rectangular area tha
noticeable, and only uses channel codes to correct these regions.
This paper is organized as follows. Section 2 presents the rationale
behind perceptual-based coding for DVC. Some examples compar-
ing perceptual-based and SAD-based WZ coding are shown in this
section to shed light on the proposed scheme. The proposed per-
ceptual-based DVC codec is described in Section 3. Experimental
results are presented in Section 4. Finally, conclusions and discus-
sions are given in Section 5.
2. Perceptual-based coding for DVC

Fig. 1 shows the SI prediction frame generated by motion–
projection using two neighboring key frames. The SI in this
example is particularly interesting because the PSNR differences
between the key frames (31.2 and 29.9 dB) and the in-between SI
frame (17.5 dB) are more than 10 dB, but visually, video quality
across the key frames and the SI frame are still consistent. There-
fore, if perceptual quality is the coding goal, there is no need to
request parity bits to correct the large amount of errors in this SI
frame. Note that the main reason that the PSNR of the SI is low
is because the scene is shaky due to slight camera motion. The mo-
tion field of the SI frame predicted from the two key frames is a
smooth field different from the true motion field. The interpolated
 right) of the 15 Hz Coastguard sequence. 

es (left and right) used for SI prediction. 

 field between the SI frame and key frame 37. 

I frame is only 17.5 dB, but its visual quality is comparable to the neighboring key

f (b)        (d) Partial correction         (e) Error of (d) 

e in (b) tries to correct the prediction errors of the whole SI frame using 12.38 kbits
t contains the face of Foreman using 10.46 kbits of LDPCA codes.
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Fig. 3. The proposed DVC architecture. Gray blocks are proposed modules.

(a) QCIF (b) CIF

Fig. 6. Neighborhood structure of the ROI refinement process. The squares are the
macroblocks under consideration and the circles are their neighbors.
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SI frame using this predicted motion field is visually appealing, but
is different from the original frame.

Another issue with WZ frame reconstruction is that the error
distribution of SI prediction is spatially varying [23]. Fig. 2 shows
one such example. Fig. 2(a) is a predicted SI frame of the 48th
frame of the Foreman sequence (QCIF@15 Hz). The SI error charac-
teristics are affected by both the texture and motion complexities
in video contents. Fig. 2(b) shows the reconstructed WZ frame
using LDPCA code (the amount of parity bits are 12.38 kbits). The
PSNR is 31.22 dB. There are spatially varying burst errors in the
SI frame and it is ineffective to assume a spatially invariant i.i.d.
SI error model and try to use channel codes to correct these errors.
Burst errors usually happen at moving edge boundaries. However,
existing DVC techniques [1,5–8] group consecutive macroblocks in
scanline order into a coding block without taking into account the
texture and motion characteristics of these macroblocks.

If we only correct the facial area (using 10.46 kbits), the par-
tially reconstructed WZ frame looks visually more appealing, as
shown in Fig. 2(d). Note that the sharp straight lines of the back-
ground building in the SI frame have uniform pixel-shift errors that
cause a low PSNR value (28.62 dB). However, visually, there are no
perceptible errors. On the other hand, the image in Fig. 2(b) uses
part of the bit budget to correct the sharp edges towards the
correct pixel position to certain degree. Unfortunately, such half-
way correction produces fuzzy edges and degrades visual quality.
In short, if a decoder can determine the regions of interest (ROI)
automatically, and applies WZ reconstruction only in the ROI, we
can achieve better visual quality at lower WZ rates. In addition,
more bit budget can be allocated to key frames to further improve
(a) C
TDSΩ                              (b) C

MCΩ

Fig. 4. Examples of SI frames (left) and detect

(a) SI C
TDSΩ                    (c) Ω

Fig. 5. An example of the 72nd SI frame and th
overall R-D performance [26]. In this paper, we define ROI as the
areas in the SI frame where distortions are perceptually salient.

It is important to point out that the main strength of the pro-
posed scheme is not just to deal with the extreme cases illustrated
in Fig. 1 or Fig. 2. Since all video frames are captured with noises, as
a result, the predicted SI frame usually contains noises inherited
(motion-compensated) from the key frames that are different from
the noises in the original WZ frames. With the proposed approach,
we will not waste syndrome bits on the correction of one set of
sample noises to another set of sample noises, unless they are visu-
ally significant.
3. The proposed DVC framework

Fig. 3 is the block diagram of the proposed DVC codec. We have
added perceptual-based coding tools to a transform-domain DVC
(c) C
TSCΩ (d) C

VMPΩ

ed visually distorted macroblocks (right).

C
MC        (d) C

TSCΩ   (e) C
VMPΩ

e detected visually distorted macroblocks.



Fig. 7. Examples of ROI detection results. Macroblocks with normal gray levels are in XROI.

Table 1
Impact of gop size on the proposed perceptual metrics.

GOP size TDSc (%) MCc (%) TSCc (%) VMPc (%) ROI (%)

Foreman 2 6.3 14.0 14.0 3.4 36.0
4 9.4 30.1 45.0 5.0 68.8
8 15.1 36.5 50.2 6.5 77.7

Table 2
Encoding time comparison for forman, QCIF@15fps.

DISCOVER Proposed DVC

(QP,QM) Encoding time (ms) (QP,QM) Encoding time (ms)

(34,1) 3629 (34,1) 3690
(34,5) 3735 (34,5) 3741
(34,8) 3777 (34,8) 3793

AVC Intra AVC zero-motion

QP Encoding time (ms) QP Encoding time (ms)
34 7249 34 10236

Table 3
Decoding time comparison for forman, QCIF@15fps.

DISCOVER Proposed DVC

(QP,QM) Decoding time (ms) (QP,QM) Decoding time (ms)

(34,1) 1.0 � 107 (34,1) 0.9 � 107

(34,5) 1.6 � 107 (34,5) l.l � 107

(34,8) 3.4 � 107 (34,8) 1.8 � 107

AVC intra AVC zero-motion

QP Decoding time (ms) QP Decoding time (ms)
34 227 34 204
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framework. The baseline implementation of the DVC codec is
similar to the DISCOVER codec [8], plus prioritized macroblock
grouping [24]. An AVC/H.264 intra coder is used to encode key
frames and an LDPCA code [9] is used to correct SI frames. For each
Table 4
Breakdown of encoding time per frame (in ms) for the proposed codec.

QM Intra encoding LDPCA encoding

1 47 1.3
5 1.9
8 2.6

Table 5
Breakdown of decoding time per frame (in ms) for the proposed codec.

QM Intra decoding SI generation TDS analysis MC analysis

1 1.5 l.l � 105 0.67 0.25
5
8

SI macroblock, the decoder performs perceptual distortion analysis
and discriminates whether the macroblock belongs to the ROI. The
encoder receives the ROI information from the decoder via a feed-
back channel and groups ROI macroblocks into the same coding
block. Since the coding block size varies from frame to frame, the
LDPCA module must handle variable block-length (VBL) coding.
The rest of this section describes the proposed perceptual-based
error analysis.

3.1. Texture distribution similarity (TDS) analysis

Based on our empirical investigations, bursty SI prediction er-
rors often happen at the boundaries of texture-rich moving objects.
Therefore, the first step in the proposed perceptual-based error
analysis is to identify whether the distribution of texture-rich mac-
roblocks in the SI frame is the same as that in the quantized origi-
nal frame. If an SI macroblock is texture-rich while the
corresponding quantized original macroblock is not (or vice versa),
the SI macroblock should be corrected by parity bits. Since the ori-
ginal video frames are available only to the encoder, the encoder
must compute a texture distribution map of the quantized original
frame and transmit it to the decoder for analysis.

The texture distribution generator first determines edge pixels
in a frame using the Sobel edge operator and a threshold hedge. A
macroblock is considered a texture-rich block if the percentage
of edge pixels in the block is larger than a threshold htexture. Finally,
the distribution of texture-rich blocks is recorded using a bit map,
one bit per macroblock. In the bit map, a ‘1’ signals a texture-rich
macroblock while a ‘0’ signals a regular macroblock.

The selection of the two thresholds, hedge and htexture, are de-
scribed as follows. The thresholds are adaptive to the video con-
tents. To determine the distribution of texture-rich blocks of a
WZ frame at t, we compute hedge and htexture of a frame at time t
as in Eq. (1):

hedgeðtÞ ¼
1
M

XM

p¼1

stðpÞ;

htextureðtÞ ¼
100
M

XM

p¼1

Pedge;tðpÞ; ð1Þ
Computing Sobel edge Computing texture distribution map

0.77 5.0 � 10�2

TSC analysis VMP analysis ROI calculation LDPCA decoding

1.4 0.23 1.4 � 10�2 1.2 � 104

3.9 � 104

1.4 � 105
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where st(p) is the sum of magnitudes of horizontal and vertical So-
bel edge strength of pixel p of the WZ frame at time t, and M is the
number of pixels in a key frame. Pedge,t(p) is a binary function of
edge map, i.e., Pedge,t(p) is 1 if p is an edge pixel and Pedge,t(p) is 0
otherwise. While the encoder generates the texture distribution
map of the WZ frame, the decoder uses the same algorithm to gen-
erate the texture distribution map of the SI. The decoder can then
compare the received texture distribution map with the texture
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Fig. 8. QCIF sequences R-D performance comparisons using PSNR and SSIM. The aver
distribution map of SI. The set of SI macroblocks that have the same
texture property as the corresponding original macroblocks is
denoted by XTDS.

3.2. Motion consistency (MC) analysis

Motion behavior is a useful cue for estimating SI prediction qual-
ity. For example, the optical flow field [25] between neighboring key
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age BD PSNR gain over DISCOVER is 0.71 dB, and the average SSIM gain is 0.016.
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Fig. 9. R-D performance comparisons using PSNR and SSIM. The average PSNR BD gain over DISCOVER is 0.41 dB, and the average SSIM gain is 0.010.
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frames is a good indication of how well the true motion field
matches the block-based motion model [20]. If the motion field is
irregular in a highly textured area, the visual distortion of the pre-
dicted SI may be large. For the SI frame at time t, we first calculate
the motion smoothness dt(k) measure of a 4 � 4 block at block posi-
tion k using Eq. (2):
dtðkÞ ¼
1
8

X
j2XNðkÞ

kvf ðkÞ � vf ðjÞk2; ð2Þ
where XN(k) is the set of eight direct neighbors of block k, and vf(k)
is the estimated forward motion vector of block k for the SI frame at



Table 6
Quantization Setting (QP,QM) of DVC codecs in the experiments.

QCIF sequences
Carphone (40,1) (40,2) (39,3) (36,4) (36,5) (34,6) (32,7)
Coastguard (38,1) (37,2) (37,3) (34,4) (33,5) (31,6) (30,7)
Foreman (40,1) (39,2) (38,3) (34,4) (34,5) (32,6) (29,7)
Hall (37,1) (36,2) (36,3) (33,4) (33,5) (31,6) (29,7)

CIF sequences
Coastguard (37,1) (36,2) (36,3) (34,4) (34,5) (33,6) (30,7)
Foreman (39,1) (37,2) (37,3) (35,4) (35,5) (33,6) (31,7)
Hall (35, ,1) (35,2) (34,3) (33,4) (33,5) (31,6) (30,7)
News (38,1) (37,2) (36,3) (34,4) (34,5) (32,6) (30,7)
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Fig. 10. The PSNRs of reconstructed frames of the Foreman (160 kbps) and
Coastguard (100 kbps) sequences using the proposed DVC codec.
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time t. The motion consistency measure Dt(i) of macroblock i is de-
fined using Eq. (3):

DtðiÞ ¼Maxk2XBðiÞðdtðkÞÞ; ð3Þ

where XB(i) is the set of sixteen 4 � 4 blocks of macroblock i. Mac-
roblocks whose motion consistency measures are smaller than a
threshold hMC belong to the set XMC of macroblocks with consistent
motion. The threshold is adaptively calculated using Eq. (4):

hMCðtÞ ¼ lDt
þ rDt ; ð4Þ

where lDt
and rDt are the mean and standard deviation of Dt() of SI

frame t, respectively. Note that, the motion vector estimates at low-
texture areas are unreliable. Thus, we set hMC to infinity for macro-
blocks with no textures so that such macroblocks are always
counted as motion-consistent macroblocks. We use the average
Sobel edge strengths of a macroblock to determine its texture level.
If the total edge strength of a macroblock is larger than a threshold
hTL, it is treated as a texture-rich macroblock. The threshold hTL is set
to 50 in this paper and it is not a sensitive parameter (any values
from 50 to 100 produces similar results for all the test sequences).

Statistically speaking, the policy for selecting hMC will include a
fixed percentile of the SI macroblocks into the set XMC. In theory,
for the detection of macroblocks with irregular motions, a
sequence dependent fixed-value threshold, instead of a fixed-per-
centile threshold, should be used. However, our experiments show
that Eq. (4) works quite well for video scenes with distinctive
regions of interest, for example, for sensor network-based surveil-
lance videos or head-and-shoulder videos for mobile social net-
works, etc.
3.3. Texture structure consistency (TSC) analysis

For motion–projection algorithms, the texture structure consis-
tency between the matching blocks in key frames is also an indica-
tion of visual quality level of the corresponding SI macroblock.
Higher structure consistency could imply better visual quality,
even if the true error is high due to uniform shifting of object pix-
els. For the SI frame at time t, we calculate the correlation coeffi-
cient between the edge strength of the forward and backward
motion compensated predictor images (i.e., the two hypotheses
of SI) using Eq. (5):
Table 7
BD results of the test sequences.

QCIF

Sequence D Rate (%) D PSNR D SSIM

Carphone �18.6 0.93 0.021
Coastguard �10.5 0.47 0.019
Foreman �11.3 0.59 0.016
Hall �10.6 0.83 0.008
qtðiÞ ¼
1

256

P
p2XMBðiÞ

ðsf ;tðpÞ � lf ;tðiÞÞ � ðsb;tðpÞ � lb;tðiÞÞ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

f ;tðiÞ � r2
b;tðiÞ

q : ð5Þ

Note that sf,t() and sb,t() are the edge strength images of the forward
and backward hypotheses at time t, respectively. The edge strength
is computed by the sum of the magnitudes of horizontal and verti-
cal Sobel edge strength at each pixel position. XMB(i) is the set of
pixels of macroblock i. lf,t(i) and r2

f ;tðiÞ are the mean and variance
of sf,t(p), p XMB(i), and lb,t(i) and r2

b;tðiÞ are the mean and variance
of sb,t(p), p XMB(i).

SI macroblocks whose qt(i)’s are larger than a threshold hTSC be-
long to the set XTSC of macroblocks with high texture structure
consistency. The threshold hTSC is adaptively calculated by Eq. (6):

hTSCðtÞ ¼ lqt
� rqt

; ð6Þ

where lqt
and rqt

are mean and standard deviation of the structure
consistency measure, respectively. Note that if a pair of macro-
blocks do not contain any texture structures, comparing their struc-
ture correlation is meaningless. Therefore, macroblocks whose
average edge strengths are below half of the average edge strength
of current frame would be directly included into the set XTSC.

Since the formulation of TSC is similar to SSIM [35], it might be
possible to use SSIM to replace TSC and achieve similar effects.
However, there are two key differences between TSC and SSIM.
First, TSC is computed using the edge images, not the original
pixels (as in SSIM). We have observed that most visual errors in
reconstructed SI frames happen around edge pixels. In other
words, TSC is a variant of SSIM that is fine-tuned to capture ‘‘tex-
ture similarity’’ around edge pixels (which makes the threshold
hTSC less sensitive to lighting differences between key frames).
The second key difference is about computational complexity.
CIF

Sequence D Rate (%) D PSNR D SSIM

Coastguard �5.5 0.23 0.014
Foreman �7.8 0.28 0.011
Hall �6.6 0.31 0.005
News �12.9 0.81 0.009



Fig. 12. The SI frame of the proposed codec (left) used in Fig. 11, and its error image
(right). The SI frame of the DISCOVER codec is not available.
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For SSIM, the computed variance, covariance, and mean images (a
total of five images per key frame) are filtered by an 11 � 11 Gauss-
ian filter. The complexity is quite high for our purposes. For TSC, we
use only two 3 � 3 Sobel filters (horizontal and vertical) per key
frame to compute structure correlation.

3.4. Valid motion projection (VMP) analysis

Motion–projection algorithms use neighboring key frames to
predict SI frames. For boundary macroblocks, the projected motion
vectors are often extrapolated from outside the frame boundaries,
which can cause large visual distortions in SI frames. Therefore, we
use the error et(p) between the matching key frame pixels that are
projected to pixel p of SI at time t to determine whether a bound-
ary macroblock i of SI have large errors:

etðpÞ ¼ jIt�1ðp� vf ðpÞÞ � Itþ1ðp� vbðpÞÞj; ð7Þ

where It() is the image function at time t, vf(p) and vb(p) are the
matching forward and backward motion vectors from the key
frames to the SI pixel p, respectively. A threshold, he, is calculated
as:

heðtÞ ¼ let
þ ret ; ð8Þ

where let
and ret are the mean and standard deviation of et() of all

SI pixels at time t, respectively. In other words, an invalid motion
projection pixel is defined as a pixel p whose motion vectors pro-
jected from key frame falls outside the frame boundary, and its er-
ror measure et(p) is larger than he. The set XVMP of valid motion
projection is defined as all SI macroblocks that contain less than
hVMP = 10% invalid motion projection pixels. Note that, most interior
macroblocks belong to the set XVMP, regardless of the magnitude of
their error measure et(). The selection of hVMP is based on empirical
analysis. We have computed the percentage of invalid motion pro-
jection pixels of all SI macroblock of the test sequences. Setting hVMP

to 10% is a strict threshold that eliminates all visual errors due to
wrong boundary motion projection in all the test sequences. In fact,
any value of hVMP below 15% should work fine for all the test
Proposed: 35.7 dB                 Proposed: 2
14.1 kbits          2.1 kb

 (SSIM=9.4, FSIM=9.6)             (SSIM=7.4, F

DISCOVER: 33.4 dB              DISCOVER
10.4 kbits          16.4 k

(SSIM=9.2, FSIM=9.4)                 (SSIM=8.6, F

Foreman, left-to-right: 75th (key), 7

Fig. 11. Visual comparisons between the proposed codec (top row) and the DISCOVER co
proposed codec is 160.0 kbps, and the bitrate of DISCOVER is 161.6 kbps.
sequences. However, as the threshold gets smaller, the coding effi-
ciency may drop accordingly.
3.5. Determination of regions of interest (ROI)

The set XROI of macroblocks is composed of the macroblocks
that have noticeable visual distortions. If a macroblock belongs
to the intersection of the four sets XTDS, XMC, XTSC, and XVMP, we
can consider this block as a macroblock that has little visual distor-
tion and it does not require WZ reconstruction. Therefore, the ini-
tial set X0ROI of visually distorted macroblocks is defined as in Eq.
(9):

X0ROI ¼ ðXTDS \XMC \XTSC \XVMPÞC ; ð9Þ

where the superscript C denotes the complementary set.
Figs. 4 and 5 illustrate examples of the complementary sets of

several frames in the Foreman sequence. Fig. 4(a)–(d) show XC
TDS,

XC
MC , XC

TSC , and XC
VMP for different frames of Foreman where each

metric capture unique visually distorted blocks. Fig. 5 shows how
these metrics complement each other in a specific frame of the
Foreman sequence. Note that VMP is not particularly useful in
Fig. 5. It is designed to detect artifacts at boundary blocks. Thus,
it is useful when there are camera-panning motions (as in
Fig. 4(d)). The unions of these sets can capture almost all SI areas
3.0 dB               Proposed: 36.0 dB 
its   13.2 kbits 
SIM=7.9)          (SSIM=9.5, FSIM=9.6) 

: 29.5 dB              DISCOVER: 33.7 dB 
bits   9.4 kbits 
SIM=9.0)                 (SSIM=9.2, FSIM=9.4) 

6th (WZ), and 77th (key) frames 

dec (bottom row) at frame positions with highest PSNR variations. The bitrate of the



Fig. 14. The SI frame of the proposed codec (left) used in Fig. 13, and its error image
(right). The SI frame of the DISCOVER codec is not available.
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with noticeable visual distortions for video scenes with distinctive
regions of interest used in our experiments.

Once the initial X0ROI is obtained using Eq. (9), we further refine
X0ROI by removing isolated macroblocks and filling ROI holes. If a
macroblock belongs to X0ROI , but none of its neighbors belongs to
X0ROI , it is probably an isolated outlier (unless it is located at the
frame boundary). On the other hand, if a macroblock is not in
X0ROI while the majority of its neighbors are, it probably should be-
long to X0ROI too. To obtain the refined XROI, we first remove isolated
non-boundary macroblocks in X0ROI and then iteratively include a
non-ROI macroblock into X0ROI if the majority of its neighbors are
in X0ROI . The neighborhood structure is a diamond shape area
around the macroblock under consideration as shown in Fig. 6.
The iterative process continues until it converges. In the worse
case, all macroblocks will be included into XROI, which means reli-
able detection of ROI is not possible and the codec falls back to full-
frame WZ reconstruction. However, this situation never happens in
our experiments.

Another observation is that, typically, 5–10% of macroblocks be-
long to the set XROI . However, at a scene change frame, the number
of macroblocks in XROI would suddenly become large. Therefore, if
the size of XROI is larger than a threshold hSC = 20% in a frame, full-
frame WZ reconstruction would be used. Similar edge-based scene
change detection methods have been proposed in [29,30]. Any va-
lue of hSC from 20% to 40% produces similar results in all the test
sequences. If we occasionally mis-detect one of the frame as a
scene change frame because the threshold is too low, there will
not be any visual distortion. We simply suffer slightly on the cod-
ing gain. However, if we set the threshold too high, we may fail to
detect some scene change frames and causes some visual artifacts.
Thus, we set hSC to 20%. Fig. 7 shows some examples of macro-
blocks that belong to ROI.
3.6. Impact of large GOP sizes on the proposed perceptual metrics

We have been using the DVC coding structure with GOP size
equals two due to the constraint of the SI generation algorithm
Proposed: 30.2 dB                   Proposed: 1
9.3 kbits                       7.7 kbit

(SSIM=8.4, FSIM=9.0)                 (SSIM=3.6, F

DISCOVER: 30.1 dB              DISCOVER
9.2 kbits                  12.0 kb

(SSIM=8.3, FSIM=9.0)                 (SSIM=5.4, F

Coastguard, left-to-right: 37th (key), 

Fig. 13. Visual comparisons between the proposed codec (top row) and the DISCOVER co
proposed codec is 99.4 kbps, and the bitrate of the DISCOVER codec is 101.4 kbps.
used in this paper. The motion–projection SI generation algorithm
assumes that the motions between two key frames are constant
velocity translational motion. For most of the macroblocks, this
assumption is valid when GOP size is small. However, as GOP size
becomes large, most of the macroblocks will violate the constant
velocity translational motion model. As a result, in addition to high
SI prediction errors, there will be larger discrepancy between the
predicted motion vectors and true motion vectors.

If the SI prediction error is high, the TDS metrics will include a
large portion of macroblocks into the ROI since the original WZ and
the predicted SI will have very different texture structure (even if
the visual quality of the SI is good). Similar situation may happen
to the TSC and VMP metrics because a larger portion of SI macro-
blocks will now be compensated from mismatched blocks due to
translational motion constraint. Furthermore, because we try to
use constant velocity translational motion to approximate nonlin-
ear motions across a large period of time (i.e., large GOP), the esti-
mated motion fields would become less regular. The proposed MC
metric would also include more macroblocks into the ROI. In Table
1, we list the average percentage of macroblocks captured by each
metric to illustrate the effect of GOP size increase on the Foreman
sequence to demonstrate the impact of large GOP size on the pro-
posed framework. The Foreman sequence has the most complex
motion among four test sequences.

To solve the issue of larger GOP sizes, we have to adopt a more
complex SI generation algorithm. For example, in [31], the initial SI
8.2 dB                   Proposed: 29.0 dB 
s     12.7 kbits 
SIM=7.3)                 (SSIM=8.2, FSIM=9.1) 

: 21.8 dB              DISCOVER: 28.9 dB 
its   12.6 kbits 
SIM=7.7)                 (SSIM=8.2, FSIM=9.1) 

 38th (WZ), and 39th (key) frames 

dec (bottom row) at frame positions with highest PSNR variations. The bitrate of the
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generated using a first-order motion projection algorithm is used
only for decoding of most significant bands (e.g., DC bands). The
partially reconstructed WZ frame will then be used to help the sec-
ond phase SI generation. Alternatively, one can use a higher-order
motion–projection algorithm that takes into account more recon-
structed frames (instead of simply two key frames) and tracks ob-
ject trajectories for SI generation.
Fig. 16. The SI frame of the proposed codec (left) used in Fig. 15, and its error image
(right). The SI frame of the DISCOVER codec is not available.
3.7. Complexity analysis of the proposed perceptual DVC codec

The proposed DVC framework has to perform extra computa-
tions in both the encoder and the decoder for perceptual analysis.
Nevertheless, the overall complexity of the proposed decoder is of-
ten less than the complexity of the traditional DVC codecs. Note
that the most time-consuming module in a DVC codec is the chan-
nel decoder (e.g., the LDPCA decoder in this paper [32]) and the SI
generation algorithm. The proposed perceptual analysis technique
allows us to perform only partial LDPCA decoding. This scheme re-
duces the decoder complexity significantly when the ROI is small.
On the encoder side, although the complexity does increase
slightly, it is negligible compared to the baseline implementation.

To quantify the computational complexity of the encoder and
the decoder, we have tested the proposed DVC codec, the DIS-
COVER codec, the AVC intra codec, and the AVC zero-motion inter
codec on an Intel Core2 3 GHz CPU with 4 GB RAM. The AVC codec
used is JM 17.2 and the coding structure of the AVC zero-motion
codec has GOP size 2 with a B frame between two I frames. The vi-
deo sequence used is the FOREMAN sequence at 15 frames per sec-
ond (a total of 149 frames). Table 2 shows the encoding time
comparison while Table 3 shows the decoding time comparison.

As one can see from Tables 2 and 3, although the complexity of
the proposed encoder is slightly higher than the complexity of the
DISCOVER encoder (about 0.76% higher on average), the decoder
complexity of the proposed codec is less than that of the DISCOVER
codec (about 30.0% lower on average). The breakdown numbers of
the execution time per frame of each module of the proposed codec
for the same experimental setup are shown in Tables 4 and 5.
Proposed: 34.5 dB                   Proposed:
14.0 kbits          3.6 kb

 (SSIM=9.6, FSIM=9.6)                 (SSIM=9.6

DISCOVER: 34.3 dB              DISCOVER
14.0 kbits          5.4 kb

(SSIM=9.5, FSIM=9.6)                 (SSIM=9.4, F

Hall Monitor, left-to-right: 11th (key)

Fig. 15. Visual comparisons between the proposed codec (top row) and the DISCOVER
bitrate of the proposed codec is 127.8 kbps, and the bitrate of the DISCOVER codec is 13
Although the overall complexity is usually lower for the pro-
posed approach, its theoretical coding delay is indeed longer than
that of the traditional DVC approaches. When the proposed enco-
der receives an original WZ frame, it has to wait until the decoder
provides the ROI map before it can start LDPCA encoding. This de-
lay is composed of two parts: the computation time of the ROI map
and the transmission time of the map back to the encoder. The
uncompressed ROI information is one bit per macroblock. For
CIF@15fps, the time interval between two video frames is about
66 ms. With a feedback channel bandwidth of 20 kbps, it would
take 19.8 ms to transmit 396 bits per frame back to the encoder.
Such feedback bandwidth is not difficult for today’s wireless access
technology.

As for the coding delay caused by the computation of the ROI
map, it includes the SI generation time plus the proposed percep-
tual analysis time. From Table 5, it is obvious that the SI generation
time requires hardware acceleration in the decoder in order to ful-
fill real-time requirement. However, since the SI generation algo-
rithm is very similar to the motion estimation algorithm of
traditional video encoders, there are many hardware solutions
available.
4. Experimental results

This section presents experiments to demonstrate the efficiency
of the proposed framework. The experiments are composed of two
 34.1 dB              Proposed: 34.5 dB 
its   14.3 kbits 
, FSIM=9.6)         (SSIM=9.6, FSIM=9.6) 

: 33.5 dB              DISCOVER: 34.2 dB 
its   14.2 kbits 
SIM=9.6)                 (SSIM=9.5, FSIM=9.6) 

, 12th (WZ), and 13th (key) frames 

codec (bottom row) at frame positions with noticeable visual improvements. The
1.5 kbps.



Proposed: 34.2 dB                   Proposed: 27.0 dB                   Proposed: 34.3 dB 
16.7 kbits          8.8 kbits   17.0 kbits 

(SSIM=9.4, FSIM=9.6)                 (SSIM=8.6, FSIM=9.0)                 (SSIM=9.5, FSIM=9.6) 

DISCOVER: 31.0 dB              DISCOVER: 29.4 dB              DISCOVER: 31.0 dB 
12.2 kbits          10.8 kbits   12.2 kbits 

(SSIM=9.0, FSIM=9.3)                 (SSIM=8.8, FSIM=9.2)                 (SSIM=9.1, FSIM=9.3) 

Carphone, left-to-right: 141st (key), 142nd (WZ), and 143rd (key) frames 

Fig. 17. Visual comparisons between the proposed codec (top row) and the DISCOVER codec (bottom row) at frame positions with noticeable visual improvements. The
bitrate of the proposed codec is 134.1 kbps, and the bitrate of the DISCOVER codec is 134.4 kbps.
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parts. The first part compares the R-D performance of the proposed
framework with the DISCOVER codec [8], AVC/H.264 intra codec,
and AVC/H.264 zero-motion inter codec. The GOP size of the DVC
codecs and the AVC/H.264 zero-motion inter codec is two. The
coding structure of the AVC/H.264 zero-motion inter codec is IBI.
The DISCOVER codec is obtained from the DISCOVER website
[33]. The second part of experiments provides video snapshots of
consecutive frames for visual quality evaluations. Visual results
of the proposed DVC codec and the DISCOVER codec are shown
side-by-side for comparisons. The 15 Hz, QCIF version of four stan-
dard test sequences, (Foreman, Hall Monitor, Coastguard, and Car
Phone), and the 30 Hz, CIF version of four standard test sequences,
(Foreman, Hall Monitor, Coastguard, and News), are used in the
experiments. The key frames are coded using an AVC/H.264 main
profile intra coder (JM 17.2). Note that the proposed codec requires
transmission of texture distribution bitmap and ROI bitmap in
addition to the WZ bits. Both maps are represented using an
uncompressed bitmap of 1 bit per macroblock (i.e., 99 bits per
map for QCIF images). Although we can use Huffman codes to
compress the maps by 68% on average, we do not think it is critical
to do so for the proposed framework. All R-D curves of the pro-
posed codec in this section include the data rates required for
transmission of the extra information.
Fig. 18. The SI frame of the proposed codec (left) used in Fig. 16, and its error image
(right). The SI frame of the DISCOVER codec is not available.
4.1. R-D performance evaluation

Figs. 8 and 9 show the R-D performance of different codecs
using both PSNR metric and the perceptual metric SSIM [35]. For
DVC codecs, each rate point assumes a constant key frame QP
and a constant WZ frame quantization matrix QM. For the pro-
posed codec, we have adopted the same (QP, QM) setting as in
the DISCOVER codec, obtained by minimizing the PSNR variance
of the sequence [10]. The (QP, QM) settings in the experiments
are listed in Table 6. For the AVC/H.264 intra codec and the AVC/
H.264 zero-motion inter codec, we choose the QP parameters from
29 to 43. For QCIF version of the sequences, the proposed DVC
codec has better performance in all sequences comparing to the
AVC-intra and the DISCOVER codecs. When compared against the
AVC zero-motion inter codec, the proposed codec has better
performance for Coastguard, and worse for Carphone, Foreman,
and Hall Monitor. The main reason that the proposed perceptual-
based codec out-performs DISCOVER in objective evaluation is
that, with the proposed perceptual coding model, only a small por-
tion of WZ bits is required to maintain consistent visual quality
across the sequence. In other words, more data bits can be allo-
cated to key frames to improve overall PSNR in the proposed
scheme. As a result, the BD PSNR gain [37] over DISCOVER is
0.71 dB on average, and the SSIM gain is 0.016 on average.

For CIF version of the sequences, the result is similar. When
compared against the AVC zero-motion inter codec, the proposed
codec has better performance for Coastguard, slightly worse for
Foreman, but worse for News and Hall Monitor. The overall PSNR
gain over DISCOVER is 0.41 dB on average, and the SSIM gain is
0.010 on average. The BD Rate and BD PSNR results are listed in
Table 7.
4.2. Visual quality comparisons

Since objective measures, such as the PSNR, do not fully reflect
the visual quality of video sequences, subjective evaluation is often
required for practical purposes. Therefore, in this section, we show
some reconstructed frames from the proposed codec and the
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Fig. 19. Visual comparisons between the proposed codec (top row) and the DISCOVER codec (bottom row) at frame positions with poorest SI quality. The key frames for both
codecs are the same. The target WZ rate for the corresponding frame is the same too. The bitrate of the proposed codec is 150.4 kbps, and the bitrate of the DISCOVER codec is
161.6 kbps.

Fig. 20. The SI frames of the proposed codec (top row) used in Fig. 19, and their error images (bottom rows).
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DISCOVER codec for visual quality evaluation. Since we have to
match the target bitrate of a reconstructed sequence by the
DISCOVER codec, we cannot use the same QP/QM selected using
DISCOVER’s algorithm. The reason is that, given same QP/QM, the
encoded bit rate using the proposed codec would be much lower
than that of DISCOVER’s. Therefore, for each video sequence, we will
use the rate ratio obtained using DISCOVER’s QP/QM, and then find a
set of finer QP/QM quantizers that maintains this rate ratio and pro-
duces an initial rate that is close to the target bitrate of DISCOVER’s.
To match the rate exactly, for each sequence, the following rate-
allocation policy is applied. The bitrate of key frames are deducted
from the target bitrate of DISCOVER’s. The remaining bits are allo-
cated to WZ frames. The target bit budget for each WZ frame is lin-
early proportional to the total sum of the errors et(p) in its ROI (see
Eq. (7)). Note that such process is not a general policy for rate control
of the proposed codec. Rate control of DVC codecs is a difficult prob-
lem [27,28,34]. We simply use the aforementioned process to match
DISCOVER’s bitrates for visual comparisons. To evaluate visual qual-
ity, in Figs. 11 and 13, we show the snapshots of consecutive frames
where the proposed codec produces largest PSNR differences be-
tween key frames and the in-between WZ frame for the Foreman
and Coastguard sequences. As a reference, the SI frame and its error
image corresponding to the reconstructed WZ frame in Fig. 11 by
the proposed algorithm are shown in Fig. 12. Similarly, the SI frame
and its error image corresponding to the reconstructed WZ frames
in Fig. 13 by the proposed algorithm are shown in Fig. 14. The PSNR
values across frames of Foreman and Coastguard are shown in
Fig. 10. It is quite evident from Figs. 11 and 13 that PSNR, as well
as SSIM [35] and FSIM [36], do not precisely reflect visual quality.
For Hall Monitor and Carphone, we show the snapshots where there
are noticeable visual improvements between the proposed method
and the DISCOVER codec in Figs. 15 and 17. The SI frame and its error
image corresponding to the reconstructed WZ frame in Fig. 15 by
the proposed algorithm are shown in Fig. 16. Finally, the SI frame
and its error image corresponding to the reconstructed WZ frames
in Fig. 17 by the proposed algorithm are shown in Fig. 18. When
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the sequences are played back in real time, all four test sequences
reconstructed by the proposed codec look sharper and have better
visual quality than those reconstructed by the DISCOVER codec.

Since key frame quality has direct impact on the visual quality
of the reconstructed DVC video, we also conduct another experi-
ment where the same key frames are used for both the DISCOVER
codec and the proposed codec. The key frames are encoded using
the DISCOVER codec. In addition, same amount of WZ bits are used
to correct WZ frames for each method. However, in the proposed
codec, WZ bits are used to reconstruct only the ROI region. Some
reconstructed WZ frames are shown in Fig. 19 and their SI frames
and error images are shown in Fig. 20. In Fig. 19, snapshots are cho-
sen at frame positions with poorest SI quality. It is clear that the
visual quality of the ROI-only decoding is much better than that
of the full-frame decoding method because the WZ bits are de-
voted to error corrections of the ROI areas where the visual errors
are estimated to be large.

5. Conclusions

In this paper, we propose a perceptual-based WZ coding
technique for DVC codecs. In the proposed framework, the decoder
estimates the visual distortion levels of SI macroblocks and marks
the macroblocks that require WZ reconstruction as the macro-
blocks in the region-of-interest (ROI). The ROI information is then
transmitted back to the encoder using a bitmap so that parity bits
can be generated to correct only these macroblocks. Experimental
results show that the proposed perceptual-based coding technique
improves coding efficiency of DVC both subjectively and
objectively.

Although the proposed technique works well for video se-
quences that have distinctive regions of interest, it does not detect
all the visually distorted regions for sequences with multiple com-
plex moving objects. For example, for the QCIF Soccer sequence,
the proposed technique misses 128 macroblocks (out of 7326)
when adaptive thresholds of hMC and hTSC are used. Although we
can select fixed threshold values such that all visually distorted
blocks in Soccer are included into the ROI, the size of ROI will be-
come large (contains 62% of macroblocks on average) and makes
the proposed techniques less effective. More sophisticated visual
distortion detection techniques will be investigated to deal with
complex scenes such as the Soccer sequence.

Currently, the proposed technique has been tested using DVC
coding structure of GOP size equals two. When GOP size becomes
larger, both the SI prediction errors and the discrepancy between
true and estimated motion fields will become large. As a result,
the majority of the macroblocks will be included into the ROI. If
larger GOP size is to be used, a more sophisticated SI generation
algorithm has to be used to maintain efficiency of the proposed
framework. For example, in current implementation, we only use
the texture distribution map for perceptual-based analysis. It is
possible to also use the texture map to constraint the motion–pro-
jection algorithm so that predicted SI and motion field are closer to
the original WZ frame and true motion fields, respectively.

Finally, in the proposed framework, LDPCA is used for WZ
reconstruction in the ROI. Since the size of the ROI is only com-
posed of 20–30% of macroblocks in a frame, the LDPCA coding effi-
ciency may suffer due to short coding block length. More detail
analysis on the error characteristics of ROI macroblocks will be
conducted in the future for the design of a more efficient WZ
reconstruction algorithm.
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