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S U M M A R Y
This paper presents a stochastic analysis of the behaviour of heat transfer by soil moisture
in a partially saturated heterogeneous aquifer. A spectral approach based on Fourier–Stieltjes
representations for the perturbed quantities is used to develop closed-form expressions that
describe the field-scale heat advection and the variability of temperature profile. It is shown
that the field-scale heat advection is related to the variability of the specific discharge, which,
in turn, is related to the variation of hydraulic conductivity. Our analysis is, therefore, focused
on the impact of the correlation scale of the log saturated hydraulic conductivity field on these
analytical results. It is found that the correlation scale of log saturated hydraulic conductivity
has an influence on enhancing the heat advection and the variability of the mean temperature
field.
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1 I N T RO D U C T I O N

The temperature of the land surface is influenced by seasonal heating and cooling. Vertical water seepage in the vadose zone near the land
atmosphere interface results in a heat transport that modifies the temperature profile and, in turn, affects most reactions occurring in the vadose
zone (e.g. Parlange et al. 1998; Sung et al. 2002). Therefore, it is of great importance in characterizing and predicting the heat transport
processes in the vadose zone.

It is well known that the spatial variability of flow velocities attributed primarily to the spatial variations of hydraulic conductivity is
responsible for the field-scale spreading of non-reactive solutes in aquifers. One possible approach to this field-scale prediction problem
is to treat the aquifer properties as spatial random fields characterized by a limited number of statistical parameters in a stochastic sense.
The stochastic framework, then, allows the effects of heterogeneity incorporated into the prediction and the uncertainty associated with its
characterization.

Due to the analogy between the contaminant and heat transports, it is expected that the heterogeneity of natural formations also plays
an important role in influencing the heat advection at field scale. Stochastic analysis of solute transport in heterogeneous aquifers has been
employed in numerous studies (e.g. Gelhar & Axness 1983; Dagan 1984, 1987; Neuman et al. 1987; Neuman & Zhang 1990; Vomvoris &
Gelhar 1990; Rehfeldt & Gelhar 1992, Russo 1993; Chang & Yeh 2007). However, the application of stochastic methods to the analysis of
heat transport in partially saturated heterogeneous aquifers by taking into account the heterogeneity effect and uncertainty has so far not been
attempted, and this is the task undertaken here. It is hoped that our findings will be useful in stimulating further research in this area.

2 M AT H E M AT I C A L F O R M U L AT I O N O F T H E P RO B L E M

Analogous to the transport of solutes by hydrodynamic dispersion in solute transport theory, a temperature-based equation describing the heat
transport in a variably saturated porous medium at the local scale can be written as

∂

∂ Xi

(
Ke

∂T

∂ Xi

)
− ρw Cw

∂

∂ Xi
(qi T ) = ρC

∂T

∂t
i = 1,2, 3, (1)

where T is the temperature, the coefficient Ke includes effects of conduction through the rock–fluid matrix as well as effects of thermal
dispersion, ρw and Cw are density and specific heat of fluid, respectively, qi is the specific discharge in the principal coordinate directions,
and ρ and C are density and specific heat of rock-fluid matrix, respectively. Eq. (1) assumes that ρw, Cw, ρ and C are constants. Note that the
coefficients Ke and C as well as the parameter qi are all functions of moisture content.

Under natural conditions, air pressure in the vadose zone is generally controlled at the soil-atmosphere boundary by atmospheric pressure,
which normally varies over a small range. In other words, the gas pressure gradients in the vadose zone are small under natural conditions (e.g.
Parker 1997). Furthermore, even if there is considerable gas flow in the vadose zone, it will not translate into much heat transport because the
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ρwCw factor for the water phase is much larger than the ρgCg factor for the air phase. The heat transport by the airflow is therefore neglected
in this study.

The effect of thermal dispersion is very small and negligible when compared with that of conduction (Bear 1972; Hopmans et al. 2002).
This simplifies eq. (1) to

KT

ρC
∂2 T

∂ X 2
i

− μ
∂

∂ Xi
(qi T ) = ∂T

∂t
, (2)

where KT is the effective thermal conductivity (analogous to the molecular diffusion coefficient in the advection-dispersion equation for
conservative solutes) at local scale and μ = (ρwCw)/(ρC). The effects of varying the thermal conductivity are minor in relation to the effects
of varying the hydraulic conductivity (e.g. Anderson 2005) so that the thermal conductivity in eq. (2) is treated as a constant.

We start with considering the case of steady state flow through a variably saturated, heterogeneous porous medium, where the subsurface
is dominated by the vertical flow. Within the unsaturated zone, the temperature profile is subject to seasonal variations. The 1-D vertical flow
assumption reduces the heat transport eq. (2) considerable to

KT

ρC
∂2 T

∂ X 2
1

− μq
∂T

∂ X1
= ∂T

∂t
, (3)

where q is the specific discharge in the vertical direction. Due to aquifer heterogeneity, a difficulty with eq. (3) is thus a matter of scale. One
promising way to deal with this scale effect is to treat the specific discharge as a second-order stationary stochastic process. Then T(X 1, t) in
eq. (3) becomes a scale-dependent random function. Note that the assumption of a second-order stationary stochastic process for the specific
discharge field is applicable, at least far enough from the soil surface and the water table.

3 S T O C H A S T I C A NA LY S I S I N O N E D I M E N S I O N

The stochastic partial differential eq. (3) may be approximated by expanding the input (the specific discharge) and output (temperature field)
variables in terms of ensemble means and small perturbations around the mean, respectively,

q = Q + q ′, (4)

T = � + T ′, (5)

The equation governing the mean T field is then obtained after substituting eqs (4) and (5) into eq. (3) and subsequently taking the expected
value in the resulting equation

KT

ρC
∂2 �

∂ X 2
1

− μQ
∂�

∂ X1
− μ

∂

∂ X1

〈
q ′T ′〉 = ∂�

∂t
, (6)

where 〈〉 stands for the ensemble average, while the equation for the perturbation is developed by subtracting eq. (6) from eq. (3)

KT

ρC
∂2 T ′

∂ X 2
1

− μQ
∂T ′

∂ X1
− μq ′ ∂�

∂ X1
= ∂T ′

∂t
. (7)

The last term on the left-hand side of eq. (6) is referred to as macrodispersive flux in the work of Gelhar & Axness (1983) for the case of the
solute transport in a saturated heterogeneous aquifer. It reflects the additional heat advection produced as the result of the correlation between
specific discharge and temperature fluctuations. Note that the field-scale effect has been shown to be produced by the cross-correlation term
appearing in the mean transport equation for conservative solutes (Gelhar & Axness 1983). Eq. (7) describes the temperature perturbation
due to the variation of specific discharge, which provides the stochastic differential equation required to develop second moment of the
temperature field in terms of the statistics of the input hydraulic parameters.

4 S P E C T R A L S O LU T I O N S

In analysing changes in the temperature field in time, it is convenient to introduce a moving coordinate system, ξ = X 1 – μQt, that follows
the mean advective movement of the heat distribution. As such, eqs (6) and (7) take the following forms

KT

ρC
∂2 �

∂ ξ 2
− μ

∂

∂ξ

〈
q ′T ′〉 = ∂�

∂t
, (8)

KT

ρC
∂2 T ′

∂ ξ 2
− μq ′ ∂�

∂ξ
= ∂T ′

∂t
. (9)

Under the assumption of stationary-increment random field for the perturbed quantities, the Fourier–Stieltjes integral representations is
one of the most efficient approaches in solving the small-perturbation expansion of the solute transport equation (Gelhar & Axness 1983).
We now proceed to solve eq. (9) in Fourier space by applying the spectral representations of the random fluctuations T′ and q′ into eq. (9) in
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terms of Fourier–Stieltjes integrals

T ′ =
∫ ∞

−∞
exp[iR(ξ + μQt] dZ T (R, t), (10)

q ′ =
∫ ∞

−∞
exp[iR(ξ + μQt] dZq (R), (11)

where R is the wave number, and dZT (R,t) and dZq(R) are the complex Fourier–Stieltjes increments. The transient-state spectral relation
follows from eq. (9) through the application of eqs (10) and (11) and the use of uniqueness of the representations

∂

∂t
dZ T (R, t) + (iμR + αT R2)Q dZ T (R, t) = −μ

∂�

∂ξ
dZq (R), (12)

where αT = KT /(ρCQ).
It is assumed that the known initial temperature distribution in the vadose zone is uniform, that is, there is no heat advection at t = 0.

Therefore, dZT = 0 at t = 0. The solution of eq. (12) with dZT = 0 at t = 0 is

dZ T (R, t) = μG
1 − exp[−(iμR + αT R2)Qt]

αT R2 + iμR

dZq (R)

Q
, (13)

where G = –∂�/∂ξ . Eq. (13) assumes that G is approximated as a constant; that is, the mean temperature field is a linear function of the
spatial coordinate.

Note that in solving the perturbation eq. (9), the mean temperature gradient, ∂�/∂ξ , which represents as the source term in eq. (9) must
be known. It is recognized that there is a disparity in scale between the mean temperature field and the temperature perturbations. In general,
the mean temperature field is a smooth function of space and time, and the perturbations fluctuate on a much smaller scale than that associated
with variations in the mean. It is then possible to simplify eq. (9) by approximating the mean temperature gradient, the coefficient in eq. (9),
as a constant when solving eq. (9). It is expected that the assumption of a constant mean temperature gradient will not be valid near the heat
source (or the boundary) where a large temperature gradient and sharp curvature occur. This implies that the domain of the problem (eq. 9)
is far enough from the boundary and within this framework the problem is simplified to an initial value problem.

Note that according to the studies on solute transport in heterogeneous unsaturated porous formations (Russo 1996, 1998; Harter &
Zhang 1999), a constant mean concentration gradient will reach if the solute plume travels at least several to tens of correlation lengths of
formation heterogeneity away from the source. In addition, the literature on saturated contaminant transport (e.g. Gelhar 1993; Rubin 2003)
also implies that the constant mean gradient assumption is however not restrictive if the transport process is taking place away from the source
of contamination.

4.1 Field-scale macrodispersion coefficient

The cross-correlation term in eq. (8) is then found by multiplying both sides of eq. (13) by the complex conjugate of dZq(R), taking the
expected value, using the spectral representation theorem, and integrating over the wave number domain〈
T ′q ′〉 = βQG, (14)

where β is referred to as the macrodispersivity, a description of the heat advection, and in the form

β = μ

∫ ∞

−∞

1 − exp[−(iμR + αT R2)Qt]

αT R2 + iμR
Sqq (R)

Q2
dR. (15)

In eq. (15), Sqq(R) denotes the spectrum of the specific discharge.
Eq. (15) relates the spectra of specific discharge variation to that of the dispersive heat flux. In other words, the heat advection at the

field scale depends on the variability of the specific discharge, which, in turn, is related to the variation of the hydraulic conductivity. Note
that from eqs (8) and (14), the resulting ensemble average of temperature distribution is thus governed by the following advection operator

(υ + β)μQ
∂2 �

∂ ξ 2
= ∂�

∂t
, (16)

where υ = αT /μ.
The determination of the spectrum of the specific discharge in eq. (15) can be done using the Fourier–Stieltjes representations of the

random fields in the first-order perturbation approximation of Darcy’s law (Yeh et al. 1985) expressed the specific discharge spectrum as

Sqq (R) = α2 J 2 Q2

R2 + α2(2J + 1 )2 S f f (R), (17)

where J is the gradient of mean capillary pressure head, α is a soil pore-size distribution parameter, and Sff (R) denotes the spectrum of the
local log saturated hydraulic conductivity field. In the development of eq. (17), they assumed that the local unsaturated hydraulic conductivity
K is related to the capillary pressure head ψ by K = Ks exp(–αψ), where Ks is the local saturated hydraulic conductivity.
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4.2 Variation of temperature field

The amplitude relationship of eq. (13) can also be used to find the spectrum of temperature perturbation field and, in turn, the temperature
variance within the following spectral framework:

σ 2
T =

∫ ∞

−∞
ST T (R)dR, (18)

where STT (R) is the spectrum of temperature perturbation field. Multiplying both sides of eq. (13) by its complex conjugate, taking the
expected value, and using the spectral representation theorem results in the spectrum of temperature perturbation field

ST T (R) = G2 μ2 1 − 2 cos(μQt R) exp(−αT Qt R2) + exp(−2 αT Qt R2)

α2
T R4 +μ2 R2

Sqq (R)

Q2
. (19)

5 C L O S E D - F O R M S O LU T I O N S

To proceed with the development of macrodispersivity eq. (15) and variance of temperature field eq. (19), one must select the form of the
lnKs spectrum. The random lnKs perturbation field under consideration is characterized by the following spectral density function (Bakr
et al. 1978)

S f f (R) = 2 λ3 R2

π (1 + λ2 R2 )2
σ 2

f , (20)

where λ is the correlation length of lnKs and σ 2
f is the variance of lnKs.

Combining eqs (17) and (20) with eq. (15) gives the macrodispersivity as

β = σ 2
f λ

J 2

(2J + 1 )2

ς 2 η2

ς 2 − η2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ς − η

η

2 + η + ς

(1 + η )2(1 + ς )2
+

[
2
�(0.5

√
τη)

(1 − η2 )2
− �1

(1 − ς 2 )2

]

+
[

�2

(1 − η2 )2
− �3

(1 − ς 2 )2

]
exp

[
τ

(
η + 1

η

)]
�(ε1) +

[
�4

(1 − ς 2 )2
− �5

(1 − η2 )2

]
exp

[
τ

(
η − 1

η

)]
�(ε2)

+ 2

√
τη

π

[
ς 2

η2

1

1 − ς2
− 1

1 − η2

]
exp(−τη/4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (21)

where �(–) denotes the complementary error function, η = λμ/αT , ς = λα(2J+1) and τ = μQt/λ ,

ε1 =
(

τ

η

)0.5

+ 1

2
(τη )0.5, (22a)

ε2 =
(

τ

η

)0.5

− 1

2
(τη )0.5, (22b)

ε3 =
(

τ ς2

η

)0.5

− 1

2
(τη )0.5, (22c)

ε4 =
(

τ ς2

η

)0.5

+ 1

2
(τη )0.5, (22d)

�1 =
(

1 + ς

η

)
exp

[
τς

(
ς

η
− 1

)]
�(ε3) −

(
1 − ς

η

)
exp

[
τς

(
ς

η
+ 1

)]
�(ε4), (22e)

�2 = − τ

η
+ 1 + τ

2
+ 3

2
(τ − 1)η − 1

2
τ η2 +1

2
(1 − τ ) η3, (22f)

�3 = 1 − 1

2
τ + 1

2
τ ς 2 + 1

2η
[ς 2(1 − τ )(ς2 −3) − 2τ ] + τ

ς2

η2
(1 − ς 2), (22g)

�4 = 1 + 1

2
τ − 1

2
τ ς 2 + 1

2η
[3 ς 2(1 + τ ) − ς4(1 + τ ) − 2τ ] + τ

ς 2

η2
(ς 2 −1), (22h)

�5 = − τ

η
+ 1 − τ

2
+ 3

2
(τ + 1)η + 1

2
τ η2 −1

2
(1 + τ ) η3 . (22i)

The result of eq. (21) is presented graphically in terms of a function of time for various correlation scales of lnKs in Fig. 1. It is clear that the
correlation scale of log saturated hydraulic conductivity has a positive effect on the field-scale heat advection. An increase in the correlation
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Figure 1. Dimensionless macrodispersivity versus dimensionless time for various ς , where � = σ 2
f J 2

α(2J+1 )2 , ϑ = μQα(2J+1)t, and � = (μ/αT )/[α(2J+1)].

scale of lnKs produces more persistence of the specific discharge fluctuation, which leads to larger deviations of specific discharge from the
mean specific discharge. It is clear from eq. (14) that the fluctuations in the temperature field are positively correlated to those in the specific
discharge. Therefore, the field-scale heat advection increases with the correlation scale of lnKs.

From eqs (17), (19) and (20), the variance of temperature field in eq. (18) can be expressed as

σ 2
T = G2 σ 2

f λ
2 J 2

(2J + 1 )2

ς2 η2

ς 2 − η2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ς − η

ςη

2 + (η + ς )(2 + η)(2 + ς )

(1 + η )2(1 + ς )2
+ 2

[
�1

ς (1 − ς 2 )2
− �2

η(1 − η2 )2

]

+ 2

[
�3

(1 − ς2 )2
− �4

(1 − η2 )2

]
exp

(
τ

1 + η

η

)
�(ε1) + 2

[
�5

(1 − ς 2 )2
− �6

(1 − η2 )2

]
exp

(
τ

1 − η

η

)
�(ε2)

+ 4

√
τ

ηπ

(
1

1 − η2
− 1

1 − ς2

)
exp

(
− τη

4

)
+

[
�7

(1 − η2 )2
− �8

(1 − ς2 )2

]
exp

(
2
τ

η

)
�

(√
2
τ

η

)

+ 2

√
2τ

ηπ

(
1

1 − ς2
− 1

1 − η2

)
+ 2

⎡
⎢⎢⎣ exp(2τη)

η(1 − η2 )2
�(

√
2τη) −

exp

(
2
τ ς 2

η

)
ς (1 − ς 2 )2

�

⎛
⎝

√
2
τ ς 2

η

⎞
⎠

⎤
⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (23)

where

�1 = exp

(
τς

ς + η

η

)
�(ε4) + exp

(
τς

ς − η

η

)
�(ε3), (24a)

�2 = exp(2τη)�(1.5
√

τη) + �(0.5
√

τη), (24b)

�3 = τ

η
(1 − ς 2) + 1

2
(τ − 3) + 1

2
ς 2(1 − τ ), (24b)

�4 = τ

η
+ 1

2
(τ − 3) − τη + 1

2
η2(1 − τ ), (24c)

�5 = τ

η
(1 − ς 2) − 1

2
(τ + 3) + 1

2
ς 2(1 + τ ), (24d)

�6 = τ

η
− 1

2
(τ + 3) − τη + 1

2
η2(1 + τ ), (24e)

�7 = 4
τ

η
− 3 − 4τη + η2, (24f)

�8 = 4
τ

η
(1 − τ ) − 3 + ς2 . (24g)

Fig. 2 illustrate the behaviour of the temperature variance as a function of time for various correlation scales of lnKs. It indicates that the
variation of the temperature field around the mean is proportional to the correlation scale. The larger the correlation scale, the higher the
variability for the specific discharge, and consequently, the higher the variation of the temperature field around the mean. This is consistent
with the results of the analysis of macrodispersivity (Fig. 1).
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Figure 2. Dimensionless variance of temperature field versus dimensionless time for various ς , where � = G2 σ 2
f J 2

α2(2J+1 )4 , ϑ = μQα(2J+1)t, and � = (μ/αT )/[α(2J

+ 1)].

The stochastic approach in the paper may provide a rational basis for extrapolating to space scales at which direct observations of
dependent variables are not feasible. In addition, the variance can be used to characterize the reliability to be anticipated in applying the
deterministic model. It is hoped that our findings will be useful in stimulating further research in this area.

6 C O N C LU S I O N S

Within the framework of stochastic theory and the spectral perturbation techniques, closed-form expressions are developed to describe
the field-scale heat advection and the variability of temperature profile in a partially saturated porous heterogeneous aquifer. These results
expressed in terms of the statistical properties of log saturated hydraulic conductivity and the soil parameters are allowed to investigate the
impact of the correlation scale of log saturated hydraulic conductivity on the field-scale heat advection and the variability of mean temperature
field.

Our results indicate that the macrodispersive heat flux is dependent of the variability of the specific discharge, which, in turn, is dependent
of the variation of hydraulic conductivity. The correlation scale of log saturated hydraulic conductivity is important in enhancing the heat
advection and the variability of the mean temperature field.
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