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Abstract New mechanism of turbulence instability of standing flux-antiflux front in
layered superconductors is presented. We describe two assisting mechanisms destabi-
lizing the standing vortex-antivortex front. There are anisotropy of the layered super-
conductors and the heat, released by the vortex-antivortex annihilation. We present
the conditions of the front stability for various anisotropy and heating parameters.
We predict that heat released by the vortex-antivortex annihilations enhances the tur-
bulence instability in superconductors with small anisotropy. The characteristic size
of the unstable pattern is estimated. The results are in a good agreement with recent
experiments.
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1 Introduction

Studies of patterns in the magnetic flux distribution in the type-II superconductors are
attracting the attention of many research groups [1–4] whose magneto-optical experi-
ments demonstrate that nonuniform flux penetration occurs. Patterns with branch-like
structures have been found in most of high Tc materials, like YBa2Cu3O7−x [5] and
Bi2Sr2CaCu2O8+x [6]. The nucleation of dendrite like patterns in MgB2 films is an-
other example [7, 8]. These complex structures consist of alternating low and high
vortex density regions and are found in a certain temperature window. Likewise, flux
penetration in the form of droplets separating areas of different densities of vortices
has been observed in NbSe2 [9]. Usually the occurrence of flux patterns in interfacial

E.E. Dvash · I. Shapiro · N. Logoboy · B.Y. Shapiro (�)
Department of Physics, Institute of Superconductivity, Bar-Ilan University, Ramat-Gan 52900, Israel
e-mail: shapib51@hotmail.com

B. Rosenstein
Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC

mailto:shapib51@hotmail.com


40 J Low Temp Phys (2012) 167:39–58

growth phenomena can be attributed to a diffusion driven, long-wavelength instabil-
ity of a straight front, similar to the Mullins-Sekerka instability [10] found in crystal
growth. The nucleation of nonuniform patterns associated with the propagation of a
flux front into a flux-free sample has been attributed to such an interfacial instability.
This results from a thermomagnetic coupling [7, 8, 11–13] where a higher temper-
ature leads to a higher vortex mobility, enhanced flux flow, and hence a larger heat
generation.

On the other hand, the situation when the vortices interact in a superconductor
with the flux of the opposite sign is less theoretically studied. This flux configurations
arises for example when a DC bias current creates vortices and antivortices on the
opposite side of the superconducting strip [14]. Another example which is now un-
der intensive investigation arises upon exposing the previously magnetized sample to
the magnetic field of an opposite direction. Vlasko-Vlasov et al. [1] argued that the
remagnetization flux front in platelet-shaped superconductors leads to formation of a
specific three-dimensional structure inside the sample. This structure called “Meiss-
ner hole” consists of flux-free regions around which closed vortex loops are formed
that sustain a local increase of current while, the boundary between vortices and an-
tivortices exhibits a long wavelength instability [1, 2, 4, 15, 16]. The cause of the
instability at the boundary between fluxes of opposite sign is still being debated. In
particular Fisher et. al. [17, 18], proposed a non thermomagnetic Kelvin-Helmholtz
mechanism of instability caused by an in-plane anisotropy of the vortex mobility
[19]. This mechanism of instability was carefully reinvestigate by the van Saarloos
[20] et al. They confirmed the finding of Fisher et al. [17, 18] that standing vortex-
antivortex fronts have an instability for large anisotropy, while the moving fronts were
found to be stable for all anisotropies. Several years latter this model was improved
by an additional assumption of a step shape and anisotropy of the voltage current
characteristics [18] and explained the experimental results in moderate anisotropic
superconductor YBa2Cu3O7−δ . Unfortunately this assumption cannot explain the in-
stability in pure isotropic systems like Nb and MgB2 and recently discovered slightly
anisotropic Ba(Fe1−xCox)2As2 [21].

In the present paper we propose another mechanism of the turbulence instabil-
ity showing that the heat released by the vortex-antivortex annihilations at the flux-
antiflux front can create the Meissner holes and enhance the Kelvin-Helmholtz mech-
anism of the turbulence even in layered superconductors with small anisotropy.

2 Model and Basic Equations

We consider a thick film (slab) with sizes L in the y-direction and D in the x-
direction, subjected to the oppositely directed magnetic field H (z-direction) at the
sample edges. The field creates vortices and antivortices penetrating the sample and
annihilating in the center of the film (Fig. 1). Electromagnetically the film is not thin
in the Pearl sense, (namely the thickness in our case does not obey d � λ), so the re-
lation between the current density and the magnetic induction is local [22]. We exploit
a model of two-component vortex gas [23] spatially homogeneous along the z axes,
which is valid for the experimentally interesting situation of the low magnetic field
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Fig. 1 (a) Two-dimensional
cross section of the sample in
the XY plane, ϑ is the angle
between the x axis and the ab

plain of the layered structure
and c axis is perpendicular to
the layers of the superconductor.
(b) Geometry of the sample

when typical spacing between vortices a0 essentially exceeds vortex-vortex (antivor-
tex) interaction radius ξ , and the vortex velocity depends only on the edge screening
current that is assumed to be homogeneously distributed across the sample. One must
take into account both vortex-antivortex annihilation and heat release accompanying
this process. We should also take into consideration heat absorption by the sample
lattice in order to prevent the rise of unlimited temperature.

The vortex-antivortex annihilation obeys the well-known master equations of the
recombination theory [24, 25], see Appendix 1 for derivation,

∂n+
∂t

+ ∇(n+v+) + gn+n− = 0, (1)

∂n−
∂t

+ ∇(n−v−) + gn+n− = 0, (2)

g = ξv, v = mod(v+ − v−), (3)

where n+ and n− are the vortex and antivortex densities, respectively, g is the ratio of
recombination for vortices and antivortices, ξ is the cross section of the annihilation,
which is of the order of the coherence length of the superconductor [26], and v± are
the opposite directed, macroscopic vortex-antivortex velocities, which in the creep
regime are strongly temperature dependent:

mod(v±) = v± = v±FF exp

(
−U

T

)
.

(4)

J = c

4π
∇ × B, B = ϕ0(n+ − n−), v±FF = J × ϕ0

ηc
.
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Here, U is a temperature-dependent pinning potential, ϕ0 is the unit flux, J is the
electric current, and η is the viscosity of the vortices, which in an anisotropic system
is a tensor with different in plane and across the plane tensor components ηαβ .

(It should be noted that our master (recombination) equations account numbers
of the topological charges (vortex/antivortex cores). The number of the vortices and
antivortices is changed when they meet each other at the distance of the order of
the coherence length ξ , rather than the penetration length of the magnetic field λ.
For example, the same equations describe vortex-antivortex annihilation both in the
superfluid He-4 and in superconducting films where the magnetic field is uniform).

We wish to investigate an anisotropic system where the vortices velocity is not
necessarily parallel or perpendicular to the layers of the superconductor. Therefore,
we shall take the vortices velocity in a general form

vα = −γαβ

(
∂B

∂xβ

)
. (5)

α,β = x, y.
Here γ = ϕ0/4πη when

γ = η−1 = η−1
0

(
cos2 ϑ + α sin2 ϑ cosϑ sinϑ(1 − α)

cosϑ sinϑ(1 − α) α cos2 ϑ + sin2 ϑ

)
(6)

is the inverse tensor of the vortex viscosity [20], α is the anisotropy parameter of
the system (0 < α < 1), ϑ is the angle between the x axis and the a–b plain of the
layered structure (Fig. 1a).

Assuming that the heat flow from the thick film is running out in z-direction (the
cold substrate is located in the plane Z = 0 (Fig. 1b)) one can complete the set of
equations (1) and (2) by the temperature transfer equation in the form

Cp

∂T

∂t
= κT �2

x,y T + δQ

δt
+ κT �2

z T , (7)

completed by the Newton boundary condition at the cooled substrate [27]:

κT [�zT ]z=0 = −h(T − T0); (8)

[�zT ]S �=z=0 = 0. (9)

Here

∂Q

∂t
= WJ + WA, (10)

WJ = ηv2

2
(n+ + n−); WA = ξv

n+n−
Cp

Q0 (11)

is determined by the energy released both by vortex-antivortex dynamics WJ and by
vortex-antivortex annihilation WA. Here κT is the heat conductivity, Cp is the heat
capacity, T0 is the coolant temperature, Q0 is heat released by annihilation of a single
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vortex-antivortex pair per unit vortex length, h is the heat transfer coefficient to the
coolant held at the temperature T0.

Throughout this paper we consider current-carrying conditions whose transverse
dimensions are sufficiently small (films). In this case (due to homogeneity in the z-
direction) the last term in the (7) can be simplified [28]. Considering it as a sink term
balancing heat term in a steady state and integrating both of them on volume of the
sample one obtains (Fig. 1b):

∫
dV

δQ

δt
= dDL

δQ

δt

= κT

∫
dV �2

z T = κT

∮
Z=0

[�zT ]dS = −h(T − T0)dL, (12)

where

δQ

δt
= −h(T − T0)

d
(13)

in equilibrium.
In non equilibrium the temperature transfer (7) reads:

Cp

∂T

∂t
= κT �2

x,y T + δQ

δt
− h(T − T0)

d
, (14)

The set of (1)–(3) and (14) completed by the boundary conditions describes all
features of the model. Here tR = Cpd/h is in the time units.

3 Spatial Distribution of Flux-antiflux Densities

We consider the case of a restricted sample of length D. In this case, the flux-antiflux
interface in the stationary state is formed due to a balance between flux-antiflux en-
tering the sample from the opposite sides and their annihilation in the middle point.

Introducing new variables

n+/nm = N+, n−/nm = N−, x/�L → x,

�L = (nmξ)−1, t/t0 = t∗, t0 = η(�L)2

nmϕ2
0

, (15)

b = N+ − N−, N = N+ + N−, (16)

where nm is flux density at the interface point, and �L is the characteristic width
of the region in which the spatial distributions of vortex and antivortex flux densi-
ties overlap, forming the interlayer where the vortices of the opposite signs coexist.
�L may be estimated as �L � v/gnm ∼ (nmξ)−1 (see Ref. [29, 30]), which is a
microscopically large area where the total magnetic induction is suppressed.
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One obtain from (1)–(2)

∂b

∂t∗
= ∂

∂x

(
N

∂b

∂x

)
, (17)

∂N

∂t∗
= ∂

∂x

(
b
∂b

∂x

)
− |N2 − b2|

∣∣∣∣ ∂b

∂x

∣∣∣∣, (18)

where b is the dimensionless magnetic induction.
In the stationary state we get for N0 and b0

∂

∂x

(
N0

∂b0

∂x

)
= 0 (19)

∂

∂x

(
b0

∂b0

∂x

)
− (N2

0 − b2
0)

∣∣∣∣∂b0

∂x

∣∣∣∣ = 0. (20)

Performing the integration in (19) one obtain

N0
∂b0

∂x
= −I. (21)

here I is a constant.
Substituting N from (21) into (20) and performing the integration we immediately

obtain the differential equation for b in the form

−W + I

2
ln

∣∣∣∣I + W

I − W

∣∣∣∣ = −b3
0

3
. (22)

where

W = b0
∂b0

∂x
. (23)

3.1 Flux-Antiflux Interface

This equation may be solved analytically close to the interface line where b0 goes to
zero.

Assuming that the vortices and antivortices appear at the edges of the samples
separated by the distance D (in dimensionless units) and assuming the following
boundary conditions

b0
∂b0

∂x
= −I, N0− = 0 at x = −D

2
,

b0
∂b0

∂x
= I, N0+ = 0 at x = D

2
, (24)

we obtain an asymptotically exact result for magnetic induction and vortices density
at the interface: Looking for the solution in the vicinity of the flux-antiflux front
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Fig. 2 Structure of the
vortex-antivortex interface

(X → 0) in the form

b0 � a1x + a2x
3; N0 � a3 + a4x

2 (25)

one obtains from (21), (23) to the main order

a1 = −I 2/3, a2 = I 4/3

180
, a3 = I 1/3, a4 = I

60
. (26)

It should be noted numerical simulation show that these formulas are valid in a much
wider region at front (b0 = 0) and can be considered as an interpolation ones.

Assuming that the slope of the magnetic induction at the front I � 1 is small one
obtains for the characteristic size of the vortex-antivortex area xc , where vortices and
antivortices coexist N0(xc) = b0(xc) (see (19)) (see Fig. 2).

xc = I−1/3 
 1. (27)

The dimensionless vortex velocity at the interface u0 = I 2/3 is a constant. Return-
ing to the dimension variables, we obtain for interface flux velocity

u± ≈ n2
mξϕ2

0

4π

exp(−U/T )

η
I 2/3. (28)
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4 Overheating Instability

Let us consider the stability of the vortex-antivortex interface with respect to small
deviations from its initial plane shape. For this we shall take the (14), (17) and (18),
in the more general form

∂b

∂t
− ∇(Nv) = 0, (29)

∂N

∂t
− ∇(bv) + (N2 − b2)|v| = 0, (30)

∂�

∂t
− κ∇2� − wA − wJ + r(� − 1) = 0, (31)

where

wA = (N2 − b2)SA|v|, wJ = NSJ v2 (32)

are the dimensionless annihilation and Joule heat terms. Here SA ≡ (Q0nm/4πT0Cp);
SJ = ϕ2

0n2
m/16π2T0Cp are the heating parameters, Q0 ∼ ϕ2

0/λ2 where λ is the Lon-
don penetration length. The ratio SJ /SA ∼ λ2nm.

It seems at first glance that the direct Joule term caused by vortex (antivortex) mo-
tion always prevails. Really, for a sharp shape magnetic induction front the vortex-
antivortex annihilation term (overlapping) which is proportional to the vortex (an-
tivortex) density production wA ∼ vN+N− is small while vortex velocity v ∼ ∇b

is large. Therefore the direct, Joule term which is proportional both to the sum of
the vortex and antivortex densities and to the square of the velocity wJ = NSJ v2

significantly exceeds the annihilation term. However, in our case, when the slope of
the magnetic induction profile is small the annihilation term becomes essentially im-
portant. In this case the overlapping (annihilation) term is larger due to deep mutual
penetration of vortices and antivortices over the interface area (see Fig. 2). The vor-
tex velocity in this case is small and it decreases the Joule term which is of the order
of v2. Substituting functions N+,N− from the (25), (26), (16) into (32) one obtains
for the wJ � N0(∇b0)

2 � I 5/3 and wA ∼ N2
0 ∇b0 � I 4/3 allowing to neglect in our

consideration the Joule term which is relatively small

wJ /wA � I 1/3 � 1. (33)

Here the dimensionless velocity v has the form

v = exp(−U/T )

∣∣∣∣ ∂b

∂x

∣∣∣∣ (34)

while κ → t0κT /cp(�L)2 (here κd = κT /Cp is the diffusion constant), r → t0/tR
are the dimensionless effective diffusion and relaxation coefficients correspondingly.
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4.1 Small Fluctuations

Looking for a solution of the form

b(x, y, t) = b0(x) + ψ(x, y, t), (35)

N(x,y, t) = N0 + ζ(x, y, t), (36)

�(x,y, t) = 1 + θ(x, y, t), (37)

where ψ , ζ and θ are the small perturbations of the form

⎛
⎝ψ(x, y, t)

ζ(x, y, t)

θ(x, y, t)

⎞
⎠ =

⎛
⎝ψ(x)

ζ(x)

θ(x)

⎞
⎠ exp(λr t + iky). (38)

Here ψ0, ζ0 and θ0 are constant amplitudes, λr is the rate grow of the perturbation
and k is the wave vector in the y direction.

Taking into account the fluctuations of the vortex velocity

vα = −(1 + θ)γαβ

∂b

∂xβ

, (39)

where θ/T0 is the change of velocity due to thermal fluctuations [29, 30] and γ =
ϕ0/4πη (see (6)) one obtains

vx = v0
x + δvx = −γxx

∂b0

∂x
− γxx

∂ψ

∂x
− γxx

∂b0

∂x
θ − γxy

∂ψ

∂y
,

(40)

vy = v0
y + δvy = −γyx

∂b0

∂x
− γyx

∂ψ

∂x
− γyx

∂b0

∂x
θ − γyy

∂ψ

∂y
.

Here δvx,y are the deviations from the steady state vortex velocity.
While the vortex velocity in the x direction is higher then in the y direction, we

assume that |v| ≈ vx .
We neglect the influence of temperature fluctuations on heat capacity Cp and re-

laxation coefficient r because their calculations do not result in essential effects. We
also neglect in the main order the change of the average temperature in the flux front
area.

Substituting the perturbations in the form (38) into initial set of (29)–(31), and use
the stationary solution in the form (19)–(20) (see Appendix 2) one obtains from the
(72) for the rate grow

λ3
r + λ2

r (�1 + �1k
2) + λr(�2 + �2k

2 + �3k
4) + (�4k

2 + �5k
4) = 0, (41)

where γxy = γyx and

�1 = 2γxxI + r − γxxI
4
3 SA, (42)
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Fig. 3 (Color online)
Mullins-Sekerka instability for
super large heat. The increment
Reλ versus k2 (k is the wave
vector along the flux-antiflux
front)

�1 = −γyyI
1
3 + κ,

�2 = 2γxxIr,

�2 = 2(γ 2
xy − γxxγyy)I

4
3 + 2γxxIκ − γyyI

1
3 r + I

5
3 SA(γxxγyy − γ 2

xy),

�3 = −γyyI
1
3 κ,

�4 = 2(γ 2
xy − γxxγyy)rI

4
3 + γxxγ

2
xySAI

8
3 ,

�5 = 2(γ 2
xy − γxxγyy)κI

4
3 .

The roots of these equations are presented in Appendix 2 where the solution λ1,2

are relevant.
(We consider only the nonuniform instability, hence solutions with Reλ > 0 at k =

0 are omitted). The onset of the nonuniform along the front instability is determined
either by the conditions (Reλ1 = 0)

(ReB1)
2 = 4(ReC1)(ReA1), (43)

ReC1 < 0, (ReA1) < 0 (44)

giving the contact point at Reλ1 − k2 plane (see Figs. 3–5)

k2 = − ReB1

2 ReA1
(45)

or at C1 = 0 (ReB1 > 0,ReA1 < 0) resulting in the Mullins-Sekerka instability.
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Fig. 4 (Color online) The
increment Reλ versus k2 for
isotropic superconductors
(α = 0.9, ϑ = π/4) with
different in-plane diffusion
constant κ . Curves 1, 2, 3
correspond to κ = 0.1;0.5;1
respectively. Here
γxx = γyy = 0.545,
γxy = 0.055, I = 0.5,
r = 0.0148, SA = 0.89.
Instability disappears as the
diffusion constant grows

Fig. 5 (Color online) The
increment Reλ versus k2 for
anisotropic superconductor with
different relaxation constant r .
Curves 1, 2, 3 correspond to
parameters r = 0.049;0.13;2.66
respectively. The instability
disappears as the relaxation
parameter grows. Here
γxx = γyy = 0.545,
γxy = 0.055, κ = 0.1, I = 0.5,
SA = 0.89

5 Results

5.1 Strong Heating

We start with a model case when the heating coefficient S → ∞. In this case the
parameters of the dispersion (42) have the form

�1 = −γxxI
4
3 SA; �1 = −γyyI

1
3 + κ; �2 = 2γxxIr;

�2 = I
5
3 SA(γxxγyy − γ 2

xy);
(46)

�3 = −γyyI
1
3 κ; �4 = γxxγ

2
xySAI

8
3 ; �5 = 2(γ 2

xy − γxxγyy)κI
4
3 ;
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√
�2

1 − 4�2 = γxxI
4/3SA

while the equation for Reλ2 function reads (see Appendix 2)

Reλ2 = γ 2
xySAI

5
3

4r
k2 − γ 4

xyS
3
AI

11
3

64r3
k4. (47)

The rapidly growing mode in this case d2 Reλ2/dk2 = 0 (maximum velocity of the
mostly unstable mode) has the wave vector k = 2

√
2r/

√
3γxySAI and the period of

the pattern along the front (see Fig. 3)

dy =
√

3

2

πγxySAI

r
. (48)

In the case of moderate and small heating parameter SA, the results are strongly
depends both on anisotropy and on the relation between other parameters and can be
done numerically.

5.2 Moderate and Weak Heating

In this case the equation for real part of the increment of the instability is determined
by the equation (see Appendix 3)

Reλ1 = ReC1 + k2 ReB1 + k4 ReA1. (49)

It has been solved for different anisotropy, in-plane diffusion coefficients κ and re-
laxation coefficients r . The results are presented in Figs. 4–6. In all of the curves at
these figures the ReC1 < 0,ReB1 > 0 and ReA1 < 0.

The instabilities in all of these cases has the form of contact one rather than the
Mullins-Sekerka type. The nonuniform structure along the front appears with the
period dy = 2π/kc where kc is the contact point of the Reλ1 with k axis.

In Fig. 4 the Reλ1 as a function of k2 is shown for anisotropic superconductors
with various in-plane diffusion constant κ . There is a critical heating parameter S and
critical diffusion constant when the instability arises (curve 1), while the system be-
comes stable as the diffusion constants increase (curve 2,3). The relaxation constant
r (the coefficient of the ballistic heat conductivity) also strongly affect the instabil-
ity condition. In Fig. 5 the increment Reλ versus k2 for anisotropic superconductor
with different relaxation constant r demonstrate that the instability appearing at rel-
atively small constant r (see curve 1) disappears as the relaxation parameter grow
(curves 2, 3).

Figure 6 demonstrates that the anisotropy essentially affects the onset of the in-
stability. The increment of instability Reλ versus k2 for different anisotropy. Curve
1 for isotropic superconductor (α = 0.9, ϑ = π/4, γxx = γyy = 0.545, γxy = 0.055)

shows the instability at heating coefficient SA = 0.89 while curve 2 demonstrates the
lack of instability at heating coefficient SA = 0.8. The curve 3 exhibits instability for
anisotropic superconductor (α = 0.1, ϑ = π/4, γxx = γyy = 0.55, γxy = 0.45) and
even more small heating coefficient SA = 0.1.
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Fig. 6 (Color online) The
increment of instability Reλ

versus k2 for different
anisotropy. Curve 1 for isotropic
superconductor (α = 0.9,
ϑ = π/4, γxx = γyy = 0.545,
γxy = 0.055) shows the
instability at heating coefficient
SA = 0.89 while curve 2
demonstrates the lack of
instability at heating coefficient
SA = 0.8. The curve 3 exhibits
instability for anisotropic
superconductor (α = 0.1,
ϑ = π/4, γxx = γyy = 0.55,
γxy = 0.45) and even more
small heating coefficient
SA = 0.1. (Here r = 0.0148,
κ = 0.1, I = 0.5.)

Fig. 7 Qualitative picture of the
Kelvin-Helmholtz instability at
the vortex-antivortex interface

6 Conclusions

We considered the flux-antiflux instability in a thick film subjected to the oppositely
directed magnetic field H (z-direction) at the sample edges. The field creates vor-
tices and antivortices penetrating the sample and annihilating in the center of the
film (Fig. 1b). Electromagnetically the film is not thin in the Pearl sense, (namely
the thickness in our case does not obey d � λ), so the relation between the current
density and the magnetic induction is local. We found that the standing flux-antiflux
interface where vortices and antivortices coexist (Meissner hole) demonstrates insta-
bility due to the heat released by the flux-antiflux annihilation. In fact this is a well
known Kelvin-Helmholtz (KH) instability appearing when different layers of liquid
move with the opposite directed velocities [19]. In our case, however, vortex and
antivortex “liquids” are moving as it is shown in Fig. 7. The heat released by the
annihilation enhances the vortex/antivortex velocities (“tornado effect”) resulting in
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turbulence instability at the flux-antiflux interface. The rate grow dependence on the
wave vector directed along the front showing the instability is presented in Figs. 3–6
for different heating parameters and anisotropy of the superconducting materials. The
characteristic size of the unstable pattern is determined either by the rapidly growing
mode of the real part of the rate grow dλ2/dk (for strong heating parameter) (see Fig.
3) or at the contact mode for moderate and small heating (Figs. 4–6).

The theory predicts stability of the flux-antiflux front for any physical parameter
of the system (see (73) from Appendix 3). The physical reason for the instability is
the result of growing temperature gradients along the front when vortices are moving
with different velocities. The velocity of the flux flow vortices is very high and more
rapid parts of the front can break it during the time of the instability. In particular for
materials with typical parameters

B = 1000 G, η = 5 × 10−5 CGSE, vF = 107 cm/s,
(50)

l = 10−8 cm, ξ = 10−6 cm,

where B,η, vF , l are the magnetic induction, viscosity, Fermi velocity and mean path
length of the electron correspondingly, nm = B/φ0 ∼ 1010 cm−2 one obtains for char-
acteristics units of time, space and diffusion constant κd (see (15))

t0 � 5 × 10−8 s, �L � 10−4 cm, κd = (�L)2

t0
κ � κ (51)

the characteristic size of the interface in the dimension units Lc � �L/I 1/3 (Meiss-
ner hole).

For BCS superconductor where � → 0 the dimensional heating parameter SA �
nmv2

F /T 2
0 � ξ2nm < 1 (here Cp � mpF T , while εF and pF are the Fermi en-

ergy and the momentum correspondingly. At low temperature T < �0, where
Cp � (mpF �

5/2
0 /T

3/2
0 ) exp(−�0/T ) the heating parameter SA grows dramatically

SA � nmv2
F

�2
0

(
T0
�0

)1/2 exp(�0/T ) 
 1.

The heat parameter SA is responsible for type of the instability. In particular at
low temperatures (T0 � Tc,where Tc is the critical temperature) the parameter SA is
large and the instability develops on Mullins-Sekerka scenario (see Fig. 3) typical for
dendritic instability [4]. On the other hand, at temperatures close to the critical, when
the heating parameter SA < 1, the instability emerges as a periodic pattern (see Figs.
4–6) [31].

Vortices and antivortices in the unstable pattern move with velocities (see (28))
u � 105 cm/s. If the difference of the “rapid” and “slow parts” of the front δv ∼ 10u

the flux pattern might reach the microscopic magnitudes L for very short time of
the instability development τ � 30 µs, L ≈ 3 cm. The heat fluctuation for this time
cannot significantly relaxes because it moves along the front on distance δy � √

κτ ∼
0.01 cm.

The main results of this paper are presented in Figs. 3–6 where the increments
of the instability were drown for various anisotropy parameter α, heat conductivities
inside and across the sample (κ and r correspondingly) and heat annihilation coeffi-
cient SA. We conclude that heat released by the flux-antiflux annihilation results in
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instability of the interface separating fluxons and antifluxons areas even in the case
of weak anisotropy of the superconductor.

On the other hand if the superconductor is strongly anisotropic, the instability
emerges even for weak heat. In more experimentally common case of moderated
heat and anisotropy, both these mechanisms work together creating the instability of
the flux-antiflux front.

Our major conclusion is that the anisotropy of the superconducting layered
structure alone cannot explain instability of the flux antiflux interface in weakly
anisotropic materials as Nb and MgB2. From this point of view without the heating,
the flux-antiflux front in the Nb superconductor (α � 0.9) without heating should be
stable for any angle ϑ while strong heating destroys the front. If the heating caused
by the vortex-antivortex annihilation is large then the vortex antivortex front insta-
bility should be detected in completely isotropic superconductors like MgB2 (Fig. 6,
curve 1). In fact it should be noted that even small heating might be essentially im-
portant to cause the instability.

Resent results by Mohan et al. [21] shows that instability arises in optimally doped
Ba(Fe1−xCox)2As2 superconductor with small anisotropy. The small slope of the
induction at the flux-antiflux front extracted from Fig. 3 of the manuscript (db/dx =
I 2/3 = 0.2 in dimensionless units) demonstrate vortex-antivortex mechanism of the
turbulence in this material (see (33)).

This theory is appropriate in the flux flow regime. The spatial disorder might affect
the result by two different ways. It can both modify the linear profile of the magnetic
induction at the front and affect the mechanism of the heat at the interface.

Acknowledgements This work was supported by the Israel Academy of Sciences (Grant 4/03-11.7).

Appendix 1

Considering vortices (antivortices) as particles with coordinates ri(t) and the micro-
scopic vortex (antivortex) density in the form

nM± (r, t) =
N∑

i=1

δ(r − ri (t)), (52)

one obtains

∂nM±
∂t

=
N∑

i=1

∂δ(r − ri )

∂ri
vM
i , (53a)

where the microscopic vortex (antivortex) velocity

vM
i = dri

dt
= FM

i /η. (54)

Here the force field Fi (r, t) can be presented in the form

FM
i = JM

i ×zϕ0

c
, (55)
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where JM
i is the microscopic current density consisting of both the external current

and of the local current density caused by the interaction of the i-th vortex with the
entire vortex system. Using the properties of the δ-function

∂

∂ri

δ(r − ri (t)) = − ∂

∂r
δ(r − ri (t)),

(56)∑
1<i<N

f (ri)δ(r − ri ) = f (r)
∑

1<i<N

δ(r − ri )

and averaging the microscopic equation over a small volume, one obtains the master
equation for the vortex dynamics completed by the sink annihilation term in the form

given by (1)–(3). In these equations the macroscopic velocity is defined by v =vM
i =

FM
i /η = JM

i ×zϕ0/cη, see (4), where J = JM
i is the macroscopic current density.

In fact, however, the velocity in the sink term is microscopic velocity caused both
by the external current and by vortex-antivortex attraction vM = v + vint , where

vint = FM
int /η �

(
ϕ0

4πλ

)2 1

ηa0
(57)

and a0 is the mean intervortex distance, λ is the London penetration length.
The ratio

vint

v
� a3

0

4πλ2ξI 2/3
� 1 (58)

is assumed to be small.
Here the hydrodynamics velocity is estimated as v � Jϕ0/cη � ∇Bϕ0/4πη �

I 2/3n2
0ξϕ2

0/4πη, where we used the relations (see (15), (25))

B = nmϕ0b, ∇B � nmϕ0∂b

�L∂x
∼ nmϕ0

�L
I 2/3 (59)

and a0 � n
−1/2
m . Hence, in this approximation, the microscopic velocity in the sink

term can be replaced by the averaged, hydrodynamic velocity v in the basic (1)–(3).

Appendix 2

Substituting (35)–(40) in the initial set of (29)–(31), and use the stationary solution
in the form (19)–(20) one obtains for perturbations

∂ψ

∂t
− N0

∂δvx

∂x
− ζ

∂v0
x

∂x
− v0

x

∂ζ

∂x
− N0

∂δvy

∂y
− v0

y

∂ζ

∂y
= 0, (60)

∂ζ

∂t
− ∂b0

∂x
δvx − b0

∂δvx

∂x
− v0

x

∂ψ

∂x
− b0

∂δvy

∂y
− v0

y

∂ψ

∂y
+ 2(N0ζ − b0ψ)v0

x, (61)
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∂θ

∂t
− κ

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
− 2SA(N0ζ − b0ψ)v0

x + rθ = 0. (62)

Looking for the solution of these equations in the form (38) one obtains near the
interface where b0 = −I 2/3x, N0 = I 1/3 (see (25), (26)) the set of differential equa-
tions with uniform coefficients:

(λ − γyyI
1
3 k2)ψ(x) + (γxy + γyx)ikI

1
3
∂ψ(x)

∂x
+ γxxI

1
3
∂2ψ(x)

∂x2
− γyxikI

2
3 ζ(x),

− γxxI
2
3
∂ζ(x)

∂x
− γyxikIθ(x) − γxxI

∂θ(x)

∂x
= 0, (63)

−2γxyikI
2
3 ψ(x) − 2γxxI

2
3
∂ψ(x)

∂x
+ (λ + 2γxxI )ζ(x) + γxxI

4
3 θ(x) = 0, (64)

γxyikI
2
3 SAψ(x) + γxxI

2
3 SA

∂ψ(x)

∂x
− 2γxxISAζ(x)

+ (λ + r + κk2 − γxxI
4
3 SA)θ(x) − κ

∂2θ(x)

∂x2
= 0. (65)

These equations should be completed by the boundary conditions

⎛
⎝ψ

ζ

θ

⎞
⎠

x=−xc/2,xc/2

= 0. (66)

The functions ψ(x), ζ(x) and θ(x) should be symmetrical and localized at the
flux-antiflux interface where x < xc while xc 
 1 is the cutoff where these functions
go to zero (see Fig. 2 and (27)).

Looking for solution of (60)–(65) in the form

⎛
⎝ψ

ζ

θ

⎞
⎠ =

⎛
⎝ (An sinpnx + Bn cospnx)

(Cn sinpnx + Dn cospnx)

(En sinpnx + Fn cospnx)

⎞
⎠ ; (67)

one obtains equations for An,Bn,Cn,Dn,En,Fn coefficients

�̂

⎛
⎜⎜⎜⎜⎜⎜⎝

An

Bn

Cn

Dn

En

Fn

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (68)
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where matrix �̂ reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λr − γyyI
1
3 k2−

−γxxI
1
3 p2

n

−2γxy ipnkI
1
3 −γyx ikI

2
3 pnγxxI

2
3 −γyx ikI pnγxxI

pn2γxy ikI
1
3

λr − γyyI
1
3 k2−

−γxxI
1
3 p2

n

−γxxI
2
3 pn −γyx ikI

2
3 −γxxIpn −γyx ikI

−2γxy ikI
2
3 2pnγxxI

2
3 λr + 2γxxI 0 γxxI

4
3 0

−2pnγxxI
2
3 −2γxy ikI

2
3 0 λr + 2γxxI 0 γxxI

4
3

γxyikI
2
3 SA −γxxI

2
3 SPn −2γxxISA 0

λr + r + κk2−
−γxxI

4
3 SA + κp2

n

γxxI
2
3 SAPn γxyikI

2
3 SA 0 −2γxxISA 0

λr + r + κk2−
−γxxI

4
3 SA + κp2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(69)

where pn = (2n + 1)π/xc is obtained from the boundary condition (66). The dan-
gerous harmonic with n = 0 is responsible for instability. In this case p0 ∼ x−1

c ∼
I 1/3 → 0 for small slope of the magnetic induction at the interface (I � 1) this ma-
trix can be simplified:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − γyyI
1
3 k2 0

0 λ − γyyI
1
3 k2 0 −γyxikI

2
3

−2γxyikI
2
3 0 λ + 2γxxI 0

0 −2γxyikI
2
3 0

γxyikI
2
3 SA 0 −2γxxISA 0

0 γxyikI
2
3 SA 0 −2γxxISA

−γyxikI
2
3 0

−γyxikI 0
0 −γyxikI

γxxI
4
3 0

λ + r + κk2 − γxxI
4
3 SA 0

0 λ + r + κk2 − γxxI
4
3 SA

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(70)

and can be represented as generated Jordan matrix.
∣∣∣∣ K̂ 0

0 K̂

∣∣∣∣ = 0, (71)

where K is the 3 × 3 matrix

K̂ =

∣∣∣∣∣∣∣
(λr − γyyI

1
3 k2) (−γyxikI

2
3 ) (−γyxikI )

(−2γxyikI
2
3 ) (λr + 2γxxI ) (γxxI

4
3 )

(γxyikI
2
3 SA) (−2γxxISA) (λr + r + κk2 − γxxI

4
3 SA)

∣∣∣∣∣∣∣
(72)
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giving the equation for in the form (41)–(42).

Appendix 3

The solutions of the (41)–(42) at small k → 0 read:

λ0 = −�4

�2
k2 + A0k

4; (73)

A0 = �2�4

�2
2

− �1�
2
4

�3
2

− �5

�2
;

λ1 = C1 + B1k
2 + A1k

4; (74)

C1 = 1

2

[−�1 +
√

�2
1 − 4�2

]; (75)

B1 =
[�1 −

√
�2

1 − 4�2][�1�1 − �2] + 2[�4 − �2�1]
�1[

√
�2

1 − 4�2 − �1] + 4�2

; (76)

A1 =
B2

1 [3
√

�2
1 − 4�2 − �1] + [

√
�2

1 − 4�2 − �1][2B1�1 + �3] + 2[�5 + B1�1]
4�2 + �1[

√
�2

1 − 4�2 − �1]
;

(77)

and

λ2 = C2 + B2k
2 + A2k

4; (78)

C2 = 1

2

[−�1 −
√

�2
1 − 4�2

];

B2 =
[�1 +

√
�2

1 − 4�2][�2 − �1�1] + 2[�2�1 − �4]
�1[

√
�2

1 − 4�2 + �1] − 4�2

; (79)

A2 =
B2

2 [3
√

�2
1 − 4�2 + �1] + [

√
�2

1 − 4�2 + �1][2B2�1 + �3] − 2[�5 + B2�1]
�1[

√
�2

1 − 4�2 + �1] − 4�2

.

(80)
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