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Abstract: In Abbe’s formulation, source optimization (SO) is often 
formulated into a linear or quadratic problem, depending on the choice of 
objective functions. However, the conventional approach for the resist image, 
involving a sigmoid transformation of the aerial image, results in an objective 
with a functional form. The applicability of the resist-image objective to SO 
or simultaneous source and mask optimization (SMO) is therefore limited. In 
this paper, we present a linear combination of two quadratic line-contour 
objectives to approximate the resist image effect for fast convergence. The 
line-contour objectives are based on the aerial image on drawn edges using a 
constant threshold resist model and that of pixels associated with an intensity 
minimum for side-lobe suppression. A conjugate gradient method is 
employed to assure the convergence to the global minimum within the 
number of iterations less than that of source variables. We further compare 
the optimized illumination with the proposed line-contour objectives to that 
with a sigmoid resist-image using a steepest decent method. The results show 
a 100x speedup with comparable image fidelity and a slightly improved 
process window for the two cases studied. 
©2012 Optical Society of America 
OCIS codes: (110.3960) Microlithography; (100.3190) Inverse problems; (110.1758) 
Computational imaging; (110.3010) Image reconstruction techniques. 
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1. Introduction 

In recent years, source optimization (SO) and mask optimization (MO) have attracted great 
interests among semiconductor foundries and equipment vendors because of its capability for 
further extending the life of 193-nm optical lithography [1–13]. With the availability of 
free-form sources using diffractive optical elements (DOE), SO serves as a new option for 
achieving higher resolution without increasing the complexity of mask design. The proposal of 
source mask co-optimization (SMO) further permits the exploration of design spaces for both 
illuminations and masks [14–18]. Since both SO and MO rely on the complexity of 
computational lithography algorithms to explore all possible solutions, the design of objective 
functions has a significant impact on the quality of developed patterns [19], the 
manufacturability of sources and masks, and the convergence. It is also desirable to use the 
same objective functions for simultaneous SMO. 

In the past, the resist-image objective based on a sigmoid transformation of the aerial image 
has been extensively used to approximate the resist effect in optical microlithography, 
particularly for mask correction due to its unique contour-aware property [20–25]. The 
logarithmic sigmoid function has the advantage of being differentiable and its parameters are 
adjustable according to the sensitivity of photoresists. However, such objective with a 
functional form precludes the formulation of SO into a linear or quadratic problem using 
Abbe’s formulation, as well as to the implementation of simultaneous SMO using the same cost 
function. Therefore, the conventional approach for the resist-image objective is not desirable 
due to an increased computational time and probability of local minimum traps, as also seen in 
MO. To circumvent such problems, Chan et al. have proposed a projection-based active set 
method to improve the convergence [24]. 

Generally speaking, if the associated objective functions have a quadratic form, the SO 
algorithm can be rather efficient and exhibits a global minimum. To reach a compromise 
between speed and image fidelity, the cost function of SO often involves a quadratic 
aerial-image objective function with specific weightings for contour pixels (or similar 
techniques) to account for the photoresist effect. The complexity therefore arises since the 
result is not exactly the same as the resist-image function in terms of side-lobe suppression. 
Moreover, tuning of the weighting coefficients is also not straightforward. Hence the 
applicability of such kinds of cost functions to SO and SMO is also rather limited. 

In this paper, we present a linear combination of two quadratic line-contour objectives to 
approximate the resist image effect. Our goal is to reduce the computational cost when the 
resist-image objective are involved in SO. The line-contour objectives are based on the aerial 
image on drawn edges using a constant threshold resist (CTR) model and that of pixels 
associated with an intensity minimum for side-lobe suppression [26]. It can also be derived that 
the former is a piecewise linear approximation of the sigmoid function on the drawn edges. As 
a result, we are able to simplify the SO problem using quadratic programming. A conjugate 
gradient method is then employed to assure the convergence to the global minimum within the 
number of iterations less than that of source variables. We further compare the optimized 
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illumination with the proposed line-contour objectives to that with a sigmoid resist-image using 
a steepest decent method. The results show a 100x speedup with comparable image fidelity and 
a slightly improved process window for the two cases studied. 

In Section 2, we will review the image formation in a partially coherent system and 
introduce the illumination cross coefficient (ICC) [27], which simplifies the forward imaging 
calculation and serves as a foundation for the formulation of cost functions. We further analyze 
why the nonlinear sigmoid function in conjunction with the CG method may take longer 
iterations to converge. However, the problem no longer exists in quadratic line-contour cost 
functions. The formulations are then applied for source optimization of contact arrays in 
Section 3. We will demonstrate that the line-contour objectives in conjunction with CG is 
capable of achieving 100x speedup over the traditional approach, i.e. the sigmoid-based 
steepest descent, without compromising image fidelity and process windows. 

2. Methodology 

2.1 Image formation model 

Lithography images, or so-called aerial images, can be simulated by Abbe’s method [28, 29] 
which integrates the images formed by all source points incoherently as Eq. (1). 

 
[ ] 22 ' '

( , ) ( , )

( ', ') ( ', ') ' ' ,i u x v y

I x y J u v

H u u v v M u v e du dv dudvπ

∞

−∞
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 (1) 

where (x, y) and (u, v) denote the spatial coordinates and spatial frequencies of a mask, 
respectively. J(u, v) is the strength of the point source located at (u, v) [29], H(u, v) is the optical 
system transfer function, and M(u, v) is the mask spectrum. 

The optical system is band-limited [30], so the transfer function H(u,v) can be described by 
a low-pass filter as Eq. (2). 

 
2 2( , ) 1, ,

( , ) 0, ,
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 (2) 

where NA/λ is the cut-off frequency of the optical system, NA is the numerical aperture which 
limits the largest oblique angle of rays forming the aerial image, and λ is the working 
wavelength. 

In a partially coherent system, the finite source J(u,v) in Eq. (3) is limited by the coherent 
factor σ (0<σ ≤1) [29, 31]. 
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The spectral integral in the bracket of Eq. (1) is the ICC 
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Because ICC represents the image formed by a unit source with spatial frequencies (u,v), 
Eq. (1) can be interpreted as a linear superposition of images with coefficients J(u,v). 

For computing pixelated images, Eq. (1) should be discretized as 

 
1 1

I( , ) J( , )ICC( , ; , ), , 1, 2,..., .
S S

k l
i j k l i j k l i j N

= =

= =∑∑     (5) 

The variables i, j, k, and l denote the indices of discretized x, y, u, and v. N and S are the total 
sample numbers in spatial and spectral domains, respectively. Likewise the ICC in Eq. (4) can 
be discretized as 

 [ ] 22 '( , ) ( , ) '( , ) ( , )

' 1 ' 1
ICC( , ; , ) H( ', ')M( ', ') .

S S
i u k l x i j v k l y i j

k l
i j k l k k l l k l e π− +

= =

= + +∑∑  (6) 

To simplify the matrix computation, the 2-D discrete source in Eq. (5) can be converted to a 
1-D vector and ICC in Eq. (6) can be expressed by a 2-D matrix. Consequently the output image 
is also a 1-D vector that can be converted to a 2-D distribution by rearranging the rank. Thus Eq. 
(5) can be represented as Eq. (7). 

 ,=I ICC J  (7) 

where the sizes of I, J, and ICC are N2 × 1, S2 × 1, and N2 × S2, respectively. Figure 1 illustrates 
the aforementioned matrix operations. 

 

Fig. 1. Illustration of the matrix operations in Eq. (7). ℜ denotes the matrix to vector conversion. 
ℜ−1 denotes the vector to matrix conversion. 

As a result, every row of the ICC matrix composes of one spatial image point by summing 
all row elements with the coefficients in J. To obtain the target image points, only the relative 
rows are required to be extracted from ICC for the computation. Thus ICC can be partitioned to 
several parts for different image configurations. For example, the images may be classified into 
the marginal and face parts. The former preserves the high spatial frequency fidelity and the 
latter controls the low spatial frequency response. Figure 2 illustrates the operations of image 

#161845 - $15.00 USD Received 19 Jan 2012; revised 16 Mar 2012; accepted 16 Mar 2012; published 23 Mar 2012
(C) 2012 OSA 26 March 2012 / Vol. 20,  No. 7 / OPTICS EXPRESS  8165



  

formation of different parts. As an example, in Fig. 2(a) the inside marginal pixels are painted in 
light grey, outside marginal pixels in grey, and surrounding face pixels in black. The 
surrounding face pixels prevent the non-patterned images to be printed. For a dark-field binary 
intensity mask, the inside marginal pixels are the marginal pixels with value 1. On the contrary, 
the outside marginal pixels are the marginal pixels with value 0. The inside and outside 
marginal pixels can be found by using the Laplacian operator [32] for masks with arbitrary 
patterns. In Fig. 2(b), the combinations of rows extracted from ICC form the new sub-ICCs for 
different image configurations. The light grey, grey and black color bands denote the rows 
corresponding to the pixels in Fig. 2(a). Finally in Fig. 2(c), the matrix operations represent the 
image formation of the combined images. 

ICC

inICC

outICC

0ICC 0ICC

outICC

inICCinI

outI

0I

J

J

J

: Inside marginal image,

: Outside marginal image,

: Selected outside face image,
outI

inI

: Edge of drawn mask

(a) (b) (c)

0I

=

=

=

 

Fig. 2. Partitioned ICC for different parts of image formation. (a) Example of a pixelated square 
contact mask. (b) Row extractions and sub-ICC generation. (c) Matrix operations of various 
image formations by using sub-ICCs. 

2.2 Cost functions 

To find the optimal source, the proper objective functions for quantifying the deviation between 
ideal designs and real simulations should first be defined. In general the final resist images 
under the CTR model are the uppermost concern. However, the resist images are usually 
simulated by the nonlinear sigmoid function [20–22], which destroys the benefit of linear 
operations in Abbe’s image formation. The sigmoid function has the form as Eq. (8). 

 ( ) ( )

1 1( ) ,
1 1a tr a trT

e e− − − −= =
+ +I ICC JI  (8) 

where a characterizes the sensitivity of the photoresist and controls the slopes of sidewall 
profiles.tr is the parameter of the constant threshold level. The objective function using Eq. (8) 
is defined as Eq. (9). 

 2( ) ( ) ,Sigmoid tF T T= −I I  (9) 

where ||⋅|| is the operation of Euclidean norm. It is the target aerial image which can be 
elaborately designed according to the geometric shapes of patterns [19, 33, 34]. 
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Two objective functions are designed to have quadratic forms and to achieve the same 
accuracy as the nonlinear sigmoid function. One is the threshold-intensity only awareness and 
another is non-pattern region monitoring. The first can be formulated as 

 ( )
21 ,

2R in outF tr= +ICC ICC  J -  (10) 

where the sizes of ICCin and ICCout are both N′ × S2 and N′ denote the number of pixels on the 
margins of drawn patterns. 

From another point of view, Eq. (10) only monitors the cost on drawn edges regardless of 
other places. Such formulation has been used by Sayegh for image design [35]. In a sense, Eq. 
(10) is not sensitive to image slopes for matching the sigmoid characteristic in the transition 
region. The differences in image slopes in the edge positions do not contribute to the deviation 
in costs for both cases. 

To suppress the image in non-pattern regions, the images of closed curves surrounding the 
drawn features are incorporated into optimization. Such curves whose widths are one pixel are 
like the one composed of the black pixels in Fig. 2(a). A large amount of non-pattern images 
leads to low yield due to undesired resist images, or so-called side-lobes. Therefore, the 
objective function for side-lobe printing can be designed as 

 2
0 0 ,F δ= ICC  J -  (11) 

where δ is chosen to be as small as possible, but should remain positive. The size of ICC0 is N″ 
× S2, where N″ denotes the number of chosen pixels surrounding the drawn patterns. 

The distance of every surrounding pattern is half a pitch for periodic patterns and 0.61λ/NA 
for isolated and semi-isolated patterns. The half-pitch is associated with the minimum intensity 
of periodic patterns. 0.61λ/NA is associated with the first minimum of diffractive patterns for a 
circular aperture. Moreover, the sigmoid function acts as a high pass filter where the images 
will be converted to 0 or 1 beyond the transition region. Such conversion is highly nonlinear. 
Equation (11) cannot simulate well, but has a similar trend that prefers to suppress side-lobe 
printing for minimizing F0. 

By defining objective functions on critical parts of the image and reformulating the 
sigmoid-based cost function as a line-contour objective, the computational cost of SO is 
significantly reduced. 

2.3 Optimization 

In terms of matrix operation, Eqs. (10) and (11) can be rewritten as Eqs. (12) and (13). 

 ( ) ( )
T1 1 ,

2 2R in out in outF    = + +   
   

ICC ICC  J - tr ICC ICC  J - tr  (12) 

 T
0 0 0( ) ( ),F = ICC  J - δ ICC  J - δ  (13) 

where T denotes transpose operation, tr = tr × [1,…,1]T, and δ = δ × [1,…,1]T. The sizes of tr, 
and δ are N′ × 1, and N″ × 1, respectively. Thus the overall cost of the line-contour objectives is 
obtained by linearly superposing FR, and F0 with the coefficients c1, and c2 as Eq. (14): 

 1 2 0 .Linear RF c F c F= +  (14) 
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Consequently, by minimizing Eq. (14) with an argument J, we can find the optimal source Ĵ 
as Eq. (15): 

 ˆ { }.LinearF=
J

J argmin .  (15) 

Moreover, Eq. (14) can be expanded to have a quadratic form as Eq. (16). 

 T T ,LinearF c= − +J QJ b J  (16) 

where 

 ( ) ( )T T1
2 0 0 ,

4 in out in out
c c= + + +Q ICC ICC ICC ICC ICC ICC  (17) 

 ( )T T
1 2 02 ,in outc c= + +b ICC ICC tr ICC δ   (18) 

 T T
1 2 .c c c= +tr tr δ δ  (19) 

The sizes of Q, b and c in Eqs. (17), (18), and (19) are S2 × S2, S2 × 1, and 1 × 1, respectively. 
Because the overall cost function is quadratic, the optimal source Ĵ is guaranteed to be found by 
conjugate-gradient (CG) method with no more than S2 iterations [36,37]. The algorithm can be 
summarized by the pseudo-code in Table 1. 

Table 1. Pseudo-Code of CG 

Algorithm 1. SO by CG 
Input: 
Load initial source J(0). Set k = 0. 
Calculation: 
1. g(0) = ∇JFLinear(J(0))†. If ||g(0)|| < ε ‡, stop; else, set d(0) = −g(0). 
2. αk = −(g(k)Td(k))/(d(k)TQd(k)). 
3. J(k+1) = J(k) + αkd(k). 
4. Set all negative entries of J(k+1) are equal to 0. 
5. g(k+1) = ∇JFLinear(J(k+1)). If ||g(k+1)|| < ε, stop; Set Ĵ = J(k+1). 
6. βk = (g(k+1)TQd(k))/(d(k)TQd(k)). 
7. d(k+1) = −g(k+1) + βkd(k). Set k = k + 1; Go to step 2. 
Output: 
Export optimal source Ĵ. 
 

† g =  2(QJ − b). ∇J = [∂/∂J(1,1), ∂/∂J(2,1), …, ∂/∂J(S,S)]T. 
‡ ε is an extremely small value, but positive. 

Furthermore, to verify the effectiveness of our algorithm, the SO results by sigmoid model 
are also calculated. Likewise the optimal source by sigmoid model Ĵ′ in Eq. (20) can be defined 
as an argument for minimizing Eq. (9) and like Eq. (15). 

 ˆ { }.SigmoidF′ =
J

J argmin .  (20) 
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However, Eq. (9) is not in quadratic form. The algorithm presented in Table 1 is not 
applicable. Although several modified CG methods have been proposed to address 
non-quadratic problems [37], there are two drawbacks limiting the application of CG in 
high-order problems. First, the Step 2 in Table 1 that decides αk is a time-consuming one 
dimension optimization problem [37,38]. Second, βk in Step 6 of Table 1 approximated by a 
quadratic function is not accurate enough to characterize the nonlinearity of the sigmoid model. 
That leads to extra iterations for converging. 

Thus the steepest-descent (SD) algorithm [37] widely used in inverse mask optimization 
with sigmoid resist images [19,22,39,40] is performed to compute Ĵ′. Table 2 summarizes the 
steps of the SD algorithm. 

Table 2. Pseudo-Code of SD 

Algorithm 2. SO by SD 
Input: 
Load initial source J(0). Set k = 0. 
Calculation: 
1. g′(k) = ∇JFSigmoid(J(k))†. 
2. J(k+1) = J(k) + γ g′ (k). 
3. Set all negative entries of J(k+1) are equal to 0. 

If FSigmoid (J(k+1)) > FSigmoid (J(k)), γ = α′γℵ; Set J(k+1) = J(k). 
Elseif FSigmoid (J(k))−FSigmoid (J(k+1)) < ε ‡, stop; Set Ĵ′  = J(k+1). 

Else set k = k + 1; Go to step 1. 
Output: 
Export optimal source Ĵ′. 
 † g′  = -2aICCT[(T(It)-T(I))⋅(1-T(I))⋅T(I)]. ⋅ is the pixel-wise multiplication. ∇J = [∂/∂J(1,1), ∂/∂J(2,1), …, ∂/∂J(S,S)]T. 

ℵα′ < 1. γ = 5 and α′ = e-0.5 in our work. 
‡ ε is an extremely small value, but positive. 

Because only the source variables within the circle with the σNA/λ radius are available, the 
total source number is approximately equal to S2 × π/4. Therefore, there are 2 × (S2 × π/4)2 and 
2 × N2 × (S2 × π/4) multiplications in every CG and SD iteration, respectively. Hence, the 
computational complexities of SO by CG and SD incorporating line-contour objectives and 
sigmoid-based resist image costs are O((S2 × π/4)2 × KCG) and O(N2 × (S2 × π/4) × KSD), 
respectively,where KCG and KSD are iteration numbers of CG and SD. Theoretically the elapsed 
time t of computation is proportional to the complexity and the speed t−1 is inversely 
proportional to the elapsed time t. Thus the speed ratio of CG comparing to SD is tSD/tCG which 
can be formulated as κ1 × N2/(S2 × π/4) × KSD/KCG. κ1 is a constant which depends on the 
programming efficiency of different algorithms. Usually N2/(S2 × π/4) and KSD/KCG are both 
much larger than one, which implies CG being a more efficient approach. 

Finally we define the functions DoPEJ and DoPEI in Eqs. (21) and (22) to quantify the 
difference between sources and aerial images, respectively, where DoPE stands for the degree 
of pattern error. 

 2 1
J 1 2

2 1

1DoPE , , 0.
2

= − ≥∑ ∑ ∑
J J J J

J J
  (21) 

 2 1
I 1 2

2 1

1DoPE , , 0.
2

= − ≥∑ ∑ ∑
I I I I

I I
  (22) 

By this way, the DoPEs are in the range of [0, 1]. 
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3. Results and discussion 

The source and drawn mask templates are composed of 65 × 65 and 256 × 256 pixels with S and 
N equal to 65 and 256, respectively. The pixel size is 2.48x2.48 nm2. Two demo mask 
configurations are regular and brick contact arrays as shown in Fig. 3. In our simulations, c1/c2 
ratios are set to be 3.28 and 6 for the two masks, respectively. The surrounding pixels for 
side-lobe checking are placed in the distance of half pitch from the center of every contact on 
the masks with a and δ equal to 90 and 0, respectively. The illumination and projection system 
have working wavelength λ, numerical aperture NA and coherent factor σ equal to 193 nm, 1.35 
and 0.9, respectively. In order to make a fair comparison, all images are normalized by 
integration of a full-open source with unit intensity and blank mask. The threshold tr is chosen 
to be 0.5 after comprehensive studies. However, in the real-world situation, the threshold 
should be fine-tuned to match the wafer data before any correction. Moreover, the strength of 
every variable in following optimal sources involves exposure-time (dose) and intensity 
(power-per-unit-mask-area). Thus the dose is adjustable like a convention illuminator because a 
large dose means a low intensity of the source variable when we keep the strength constant. 

 

Fig. 3. (a) Regular contact array and (b) Brick contact array used for source optimization. 

Figure 4 illustrates the experimental results using the contact array in Fig. 3(a). The source 
coordinates are normalized by σNA/λ. The optimal sources of both models are very close. There 
are four energy poles which are approximately at ± 60° and ± 120° in both optimal sources. 
Similarly, Fig. 5 shows the experimental results using the contact array in Fig. 3(b). Both 
sources are quite similar and have six energy poles near ± 30°, ± 90°, and ± 150°. The poles 
where energy is concentrated generate interfered spatial frequencies which match the spatial 
distribution of masks. The places besides poles are background parts that have a few deviations 
between both optimal sources. Such parts provide near constant intensity distributions for basis 
that biases the vibrations interfered by poles across the threshold tr. Moreover, our patterns 
include not only the repetitive parts of periodic patterns, but also the marginal parts. Thus they 
can be seen as a finite periodic structure. To hold the pattern fidelity in periodic (center) and 
aperiodic (margin) parts, the final optimal sources will have strong background intensities if 
there is no other constraint. However, adding constraints to our cost functions will increase the 
challenges to have the similar optimal sources in our work due to extra tunable parameters. 
Because our main goal is to demonstrate that similar optimal sources will be obtained using 
different cost functions, such issue is not a major concern of our work. Additionally, the low 
contrast images will be obtained as a source optimized for various structures. Such low contrast 
usually results from the center parts of the sources. 

As a result, our line-contour objectives can simulate the resist image costs well using Eq. 
(10) while the image intensity is near the threshold. The threshold-only awareness 
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characteristic of Eq. (10) is sensitive to the average intensity of the two adjacent pixels in and 
out the drawn edges. Therefore, no matter how sharp the image slops are in drawn edges, the 
costs are the same when the drawn edge image intensities have no change. That is consistent 
with sigmoid model that any image intensity of two adjacent pixels across tr will be converted 
to just 1 or 0. Nevertheless the images away from drawn edge locations have some deviations as 
using Eq. (11). Such results are predictable because Eq. (11) only forces the intensity of the 
surrounding rings to δ, that is not like sigmoid as a high pass filter. Moreover, Eq. (9) shows that 
the cost of any image intensity above (or below) tr is equal in one location, but Eq. (11) does 
not. Furthermore, every drawn pattern has only one side-lobe checking ring whose monitoring 
ranges are much smaller than the sigmoid model. 

In terms of images, they also show similar threshold contours, where the magenta and green 
curves are associated with sigmoid-based resist image costs and line-contour objectives 
approaches, respectively. Moreover, the overall image qualities are excellent after SO although 
the patterns are still not on the target (black curves), but close. Such results relieve the load of 
MO and lead to simpler OPC masks. 
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Fig. 4. Optimal sources of the regular contact array in Fig. 3(a). 
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Fig. 5. Optimal sources of the brick contact array in Fig. 3(b). 

Finally we quantize the similarity of different optimal sources and their images by using 
Eqs. (21) and (22). The average edge placement errors (EPEs) and normalized image log slopes 
(NILSs) are also calculated according to cutline settings in Fig. 3(a) and 3(b). 

In Table 3, the average EPEs of both mask structures using two different resist image cost 
functions are close and near the pixel size. Likewise average NILSs are also close. Moreover, 
DoPEJ of both masks are 5.24% and 10.87%, which implies the optimal sources using two resist 
image cost functions are highly similar. Although DoPEJs of both masks are more than 5%, 
DoPEIs are less than 2%. Such phenomenon indirectly verifies that aerial images are quite 
insensitive to large defects on sources [41, 42]. The above merit matches one of the 
characteristics of holograms that 3D images are reproduced well even some parts are damaged 
[43–45]. In fact the diffraction optical element (DOE), one of the techniques for generating the 
free form sources, is based on holography [46, 47]. 

Table 3. Measurements of Sources and Aerial Images 

            Measurement 
  Mask; Resist image cost 

EPE 
(nm) 

NILS 
(AU) 

DoPEJ 
(%) 

DoPEI 
(%) 

Regular contact array 

Sigmoid 2.75 1.49 

5.24 1.11 Line-contour 1.93 1.18 

Brick contact array 

Sigmoid 2.58 1.25 

10.87 1.22 Line-contour 2.44 1.13 

After verifying sources and images obtained from two resist image cost functions are the 
same, the next step is to check their impact on the speed of source optimization. Table 4 lists the 
relative analyses and measurements. 

As a result, our line-contour objectives with CG take much less iteration than the sigmoid 
model with SD. The complexity ratio is evaluated by N2/(S2 × π/4) × KSD/KCG as mentioned in 
the previous section and N2/(S2 × π/4) is 19.75 in our settings. The complexity ratios are up to 
hundreds. Therefore, the speeds are enhanced by two orders. Moreover, the complexity ratios 
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and speedup ratios of both masks are in the relation of a constant κ1 whose values are 0.65 and 
0.62 for regular and brick contact arrays, respectively. Such consistent value of κ1 for both 
masks implies the parameters for estimating speeds from complexity formulas have been 
entirely taken into consideration. 

Table 4. Evaluation of Computational Complexity and Speed Enhancement 

              Measurement 
 Mask; Resist image cost 

Iteration 
number (K) 

Complexity Ratio 
(19.75 × KSig/KLin) 

Speed up Ratio 
(t−1)Lin/(t−1)Sig 

κ1 

Regular contact array 

Sigmoid 386 

162.20 105.98 0.65 Line-contour 47 

Brick contact array 

Sigmoid 550 

293.58 182.34 0.62 Line-contour 37 

 Moreover, process variations of different optimal sources of each mask are also evaluated. 
Process variations are important to yields and expected to have close trends if similar sources 
are used. The exposure-defocus (E-D) process window (PW) is the main metric to characterize 
the process variations. Figure 6 shows the average E-D PWs of both masks using 
sigmoid-based and our line-contour objectives. Due to the sub-wavelength CD and pitch, the 
effective E-D PWs are within Kirchhoff diffraction region [31] where the defocus is smaller 
than half wavelength. In Fig. 6(a) the average E-D curves match well within the ± 15 nm 
defocus range. Though the average E-D curves in Fig. 6(b) have more misalignments, they are 
still in the similar trends which are concave parabolas. Such results are reasonable because the 
DoPEJ of the brick contact array is more than that of the regular contact array. 

In summary, source differences reveal obvious impacts with the increasing propagation 
distance from nominal points. Such propagation let the image deviations spread from points to 
spots whose covering areas become wide with far propagating distances. Therefore, the 
threshold image contours formed by different optimal sources in defocus positions suffer from 
different impacts of places other than target margins. Consequently, the farther the defocus, the 
more deviations are from other places because spots become broader. Such different impacts of 
source variations result from Eq. (11) not matching well with sigmoid model as previously 
mentioned. Furthermore, our SOs are based on nominal models, so the average E-D curves of 
both cost functions overlap near the 0 nm defocus position. 

 

Fig. 6. Average E-D PW of (a) Regular contact array, and (b) Brick contact array. 
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In Table 5 we tabulate the representative measurements of E-D PWs in Fig. 6. The DoF and 
ΔDose are measured by finding the optimal ellipse that is tangent with the curves and having 
the maximum area. Thus the horizontal and vertical axes are DoF and ΔDose, respectively. 
Such measurements show better elliptic E-D PWs as using our line-contour objectives, 
especially in brick contact array. Finally, small values (<10−2) of standard deviations of blue 
and red curves in Figs. 6 (a) and 6(b) quantitatively verify the similarity between process 
variation trends. As we previously discussed, the brick contact array has larger standard 
deviation because it suffers more from the deviation of source differences. 

Table 5. Measurements of E-D PWs 

          Measurement 
 Mask; Resist image cost 

E-D PW (Ellipse) Standard deviation of 
E-D curves DoF (nm) ΔDose (%) 

Regular contact array 

Sigmoid 17.21 3.01 

0.003 Line-contour 18.36 3.13 

Brick contact array 

Sigmoid 18.52 3.27 

0.008 Line-contour 20.33 4.56 

4. Conclusion 

We propose the innovative line-contour objectives and successfully demonstrate their 
feasibility. The optimal sources and relative aerial images have close similarities compared to 
that using a sigmoid model. According to the quantitative results of DoPEJ and DoPEI, source 
variations have insignificant impact to aerial images. Such merit allows the flexibility of 
converting complex sources to simple ones. The image fidelities measured by EPEs are close 
and so do NILSs that detect the image contrast. Moreover, the quadratic objective function 
enables a significant speed enhancement of CG. The consistent constants κ1 between 
complexity and time ratios in both cases indicate our complexity analysis is accurate and quite 
independent of the masks. Furthermore, the E-D windows show similar process variation trends 
as being quantified by the standard deviation. Better elliptic E-D PWs are obtained by using our 
line-contour objectives, especially for the brick contact array. Our methodology is very 
promising for enhancing the speed of simultaneous SMO due to a simplification of the 
resist-image-based cost functions from nonlinear to quadratic. 
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