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n-Zn0/LaAlO;/p-Si heterojunction
for visible-blind UV detection
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A visible-blind UV photodetector (PD) using a double heterojunction of n-ZnO/LaAlO; (LAO)/p-Si was demon-
strated. Inserted LAO layers exhibit electrical insulating properties and serve as blocking layers for photoexcited
electrons from p-Si to n-ZnO, leading to an enhanced rectification ratio and a visible-blind UV detectivity of the
n-ZnO/LAO/p-Si PDs due to the high potential barrier between LAO and p-Si layers (~2.0 eV). These results support

the use of n-ZnO/LAO/p-Si PDs in the visible-blind UV PDs in a visible-light environment.
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Visible-blind UV photodetectors (PDs) have drawn in-
tense interest in combustion flame monitoring, pollution
analysis, missile plume detection, chemical sensing, and
intersatellite communications [1-4]. ZnO is an excellent
semiconductor material for UV detection due to its wide
bandgap [5-7]. Previous reports have demonstrated a
variety of ZnO-based PDs, including photoconductors
[6], metal-semiconductor-metal PDs [8], Schottky photo-
diodes [4,9], and p-n photodiodes [8,10-12]. ZnO-based
Schottky PDs can serve as UV PDs only because of the
wide bandgap (3.3 eV) of ZnO and have relatively high
reverse leakage current. Moreover, the increase in re-
verse leakage current with temperature leads to a ther-
mal instability issue in ZnO-based Schottky PDs [13]. A
p-n PD has the advantages of fast response and low dark
current and the ability to work without applied bias.
However, due to the lack of reliable p-type ZnO, the het-
erojunctions used for ZnO-based UV photodiodes are of a
different p-type material [8,11]. Low-cost p-Si is a candi-
date for the n-ZnO-based heterojunction UV detector
due to its compatible processing with a complementary
metal-oxide—semiconductor [10-12]. Many studies on
n-ZnO /p-Si heterojunction photodiodes have been done
[8,10-12,14]. However, while the n-ZnO/p-Si photodiode
does enhance UV responses due to ZnO, it still has a sig-
nificant response to visible light, which greatly hinders its
applications in UV detection, particularly in a visible-light
environment.

In this work, we present the UV PDs employing
n-ZnO/LaAlOs (LAO)/p-Si double heterojunctions using
pulse laser deposition (PLD). The n-ZnO/LAO/p-Si PDs
exhibit visible-blind UV responsivity with a cutoff wave-
length of responsivity at 380 nm, corresponding to the
near band edge (NBE) absorption of ZnO [15,16]. In-
serted LAO layers 10 nm thick effectively eliminate
visible-light responses via blocking the electrons excited
by visible photons in p-Si near the interface owing to the
high potential barrier between the p-Si and LAO layers
(~2.0 eV). This study paves the way for visible-blind
UV photosensing applications under outdoor lighting.

Figure 1(a) shows the schematic of the
n-ZnO/LAO/p-Si PDs. The 10 nm thick LAO and 100 nm
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thick n-ZnO thin films were deposited on p-Si using a PLD
system. Before being loaded into the growth chamber,
p-Si wafers were cleaned for 1.5 min in the buffered oxide
etchant to remove the surface native oxide layer. A KrF
excimer laser (wavelength: 248 nm, laser energy:
1.3 J/cm?, and repetition rate: 10 Hz) was applied to ab-
late the targets of pure LAO and ZnO. The temperature of
the substrate holder was ~700 °C, and the partial pres-
sure of oxygen was 0.1 Torr (the base pressure of the
PLD chamber was 1 x 10-% Torr). The PDs were defined
using photolithography with active areas of 500 pym x
158 pum contacted by interdigitated Au/Ti electrodes with
an 8 ym wide, 150 ym long, and 50 nm thick, with spacing
8 ym wide on the n-ZnO/LAO/p-Si PD. The 30 nm thick
Au/Ni electrodes were made on the backside of p-Si.
In order to highlight the visible-blind UV response of
n-ZnO/LAO/p-Si PDs, n-ZnO/p-Si PDs without LAO
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Fig. 1. (Color online) (a) Schematic of the n-ZnO/LAO /p-Si

PDs, (b) xray diffraction spectrum of n-ZnO/LAO/p-Si
layers, (c) room-temperature photoluminescence spectra of
n-ZnO/LAO/p-Si and n-ZnO/p-Si layers, and (d) I-V curve of
n-ZnO/LAO/p-Si PDs in the dark. The inset in (d) is the I-V
curve of n-ZnO/p-Si PDs in the dark.
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layers were fabricated with identical processes as a
reference.

After the PLD growth processes, the x-ray diffraction
(XRD) spectrum of n-ZnO/LAO /p-Si was measured with
a fixed incident angle of 0.5 deg for the phase identifica-
tion, as shown in Fig. 1(b). A strong peak is at 34.52 deg
for the diffraction from the (002) plane of ZnO, showing
that ZnO films are preferentially oriented in the c-axis di-
rection [17]. A weak and broad peak from the (110) plane
of LAO is observed in the XRD spectrum, indicating the
LAO layer with a nanocrystalline (i.e., amorphous) struc-
ture. To further confirm the quality of ZnO films, the
room-temperature photoluminescence (PL) spectra of
n-ZnO/LAO/p-Si and n-ZnO/p-Si were measured with
a 325 nm He-Cd laser as an excitation source, as shown
in Fig. 1(c). The PL spectra of ZnO show a strong NBE
emission at 380 nm and no defect band emission in visible
regions [15], indicating the superior crystal quality of the
ZnO thin films grown by the PLD method compared with
ZnO nanorods grown by the hydrothermal method [16].
Moreover, the FWHMs of NBE peaks of n-ZnO/LAO /p-Si
and n-ZnO /p-Si are 20 and 22 nm, respectively, indicating
that LAO layers are suitable buffers to reduce the lattice
mismatch between n-ZnO layers and p-Si substrates. It
should be noted that the lattice mismatches of ZnO/Si,
ZnO/LAO, and LAO/Si are ~40%, 3%-5%, and ~1.3%, re-
spectively [18-20]. Figure 1(d) shows the I-V curve of
n-ZnO/LAO/p-Si PDs measured with a Keithley 4200-
SCS semiconductor characterization system in the dark.
The n-ZnO/LAO/p-Si PD exhibits the low reverse dark
current (~1 yA) under -2 V bias and a rectification ratio
of ~10° at 2 V, indicating the electrical insulating nat-
ure of the LAO layers with thicknesses as low as 10 nm. In
contrast, as shown in the inset of Fig. 1(d), a rectification
ratio of n-ZnO/p-Si PDs without LAO layers is ~10
at £2 V due to the high reverse dark current (~0.4 mA)
under the bias of -2 V.

Figure 2 shows the spectral responsivity of the
n-ZnO/LAO/p-Si PDs measured with the EQE-R3011
spectral response system (Enli Technology) under differ-
ent biases. The visible-light response of n-ZnO/LAO /p-Si
PDs is diminished as the reverse bias is decreased. As
shown in the inset of the external quantum efficiency
(EQE) spectrum in Fig. 2, the n-ZnO/LAO/p-Si PDs
at 0.5 V reverse bias show high UV response (the
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Fig. 2. (Color online) Spectral responsivity of the
n-ZnO/LAO/p-Si PDs under reverse biases of 0.5, 1.5, and
2.5 V. The inset is the external quantum efficiency of the
n-ZnO/LAO/p-Si PDs at -0.5 V bias from 350 to 750 nm.
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responsivity and EQE at 350 nm are ~0.05 A/W and
~18%, respectively), with a sharp cutoff at 380 nm and
obscure visible-light response, demonstrating visible-
blind UV detection. The n-ZnO/LAO/p-Si PDs under a
reverse bias higher than 0.5 V show notable visible-light
signals and significant UV responses due to the NBE
absorptions of Si and ZnO, respectively, as shown in
Fig. 2. The reverse-bias-insensitive UV response of
n-ZnO/LAO/p-Si PDs is due mainly to the full depletion
of n-ZnO layers. It should be noted that the 100 nm thick
n-ZnO thin films stay fully depleted at a reverse bias high-
er than 0.5 V. Since UV photocarrier generation occurs at
a boundary between ZnO and LAO, we can treat Si as a
conductive electrode. Considering the thin LAO insulator
layers, the depletion width of n-ZnO adjacent to the
oxide-semiconductor interface can be approximated
as W, = (2¢V,/eNp)/?, where W, is the depletion width
of n-ZnO, V.. is the reverse-bias voltage, ¢ is the dielectric
constant of n-ZnO (12 x 8.85 x 10-* F/cm); and N, is the
donor concentration of n-ZnO, ~5 x 106 ecm=3 [21-23].
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Fig. 3. (Color online) The band structure of n-ZnO/LAO /p-Si
at (a) zero bias in the dark, (b) low reverse bias (0.5 V) under
illumination, and (c) high reverse bias (1.5 and 2.5 V) under il-
lumination. Solid circles and open circles are the electrons and
the holes, respectively, photoexcited in the depletion region of
p-Si by visible light; solid squares and open squares are the elec-
trons and holes, respectively, photoexcited in the depletion re-
gion of n-ZnO by UV light spectral responsivity curves of the
n-ZnO/LAO /p-Si PDs under reverse biases of 0.5, 1.5, and 2.5 V.
Note that the potential barrier for electrons (V) in p-Si at the
p-Si-LAO interface and the potential barrier for holes (Vy;,) in
n-ZnO at the LAO-n-ZnO interface are ~2.0 eV and ~0.7 eV,
respectively.
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Fig. 4. I -V curves of the n-ZnO/LAO/p-Si and n-ZnO/p-Si
PDs measured in the dark and under air mass 1.5 global
illumination.

Accordingly, W,, is estimated to be ~115 nm under a
reverse bias of 0.5 V.

To gain insight into the physics behind the visible-blind
UV response of n-ZnO/LAO /p-Si PDs, the band structure
of n-ZnO/LAO/p-Si from the Anderson model is illu-
strated in Fig. 3 [11,24]. At zero bias, the band structure
of the n-ZnO/LAO/p-Si heterojunction at thermal equili-
brium is shown in Fig. 3(a). The potential barrier for elec-
trons in p-Si at the p-Si—LAO interface and the potential
barrier for holes in n-ZnO at the LAO-n-ZnO interface are
~2.0 eV and ~0.7 eV, respectively. As shown in Fig. 3(b),
at low reverse bias (0.5 V), the electron-hole pairs
excited by photons with wavelengths longer than 380 m
penetrating through ZnO layers to the depletion regions
of the p-Si are swept out immediately by the internal elec-
tric field, but the photoexcited electrons in the p-Si are
blocked at the interface between p-Si and LAO layers
due to the high potential barrier (~2.0 eV) and thus
recombine with the holes quickly, reducing the photocur-
rent in visible wavelength regions. On the other hand, the
electro-hole pairs excited by photons with wavelengths
shorter than 380 nm within the depletion regions of the
n-ZnO layer can be separated effectively, and then photo-
excited holes can penetrate easily through the LAO layer
to p-Si because of low barrier potential (~0.7 eV), giving
rise to high photocurrents in UV wavelength regions.
Here p-Si serves as a conductive layer for UV photoex-
cited holes. Therefore, the visible-blind UV response of
n-ZnO/LAO/p-Si PDs is achieved by restraining visible-
light response under low reverse bias. One should note
that, as shown in Fig. 3(c), at a high reverse bias, such as
1.5 or 2.5 V, the excess electrons excited by visible light
in p-Si can tunnel through thin LAO layers under a high
electrical field, resulting in significant photoresponses in
visible wavelength regions, as shown in Fig. 2.

In order to highlight the visible-blind UV response of
n-ZnO/LAO/p-Si PDs, n-ZnO/p-Si PDs were fabricated
as a comparison. Figure 4 shows the I-V characteristics
of the n-ZnO/LAO /p-Si and n-ZnO /p-Si PDs measured in
the dark and under air mass (AM) 1.5 global (G) illumi-
nation. Under 0.5 V of the reverse bias, the photocurrent
to dark current ratios (PDCRs) of n-ZnO/LAO/p-Si PDs
and n-ZnO/p-Si PDs are 0.2 and 4.5, respectively, using
PDCR = (I, —1,)/1,, where I; is the dark current and
I, is the photocurrent under AM 1.5 G illumination
[16,25]. Note that the integrated UV (<400 nm) and

visible (400-700 nm)-light power in AM 1.5 G are ~3%
and ~45%, respectively. Accordingly, the low PDCR of
n-ZnO/LAO/p-Si PDs under AM 1.5 G illumination is
due to the fact that inserted LAO layers effectively
restrain visible-light responses.

In summary, n-ZnO/LAO/p-Si exhibits a rectification
ratio of ~10° at +2 V, while the rectification ratio is
low for conventional n-ZnO/p-Si PDs (~10 at £2 V). The
LAO layers exhibit electrical insulating characteristics
and serve as blocking layers for photoexcited electrons
from p-Si to n-ZnO, leading to a high rectification ratio
and visible-blind UV detectivity of n-ZnO/LAO/p-Si
PDs. This work demonstrates that the LAO layers incor-
porated with n-ZnO and p-Si hold promise for visible-
blind UV detection.
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